Pharo By Example 5

Stéphane Ducasse, Dimitris Chloupis, Nicolai Hess, and Dmitri Zagidulin

September 29, 2018

Copyright 2017 by Stéphane Ducasse, Dimitris Chloupis, Nicolai Hess, and Dmitri Za-
gidulin.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

+ to Share: to copy, distribute and transmit the work,

+ to Remix: to adapt the work,
Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the shabook I5TgX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

lllustrations Vi

1 Preface 1
1.1 WhatisPharo? o o o o e e e e 1
1.2 Whoshouldreadthisbook? 2
1.3 Awordofadvice e e e e e e e e e e e e e e e e e e e 3
1.4 Anopenbook e 3
1.5 ThePharocommunity o i it e e e 3
1.6 Examplesandexercises e e 4
1.7 Acknowledgments 4
1.8 Hyper special acknowledgments, 5
2 A quick tour of Pharo 7
21 InstallingPharo 7
22 Pharo: FileComponents i e 8
2.3 LaunchingPharo. e 9
2.4 PharolLauncher i e 1
25 TheWorldMenu o v i e e e e e e e e e e e e e e e e 12
26 SendingMesSSages vt i h e e e e e e e e e e e e e e e e e e e 14
2.7 Saving, Quitting and Restartinga PharoSession 15
2.8 Playgroundsand Transcripts v ittt 16
2.9 KeyboardShortcuts e 17
210 TheSystemBrowser v v v it it e e 20
211 FindingClasses o i i i i e e e e e e e 22
212 FindingMethods e 26
213 DefiningaNewMethod 28
214 ChapterSummary o v vt e e e e e e e e e e e e e e e e 32
3 Afirst application 33
3.1 ThelightsOutgame. i ittt it e et 34
3.2 CreatinganewPackage i i it 34
3.3 DefiningtheclassLOCell v i it v i it 35
3.4 Addingmethodstoaclass. 37
3.5 Inspectinganobject L e 39
3.6 DefiningtheclassLOGame o i ittt 41
3.7 Organizing methods into protocols 46

3.8
3.9
3.10
3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

7.1
7.2
73
7-4
7.5
7.6
7.7

Contents

Finishingthegame 47
Let'stryourcode v v i i i i i it e e e 49
Saving and sharing Pharocode, 52
Chaptersummary o v v i i it e e e e e e e e e e e e 56
Syntax in a nutshell 59
Syntacticelements e e e e e e 59
Pseudo-variables e 62
Message sends i e e e e e e e e e e e e e e e e e e e 63
Methodsyntax v o v v i i e e e 64
Blocksyntax v v i e e e e e e e e e e e e e e e e e e 65
Conditionals and loopsinanutshell 66
Primitivesand pragmas it e e e e e 68
Chaptersummary v v v i i e e e e e e e e e e e e e 69
Understanding message syntax 71
Identifyingmessages i it e e e e e e e e e e e e 71
Three types of MesSSages v v v v v v v v b e e e e e e e 73
Message compositiono h e e e e e e e e 76
Hints for identifying keyword messages 82
EXpression SequeNnCes v v v v v it e e e e e e e e e e e e e e e 83
Cascaded MeSSageS & « v v v v v i e e e e e e e e e e e e e e e e e e 84
Chaptersummary v v v i i e e e e e e e e e e e e e e e e 84
The Pharo object model 87
Therulesofthemodel, 87
EverythingisanObject 87
Every objectis aninstanceofaclass 88
Instance structureand behavior. oo, 89
Theinstance sideandtheclassside 90
Everyclasshasasuperclass L oo, 96
Everything happens by sendingmessages 100
Method lookup follows the inheritance chain 101
Sharedvariables e 108
Internal object implementationnote 12
Chaptersummary v i it e e e e e e e e e e e e e 13
Some of the key tools of the Pharo environment 115
Pharo environmentoverview e 15
The maincode browser @ i i i i i i e e e e e e e e e 17
Theinspector o i i i i i e e e e e e e e e 130
Thedebugger e e 132
The process browser i i i i i i e e e e e e e e e e 141
Findingmethods i 142
Chaptersummary i it i e e e e e e e e e e e e e e 142

Contents

8 Sharing code and source control 145

8.1 Packages: groups of classesand methods 145
8.2 Sourcecontrol e e e e e e e e e e e e e e e e e e 152
8.3 TheF FileListBrowser o o i i i e e e e e e e e e e e e e 155
8.4 InPharo,youcantlosecode 156
8.5 Chaptersummary v v v v v v it e e e e e e e 157
9 SUnit 159

9.1 Introduction e e e e e e e e e e e e e e e e e e e 159
9.2 Whytestingisimportant 160
9.3 Whatmakesagoodtest? 161
9.4 SUnitbyexample e 162
9.5 TheSUnitcookbook e e e e 166
9.6 TheSUnitframework i i i i it i i i it e e e e 167
9.7 Advanced featuresof SUnit 171
9.8 Continuing afterafailure 172
9.9 SUnitimplementation e 173
9.10 Apieceofadvicesontesting 0. 175
9.1 Chaptersummary v v v v it e e e e e e e e e e e e e e e e 177
10 Basic classes 179
100 Object e e e e e e e e e e e e e 179
10.2 NUMDEIS . . o o ot e s e 189
10.3 Characters . . . v v v o e 193
10.4 SHHNGS . v v v e 194
10.5 Booleans e e e e e e e e e e e e e e e e e e 195
10.6 Chaptersummary o i i e e e e e e e e e e 197
10.7 Collections i i e e e e e e e e e e e e e e e e e e e 197
10.8 Introduction e 197
10.9 Thevarietiesof collections v v i i i i it e e e 197
10.10 Collectionimplementations oL oo 200
10.11 Examplesofkeyclasses e 201
1012 Collection iterators v v v e 213
1013 Some hints forusing collections L. L oL, 217
1014 Chaptersummary . . . v v v v v v v v e e e e e e e e e e e e e e e e e e e 219
11 Streams 221
1.1 Two sequencesofelements Lo e 221
11.2 Streamsvs. collections e e e e e e e e e 222
1.3 Streamingover collections, 223
1.4 Usingstreams forfileaccess 231
1.5 Chaptersummary o v i v et e e e e e e e e e e e e e e e e 234

12
12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10

13
1341
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

14
14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

16
16.1
16.2
16.3
16.4

Contents

Morphic 235
The history of Morphic 235
Manipulatingmorphs L e 237
Composingmorphs L e e e e e e e e 238
Creating and drawing yourownmorphs 240
Interactionand animationt e e e e e e e 243
1 (= = Tt o 247
Drag-and-drop v i i e e e e e e e e e e e e e e e e e e e 248
Acompleteexample L. L e e 251
More aboutthecanvas i i i i e 256
Chaptersummary v v v i i it e e e e e e e e e e e e e e 257
Seaside by example 259
WhydoweneedSeaside? i i i it 259
Gettingstarted L e e e e e e e e e 260
Seaside COMPONENtS v v i e e e e e e e e e e e e e e e 268
Rendering HTML o i e e e e e e e e e e e e e e 270
CSS: Cascadingstylesheets o e 277
Managing controlflow L L e 279
A complete tutorialexample L oo 285
Aquicklook at AJAX e e e e e e e e e e e e e e 292
Chapter summary v v v i e e e e e e e e e e e e e e e e e e 295
Reflection 297
INtrosSpection v v v e 298
Browsingcode e e e e e e e e e e e e 303
Classes, method dictionariesand methods 305
Browsingenvironments L. e e e e e e e e e 307
Accessing therun-timecontext, 309
Intercepting messages notunderstood Lo 312
Objects as method wrappers v v v v v it v v i e e e 317
Pragmas o i e e e e e e e e e e e e e e e e e e 319
Chaptersummary v i i it e e e e e e e e e e e e 321
Regular expressions in Pharo 323
Tutorial example — generatingasitemap 324
REgEXSYNtaX . . . v v v v v e e e e e e e e e e e e e e e e e e e 332
Regex APl o o e e e e e e e e e e e 339
Implementation Notes by VassiliBykov 345
Chapter SumMmary v v i e e e e e e e e e e e e e e e e e e e 346
Classes and metaclasses 347
Rules for classesand metaclasses v v v v v v v i e e e 347
Revisiting the Pharo objectmodel 348
Every classis aninstanceofametaclass 349
The metaclass hierarchy parallels the class hierarchy 351

16.5
16.6
16.7
16.8

Contents

Every metaclass inherits from Class and Behavior 353
Every metaclass is an instance of Metaclass 356
The metaclass of Metaclass is an instance of Metaclass 356
Chaptersummary i v i i e e e e e e e e e e e 358

1-1
2-1
2-2

2-4
2-5
2-6

lllustrations

Smallexample e e e e e e 4
Launchingpattern o e 10
Launching Pharo fromLinux 10
Launching Pharo fromMacOSX v v v i v v, 10
Launching Pharo fromWindows 10
PharoLauncher-GUI 0 i i 1
Clicking anywhere on the Pharo window background activates the World

< 12
Action Click (right click) brings the contextual menu. 13
Meta-Clicking on awindow openstheHalos 13
Open ProfStef in the Playground. 14
Executing an expression is simple with the Do it menuitem. 14
PharoTutorial is a simple interactive tutorial to learn about Pharo 15
Executing an expresssion: displaying a string in the Transcript. 17
Inspecting a simple number using Inspect 18
Inspectinga MorphusingInspect, 19
The System Browser showing the factorial method of class Integer .. 20
The System Browser showing the printString method of class Object . . 21
OpeningSpotter . . . v v v v vt e e e e e e e e e e e e e 23
Looking for implementors matching printString 24
The Finder showing all classes defining a method named now. 27
Defining a test method in the class StringTest.. 29
Looking at the errorinthedebugger. 30
Pressing the Create button in the debugger prompts you to select in

which class to createthenewmethod. 30
The automatically created shout method waiting for a real definition.. . . . 31
The Lights OQutgameboard, 33
Create a Package and classtemplate 34
Filtering our package to work more efficiently 35
LOCell class definition i i i i i it 35
The newly-created classLOCell 36
Initializing instance of LOCell o 38
The newly-created method initialize 38
The inspector used to examine a LOCellobject 40
When we click on an instance variable, we inspect its value (another object) . 40

vi

3-29
3-30
3-31

5-7

5-10
5-11
5-12

5-13
5-14
5-15
5-16

Illustrations

AnLOCellopeninworldo
Definingthe LOGameclass vt i v v i vt v v i v v v ..
Initializethegame e e e
Declaring cells asanew instancevariable
Pharo detectinganunknownselector
The system created a new method with a body to be defined.
Defining cellsPerSideinthedebugger
Initializethegame L L
An initialization helpermethod
The callback method i e
Dragamethodtoaprotocol
Atypical settermethod
Aneventhandler e
The debugger, with the method toggleNeighboursOfCell:at: selected .
Fixingthebug. o e
Overridingmousemove actions v v v v v v v v v v v v
File Outour PBE-LightsOut
Import your code with the filebrowser
Monticello browser. The package PBE-LightsOutis notsaveyet
Arepositorypattern L e e e e e e e e e e e
Create your first repository on SmalltalkHub
Doyourfirstcommit. o o v v vt e e

Two message sends composed of a receiver, a method selector, and a
setofarguments. L L e e e e e e
aMorph color: Color yellowis composed of two message sends:
Color yelowand aMorph color: Color yellow.
Unary messages are sent first so Color yellow is sent. This returns a color
Decomposing the evaluation of aPen color: Coloryellow
DecomposingaPen go:100+20 . . v v v v v v v v e e e e e e e e e
Binary messages are sent beforekeyword
Decomposing Pen new go: 100+ot e e e e e e
DecomposingPennew e e
Example of Parentheses.
Example of Unnecessary Parentheses.
Decomposing20+2%5 o L. e e e e e e e e e e e e
The two messages + and * are of the same kind so their execution is
fromlefttoright. e
Decomposing20+(2*5) e e e e e e e e e e e e
Parenthesed expressions are executed first.
Equivalent messages using parentheses.
Equivalent messages using parentheses.

vii

6-8

6-18

6-31

7-10
71
712

lllustrations

Distance betweentwopoints oo 90
Browsingaclassanditsmetaclass 91
DogsandHyenas i i i i it e e e 93
Keeping countofnewdogs, 93
... 93
Asample singleton class, WebServer 95
The class side of the singletonclass 95
New state forclasses v v v i i i it i 95
Class-side accessor method uniquelInstance 95
Magnitude>> < e e e e e e e e e e e e 98
Magnitude>> >= e e e e e e e e e e e e e e e 98
Character>> <= i i it e e e e e e e e e e e e e e 98
Defininganewtrait o it it 98
Anauthormethod i i i e 99
Usingatrait o 0 i i i i e e e e e e e e e e e 99
Behavior defined using traits, 100
Alocallyimplemented method 102
Aninheritedmethod, 102
Method lookup follows the inheritance hierarchy 103
Explicitly returningself L o oo 103
Superinitialize L e e e e e e 104
Aselfsend i i i i it e e e e e e e e e e e e e e 105
Aselfsend i i i i it e e e e e e e e e e e e 105
Combining superandselfsends 106
selfandsupersends i i i i i i e e e e e e e e 106
Message fooisnotunderstood L., 108
Instance and class methods accessing different variables 110
Coloranditsclassvariables 111
Initializing the Colorclass 11
Pool dictionariesinthe Textclass 112
Text>>testCR o o e e e e e e 12

Window Group with two tabs, one with Playground and one with System

Browser e 17
Themaincodebrowser. it 18
The browser with the class Booleanselected. 18
Browsing the or: methodinclassBoolean. 19
Browser showing the class-creationtemplate 120
Showing the method-creationtemplate. 121
The Senders Of...(b,n) menuitem. 122
The Senders Browser showing that the Canvas>>draw method sends

the drawOn: messagetoitsargument. 123
Finding senders of a keyword message in the codepane. 124
ImageMorph>>drawOn: and the hierarchy of classes overridingit. 126
A hierarchy view of ImageMorph. 127
A Message Browser for accesses to bounds variable of Morph. 128

viii

8-9

8-10
8-1

91

9-3
9-4
9-5
9-6
9-7
9-8

9-10
9-1
9-12
9-13

Illustrations

Bytecode of the ImageMorph»#DrawOn: compiled method.
Refactoringoperations. e
Inspecting DateAndTime NOW. v v v v v v v v vt e e ..
Abuggymethod e
A PreDebugWindow notifiesusofabug.
The debugger showing the execution stack and the state of various objects. .
The debugger after restarting the detect:ifFound:IfNone: method.

The debugger after stepping Through the do: method several times.
The debugger showing why 'readme.txt' at: 7isnotequaltodot.. . .
Changing the suffix method in the debugger: asking for confirmation

of theexitfromaninnerblock.
Asimple test for the suffixmethod
A better test for the suffixmethod
Changing the suffix method in the debugger: fixing the off-by-one

error after an SUnit assertionfailure.
Inserting a halt into the suffixmethod.
A second test for the suffix method: the target has nosuffix.
The Process Browser showing all the active thread by priority.

The Monticellobrowser. o .
ARepositorybrowser. L Lo e e e
Two classes and one extension in the PBE package.
An extension method that is also be in the PBE package.
The as-yet-unsaved PBE package in Monticello.
Providing a log message for a new version of a package.
Two versions of our package are now in the package cache.
The versions browser showing two versions of the
ObjTest>>testIVOffsetmethod.
The Change Sorter showing all the changes of one changeset and

offering actions to move changes to other changesets.
Afilelistbrowser. L e
A File Contents Browser openedonapackage..

AnExampleSetTestclass v . v v v it i e
Settingupafixture e
Testingsetmembership
Testing OCCUITENCES . . v v v v v v vt e e e e e e e e e e e e e e e e e e
Testingremoval e e e e
Running SUnit tests from the System Browser.
Running SUnit tests using the TestRunner.
Executable commentsintestmethods
Introducingabuginatest. L.
Testing errorraising v v v v v v it e e e e e e e e e e e e e e
The four classes representing the coreof SUnit.
An example of a TestResourcesubclass
Runningonetest. 0 i e e

133
134
136
137
138

9-14
9-15
9-16
9-17
9-18

10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9

10-10

10-11
10-12

10-13

10-14

10-15

10-16

10-17

10-18

10-19

10-20

11-1
1-2

1-3
1-4
1-5
11-6
1-7
11-8
11-9
11-10
1-11
1-12
1-13
1-14
1-15
11-16

lllustrations

Passing the testcasetothetestresult 173
Catching test case errorsandfailures 174
Auto-building thetestsuite 174
Testresource availability 175
Testresourcecreation v v v i i i e e e e e e e e e e e e e e e 176
printOn: redefinition. 181
Self-evaluationof Point 182
Self-evaluation of Interval, 182
Objectequality v o v i i e e e e 182
Equality for complexnumbers, 183
Hash must be reimplemented for complex numbers 183
Copying objects as atemplatemethod 186
Checkingapre-condition, 187
Signaling that a methodisabstract 187
initialize asanempty hookmethod 188
new as a class-side templatemethod 188
The number hierarchy. 189
Abstract comparisonmethods Lo L. 190
The String Hierarchy. o i i 194
The Boolean Hierarchy. 195
Implementations of ifTrue:ifFalse: 196
Implementing negation e 196
Some of the key collection classesinPharo. 198
Some collection classes categorized by implementation technique. 200
Redefining=andhash. 219
A stream positioned atits beginning. oo oL L. 221
The same stream after the execution of the method next: the character

aisin the past whereas b, c, d and e areinthe future. 222
The same stream after having writtenanx. 222
Astreamatposition2.. e e e e e 225
... 226
... 227
... 227
... 228
... 228
A new history is empty. Nothing is displayed in the web browser. 229
Theuseropenstopage 1. . . v v v v v v v v v v v et et e e e 229
The user clicksonalinktopage2. 229
The userclicksonalinktopages3. 229
The user clicks on the Back button. They are now viewing page 2 again. . . . 229
The user clicks again the back button. Page 1is now displayed. 229
From page 1, the user clicks on a link to page 4. The history forgets pages

3= T 15 7 230
... 230

Illustrations

A 4x4 checkerboard you can draw using binary streams.
Thegrabhandle.. e
Detaching a morph, here the Playground menu item, to make it an
independentbutton. L Lo
CreationofaStringMorph o L
Getting a morph for aninstance of Color
Color orange asMorph openInWorld with our new method.
Creationoftwo ColorMorph
Billand Joe afteriomoves. e
Make bill followjoe e
Bill follows Joe. o o i e e e e e e e e e e e e e e
Create a BallooninsideJoe @ i i i i i i i i i e e
The balloon is contained inside joe, the translucent orange morph.
Defining CrossMorph o . i e
Drawinga CrossMorph i i it
A CrossMorph with its halo; you can resizeitasyouwish.
Shaping the sensitive zone of the CrossMorph
horizontalBar v i v i i i ittt e e
verticalBar vt e e e e e e e e e e e e e
Refactored CrossMorph >> drawOn:
Refactored CrossMorph >> containsPoint:
The center of the cross is filled twice with thecolor.
The cross-shaped morph, showing a row of unfilled pixels.
Usethiscodetoshowabug.
The revised CrossMorph >> drawOn: method, which fills the center of
thecrossonce L e
CrossMorph >> horizontalBar with explicit rounding
CrossMorph >> verticalBar with explicitrounding
Declaring that CrossMorph will react to mouse clicks
Reacting to mouse clicks by changing the morph'scolor
Move Handlebutton.
GrabHandlebutton.. L e
We want to handle mouseoverevents.
Getting the keyboard focus when the mouse enters the morph
Handing back the focus when the pointer goesaway
Receiving and handling keyboardevents
Defining the animation timeinterval
Making a stepintheanimation
The debug handlebutton.

xi

12-37
12-38
12-39
12-40
12-41
12-42
12-43
12-44
12-45
12-46
12-47
12-48
12-49
12-50
12-51
12-52
12-54
12-53
12-55
12-56
12-57
12-58
12-59
12-60
12-61
12-62
12-63
12-64
12-65
12-66
12-67
12-68

131
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9

13-10
13-11

lllustrations

Add the beginning and theend of thesteps 247
Usethe UIManager ¢ i i v i i ittt et et e e e e e 248
Aninputdialog. e e e e 248
Pop-upmenu. o e e e e e e e e e e e e e e e 248
Use the UIManagerto open apopup . « « v v v v v v v v o v v v v o v v v s 248
Defining a morph on which we can drop othermorphs 249
Initializing ReceiverMorph e 249
Accept dropped morphs based on theircolor 249
Changing the behaviour of the dropped morph when itisrejected 249
Create an instance of ReceiverMorph 250
AReceiverMorph andan EllipseMorph.. 250
Defining a morph we can drag-and-drop onto ReceiverMorph 250
Initializing DroppedMorph e 250
Reacting when the morph was dropped butrejected 251
Openanow DroppedMorph o o 251
Creation of DroppedMorph and ReceiverMorph. 251
Definingthediemorph, 251
ThedieinMorphic. o i e e e e e e 252
Creating a new die with the number of faceswelike 252
Initializing instances of DieMorph, 252
Setting the number of facesof thedie 253
Nine methods for placing points on the faces of thedie 253
Drawingthediemorph 254
Drawing asingledotonaface. 254
CreateaDieb o o i i i i e e e e e e e e e e e e e e e e e e e 254
A new die 6 with (DieMorph faces: 6) openInWorld 255
Setting the currentvalue ofthedie 255
Result of (DieMorph faces: 6) openInWorld; dieValue: 5... ... 255
Animatingthedie e e e 255
Handling mouse clicks to start and stop the animation 256
Drawing atranslucentdie e 256
The die displayed with alpha-transparency 256
Start up the Seaside One-Click Experienceimage. 261
Starting and stopping Seaside using the Zinc Server adaptor 261
The Seaside Welcome application at http://localhost:8080/.. 263
The COUNtEr. . . v vt e 263
Halos. o o e e e e e e e e e e e e e e e e e 264
Debugging the running Counter application in the Pharoimage. 264
Independent subcomponents. Lo L oL, 265
Add anewapplication. L e e e 266
Configure the new application. 267
Hello World in Seaside. ¢ v v v i i i e e e e e e ettt 269

The WACounter class, which implements the counter application.
Methods with underlined names are on the class-side; those with
plain-text names are on the instanceside. 269

xii

13-12
13-14
13-13
13-15
13-16
13-17
13-18
13-19
13-20
13-21

14-1
14-2
14-3
14-4
14-5
14-6
14-7
14-8
14-9

15-1
15-2

16-1
16-2
16-3
16-4
16-5
16-6
16-7
16-8
16-9

16-10
16-11
16-12
16-13

Illustrations

RenderingDemo. e e e e e e e
SeasideDemoWidget commonstylesheet.
Somestandarddialogs. L.
Asimpletask.o e e e e e e e
TheSushiStore. o . i i i e e e

Displayingthetopofthestack.
Seaside AJAX processing (simplified).,

Reificationand reflection. oL
InspectingaWorkspace. e
Displaying all instance variables of a GTPlayground.

Inspector on class Point and the bytecode of its #* method.
Classes, method dictionaries and compiled methods
Findingmethods e
Inspecting thisContext. o v v i v i i v i it e e .
Dynamically creating accessors. v v v v v v vt e e e e e e

AWebDirinstance. i i e e e e e e e e e e e e e e
Asmallsitemap. o i e e e e e e e e e

Sending the message class to a sorted collection
The metaclasses of SortedCollection and its superclasses (elided).

The metaclass hierarchy parallels the class hierarchy (elided).
Message lookup for classes is the same as for ordinary objects.
Classesareobjectstoo. v v v v v v i it e e e
Metaclasses inherit from Class and Behavior.
new is an ordinary message looked up in the metaclass chain.
Every metaclassisaMetaclass. v v i v v i
All metaclasses are instances of the class Metaclass, even the

metaclassof Metaclass. v v v it e e
Theclasshierarchy
The parallel metaclass hierarchy
Instancesof Metaclass v o i o
MetaclassclassisaMetaclasso oo

xiii

1.1

CHAPTER

Preface

This version of the book is based on the previous version authored by: An-
drew P. Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet, Damien
Cassou and Marcus Denker.

What is Pharo?

Pharo is a modern, open-source, dynamically typed language supporting live
coding inspired by Smalltalk. Pharo and its ecosystems are composed of six
fundamental elements:

A dynamically-typed language with a syntax so simple it can fit on a
postcard and yet is readable even for someone unfamiliar with it.

A live coding environment that allows the programmer to modify code
while the code executes, without any need to slow down their work-
flow.

A powerful IDE providing all the tools to help manage complex code
and promote good code design.

A rich library that creates an environment so powerful that it can be
viewed even as a virtual 0S, including a very fast JITing VM and full
access to OS libraries and features via its FFL

A culture where changes and improvements are encouraged and highly
valued.

A community that welcomes coders from any corner of the world with
any skill and any programming languages.

Pharo strives to offer a lean, open platform for professional software devel-
opment, as well as a robust and stable platform for research and develop-

1.2

Preface

ment into dynamic languages and environments. Pharo serves as the refer-
ence implementation for the Seaside web development framework available
at http://www.seaside.st.

Pharo core contains only code that has been contributed under the MIT li-
cense. The Pharo project started in March 2008 as a fork of Squeak (a modern
implementation of Smalltalk-80), and the first 1.0 beta version was released
on July 31, 2009. The current version is Pharo 5.0, released in May 2016.
Pharo 6.0 is in alpha development and planned for release in April 2017.

Pharo is highly portable. Pharo can run on 0S X, Windows, Linux, Android,

i0S, and Raspberry Pi. Its virtual machine is written entirely in a subset of
Pharo itself, making it easy to simulate, debug, analyze, and change from
within Pharo itself. Pharo is the vehicle for a wide range of innovative projects,
from multimedia applications and educational platforms to commercial web
development environments.

There is an important principle behind Pharo: Pharo does not just copy the
past, it reinvents the essence of Smalltalk. However we realize that Big Bang
style approaches rarely succeed. Pharo instead favors evolutionary and in-
cremental changes. Rather than leaping for the final perfect solution in one
big step, a multitude of small changes keeps even the bleeding edge rela-
tively stable while experimenting with important new features and libraries.
This facilitates contributions and rapid feedback from the community, on
which Pharo relies on for its success. Finally Pharo is not read-only, Pharo
integrates changes made by the community, daily. Pharo has around 100
contributors, based all over the world. You can have an impact on Pharo too!

Who should read this book?

The previous revision of this book was based on Pharo 1.4. This revision has
been liberally updated to align with Pharo 5.0. Various aspects of Pharo are
presented, starting with the basics then proceeding to intermediate topics.
Advanced topics are presented in Deep into Pharo, a book on the inter-
nals of Pharo that is freely available at http://books.pharo.org. In addition

for readers interested in web development, a new book Enterprise Pharo: a
Web Perspective is freely available at http://books.pharo.org.

This book will not teach you how to program. The reader should have some
familiarity with programming languages. Some background with object-
oriented programming would also be helpful.

This book will introduce the Pharo programming environment, the lan-
guage and the associated tools. You will be exposed to common idioms and
practices, but the focus is on the technology, not on object-oriented design.
Wherever possible, we will show you lots of examples.

http://www.seaside.st
http://books.pharo.org
http://books.pharo.org

1.3

1.4

1.5

1.3 Aword of advice

There are numerous other books on Smalltalk freely available on the web at
http://stephane.ducasse.free.fr/FreeBooks.html.

A word of advice

Do not be frustrated by parts of Pharo that you do not immediately under-
stand. You do not have to know everything! Alan Knight expresses this as
follows:

Try not to care. Beginning Smalltalk programmers often have trouble because
they think they need to understand all the details of how a thing works be-
fore they can use it. This means it takes quite a while before they can master
Transcript show: "Hello World’. One of the great leaps in 0O is to be able to
answer the question “How does this work?” with "I don’t care”.

When you do not understand something, simple or complex, do not hesitate
for a second to ask us at our mailing lists (pharo-users@lists.pharo.org or
pharo-dev@lists.pharo.org), irc and Slack. We love questions and we wel-
come people of any skill.

An open book

This book is an open book in the following senses:

+ The content of this book is released under the Creative Commons Attribution-
ShareAlike (by-sa) license. In short, you are allowed to freely share and
adapt this book, as long as you respect the conditions of the license
available at the following URL http://creativecommons.org/licenses/
by-sa/3.0/.

« This book just describes the core of Pharo. We encourage others to
contribute chapters on the parts of Pharo that we have not described.
If you would like to participate in this effort, please contact us. We
would like to see more books around Pharo!

» It is also possible to contribute directly to this book via Github. Just
follow the instructions there and ask any question on the mailing list.
You can find the Github repo at https://github.com/SquareBracketAssociates/
UpdatedPharoByExample

The Pharo community

The Pharo community is friendly and active. Here is a short list of resources
that you may find useful:

+ http://www.pharo.org is the main web site of Pharo.

http://stephane.ducasse.free.fr/FreeBooks.html
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
https://github.com/SquareBracketAssociates/UpdatedPharoByExample
https://github.com/SquareBracketAssociates/UpdatedPharoByExample
http://www.pharo.org

1.6

1.7

Preface

Listing 1-1 Small example

3+ 4
>>> 7 "if you select 3+4 and 'print it', you will see 7"

+ On IRC, you can find us on the freenode.net server, channel ”pharo”.

+ SmalltalkHub (http://www.smalltalkhub.com/) is the equivalent of Source-
Forge/Github for Pharo projects. Many extra packages and projects for
Pharo live there.

+ Pharo is also active on Slack - a platform for chat based on IRC (http:
//pharoproject.slack.com), just ask for an invitation on Pharo’s web-
site http://pharo.org/community, in the slack section. Everybody is wel-
comed.

Examples and exercises

We have tried to provide as many examples as possible. In particular, there
are many examples that show a fragment of code which can be evaluated. We
use a long arrow to indicate the result you obtain when you select an expres-
sion and from its context menu choose print it:

In case you want to play with these code snippets in Pharo, you can down-
load a plain text file with all the example code from the Resources sidebar of
the book’s web site: http://books.pharo.org.

Acknowledgments

We would like to thank Alan Kay, Dan Ingalls and their team for making
Squeak, an amazing Smalltalk development environment, that became the
open-source project from which Pharo took roots. Pharo also would not be
possible without the incredible work of the Squeak developers.

We would also like to thank Hilaire Fernandes and Serge Stinckwich who
allowed us to translate parts of their columns on Smalltalk, and Damien Cas-
sou for contributing the chapter on Streams. We especially thank Alexandre
Bergel, Orla Greevy, Fabrizio Perin, Lukas Renggli, Jorge Ressia and Erwann
Wernli for their detailed reviews.

We thank the University of Bern, Switzerland, for graciously supporting this
open-source project and for hosting the web site of this book.

We also thank the Pharo community for their enthusiastic support of this
book project, as well as for all the translations of the first edition of Pharo
by Example.

http://www.smalltalkhub.com/
http://pharoproject.slack.com
http://pharoproject.slack.com
http://pharo.org/community
http://books.pharo.org

1.8

1.8 Hyper special acknowledgments

Hyper special acknowledgments

We want to thank the original authors of this book! Without this initial ver-
sion it would have been difficult to make this one. Pharo by Example is a cen-
tral book to welcome newcomers and it has a great value.

Thanks to Manfred Kréhnert, Markus Schlager, Werner Kassens, Michael
OKeefe, Aryeh Hoffman, Paul MacIntosh, Gaurav Singh, Jigyasa Grover, Craig
Allen, Serge Stinckwich, avh-on1, Yuriy Timchuk, zio-pietro for the typos
and feedback. Special thanks to Damien Cassou and Cyril Ferlicot for their
great help in the book update. Finally we want to thank Inria for its steady
and important financial support, and the RMoD team members for the con-
stant energy pushing Pharo forward.

Super special thanks to Damien Pollet for this great book template.

2.1

CHAPTER

A quick tour of Pharo

This chapter will take you on a high level tour of Pharo, to help you get com-
fortable with the environment. There will be plenty of opportunities to try
things out, so it would be a good idea if you have a computer handy when
you read this chapter.

In particular, you will fire up Pharo, learn about the different ways of inter-
acting with the system, and discover some of the basic tools. You will also
learn how to define a new method, create an object and send it messages.

Note: Most of the introductory material in this book will work with any Pharo
version, so if you already have one installed, you may as well continue to use
it. However, since this book is written for Pharo 5.0, if you notice differences
between the appearance or behaviour of your system and what is described
here, do not be surprised.

Installing Pharo

Downloading Pharo

Pharo is available as a free download from http://pharo.org/download. Click
the button for your operating system to download the appropriate . zip file.
For example, the full Pharo 5.0 distribution for 0S X will be available at http:
/ffiles.pharo.org/platform/Pharo5.0-mac.zip.

Once that file is unzipped, it will contain everything you need to run Pharo
(this includes the VM, the image, and the sources, as explained below).

Using handy scripts. http://files.pharo.org/get/ offers a collection of scripts
to download specific versions of Pharo. This is really handy to automate the

http://pharo.org/download
http://files.pharo.org/platform/Pharo5.0-mac.zip
http://files.pharo.org/platform/Pharo5.0-mac.zip
http://files.pharo.org/get/

2.2

A quick tour of Pharo

process.
To download the latest 5.0 full system, use the following snippet.

[wget -0- get.pharo.org/50+vm | bash

Installing Pharo

Pharo does not need to install anything in your system, as it’s perfectly ca-
pable of running standalone. Depending on your platform, download the
appropriate zip file, uncompress it in a directory of your choice and now you
are ready to launch Pharo. In case of Ubuntu Linux, there is also the extra
option of installing Pharo via the Pharo PPA. Pharo can be also installed via
the command line.

Pharo: File Components

Pharo consists of four main component files. Although you do not need to
deal with them directly for the purposes of this book, it is useful to under-
stand the roles they play.

1. The virtual machine (VM) is the only component that is different for each
operating system. The VM is the execution engine (similar to a JVM). It takes
Pharo bytcode that is generated each time user compiles a piece of code,
converts it to machine code and executes it. Pharo comes with the Cog VM

a very fast JITing VM. The VM executable is named:

« Pharo.exe for Windows;
+ pharo for Linux ; and
+ Pharo for OSX (inside a package also named Pharo.app).

The other components below are portable across operating systems, and can
be copied and run on any appropriate virtual machine.

2. The sources file contains source code for parts of Pharo that do not change
frequently. Sources file is important because the image file format stores
only objects including compiled methods and their bytecode and not their
source code. Typically a new sources file is generated once per major release
of Pharo. For Pharo 5.0, this file is named PharoV50.sources.

3. The changes file logs of all source code modifications (especially all the
changes you did while programming) since the . sources file was gener-
ated. Each release provides a near empty file named for the release, for ex-
ample Pharo5.0.changes. This facilitates a per method history for diffs or
reverting. It means that even if you did not manage to save the image file
on a crash or you just forgot, you can recover your changes from this file. A
changes file is always coupled with a image file. They work in pair.

2.3

2.3 Launching Pharo

4. The image file provides a frozen in time snapshot of a running Pharo sys-
tem. This is the file where all objects are stored and as such it’s a cross plat-
form format. An image file contains the live state of all objects of the sys-
tem (including classes and compiled methods, since they are objects too) at a
given point. An image is a virtual object container. The file is named for the
release (like Pharo5.0.image) and it is synched with the Pharo5.0.changes
file.

Image/Changes Pair

The . image and .changes files provided by a Pharo release are the start-
ing point for a live environment that you adapt to your needs. As you work
in Pharo, these files are modified, so you need to make sure that they are
writable. Pay attention to remove the changes and image files from the list
of files to be checked by anti-viruses. The . image and . changes files are
intimately linked and should always be kept together, with matching base
filenames. Never edit them directly with a text editor, as . images holds your
live object runtime memory, which indexes into the . changes files for the
source. It is a good idea to keep a backup copy of the downloaded . image
and . changes files so you can always start from a fresh image and reload
your code. However, the most efficient way for backing up code is to use a
version control system that will provide an easier and powerful way to back
up and track your changes.

Common Setup

The four main component files above can be placed in the same directory,
but it’s a common practice to put the Virtual Machine and sources file in a
separate directory where everyone has read-only access to them.

Do whatever works best for your style of working and your operating system.

Launching Pharo

To start Pharo, do whatever your operating system expects: drag the .image
file onto the icon of the virtual machine, or double-click the .image file, or at
the command line type the name of the virtual machine followed by the path
to the .image file.

* On OS X, double click the Pharo5.0.app bundle in the unzipped down-
load.

+ On Linux, double click (or invoke from the command line) the pharo
executable bash script from the unzipped Pharo folder.

+ On Windows, enter the unzipped Pharo folder and double click Pharo.exe.

A quick tour of Pharo

Listing 2-1 Launching pattern

[<Pharo executable> <path to Pharo image>

Listing 2-2 Launching Pharo from Linux

[./pharo shared/Pharo5.0.image

Listing 2-3 Launching Pharo from Mac OS X

Pharo5.0.app/Contents/Mac0S/Pharo
Pharo5.0.app/Contents/Resources/Pharo5.0.image

In general, Pharo tries to "do the right thing”. If you double click on the VM,
it looks for an image file in the default location. If you double click on an
.image file, it tries to find the nearest VM to launch it with.

If you have multiple VMs installed on your machine, the operating system
may no longer be able to guess the right one. In this case, it is safer to specify
exactly which ones you meant to launch, either by dragging and dropping
the image file onto the VM, or specifying the image on the command line
(see the next section).

Launching Pharo Via the Command Line

The general pattern for launching Pharo from a terminal is:

Linux command line. For Linux, assuming that you're in the unzipped pharo5.0

folder:

OS X command line. For OS X, assuming that you're in the directory with
the unzipped Pharo5.0.app bundle:

When using a Pharo bundle, you need to right-click on Pharo5.0.app and
select 'Show Package Contents’ to get access to the image. If you need this
often, just download a separated image/changes pair and drop that image
into the Pharo5.0.app.

Windows command line. For Windows, assuming that you’re in the un-
zipped Pharo5. 0 folder:

Listing 2-4 Launching Pharo from Windows

[Pharo.exe Pharo5.0.image

10

2.4

2.4 Pharo Launcher

0 @] % |Templates %

> Local

B Quit on launch 1ol &

Figure 2-5 PharoLauncher - GUI

Pharo Launcher

PharoLauncher is a tool that helps you download and manage Pharo im-
ages. It is very useful for getting new versions of Pharo (as well as updates to
the existing versions that contain important bug fixes). It also gives you ac-
cess to images preloaded with specific libraries that make it very easy to use
those tools without having to manually install and configure them.

PharoLauncher can be found on SmalltalkHub at http://smalltalkhub.com/#!
/~Pharo/PharoLauncher together with installation instructions and download
links depending on your platform. PharoLauncher is basically composed of
two columns.

After installing PharoLauncher and opening it (like you would do for any
Pharo image), you should get a GUI similar to Figure 2-5.

The left column lists images that live locally on your machine (usually in a
shared system folder). You can launch any local image directly (either by
double-clicking, or by selecting it and pressing the Launch button). A right-
click context menu provides several useful functions like copying and re-
naming your images, as well as locating them on the file system.

The right column lists Templates, which are remote images available for
download. To download a remote image, select it and click the Create im-
age button (located on the top right, next to the Refresh template list
button).

You can use your own local images with PharoLauncher, in addition to
working with the images you downloaded. To do so, simply ensure that your
.image and its associated .changes files are placed in a folder (with the same

1

http://smalltalkhub.com/#!/~Pharo/PharoLauncher
http://smalltalkhub.com/#!/~Pharo/PharoLauncher

2.5

A quick tour of Pharo

Phar(®

% World
= System Browser
/|Playground
& Test Runner
+ Spotter
9 Monticello Browser
ETools
& system
@Help

[Windows

|- Save and quit
I Quit

Figure 2-6 Clicking anywhere on the Pharo window background activates the
World Menu

name as your image) in your default image location. You can find the loca-
tion in the PharoLauncher settings.

The World Menu

Once Pharo is running, you should see a single large window, possibly con-
taining some open playground windows (see Figure 2-6). You might notice a
menu bar, but Pharo mainly makes use of context-dependent pop-up menus.

Clicking anywhere on the background of the Pharo window will display the
World Menu, which contains many of the Pharo tools, utilities and settings.

At the top of the World Menu, you will see a list of several core tools in Pharo,
including the System Browser, the Playground, the Monticello package man-
ager, and others. We will discuss them in more detail in the coming chapters.

Interacting with Pharo
Pharo offers three ways to interact with the system using a mouse or other
pointing device.

click (or left-click): this is the most often used mouse button, and is normally
equivalent to left-clicking (or clicking a single-mouse button without any
modifier key). For example, click on the background of the Pharo window to
bring up the World menu (Figure 2-6).

12

2.5 The World Menu

% =0 Playground [3
Page > B

m o4

Time now Doitand go

P Doit

4 Inspect it

4 Basic Inspect it
Debug it
Profile it
Code search... »

¥ Cut

L) Copy

[l Paste

[l Paste...

Figure 2-7 Action Click (right click) brings the contextual menu.

Phar(®

x-o Playground G-

(x) Page Q @ PBRE-=m

Figure 2-8 Meta-Clicking on a window opens the Halos

action-click (or right-click): this is the next most used button. It is used to
bring up a contextual menu that offers different sets of actions depending
on where the mouse is pointing (see Figure 2-7). If you do not have a multi-
button mouse, then normally you will configure the control modifier key to
action-click with the mouse button.

meta-click: Finally, you may meta-click on any object displayed in the image
to activate the "morphic halo”, an array of handles that are used to perform
operations on the on-screen objects themselves, such as inspecting or resiz-
ing them (see Figure 2-8). If you let the mouse linger over a handle, a help
balloon will explain its function. In Pharo, how you meta-click depends on
your operating system: either you must hold Shift-Ctrl or Shift-Alt (on
Windows or Linux) or Shift-0Option (on 0S X) while clicking.

13

2.6

A quick tour of Pharo

Listing 2-9 Open ProfStef in the Playground.
[ProfStef go.

x -0 Playground o2~
Page > -=
Profstef go

Doitand go

Printit
& Inspect it
& Basic Inspect it
Debug it
Profile it
Code search... »
¥ Cut
L) Copy
il Paste
[Paste...

i‘ Doit. LirliD

Figure 2-10 Executing an expression is simple with the Do it menu item.

Sending Messages

In the Pharo window, click on an open space to open the World Menu, and
then select the Playground menu option. The Playground tool will open
(you may recognize it as the Workspace tool, from previous versions of
Pharo). We can use Playground to quickly execute Pharo code. Enter the
following code in it, then right click and select Do it:

This expression will trigger the Pharo tutorial (as shown in Figure 2-11). It is
a simple and interactive tutorial that will teach you the basics of Pharo.

Congratulations, you have just sent your first message! Pharo is based on
the concept of sending messages to objects. The Pharo objects are like your
soldiers ready to obey once you send them a message they can understand.
We will see how an object can understand a message, later on.

If you talk to Pharoers for a while, you will notice that they generally do not
use expressions like call an operation or invoke a method, as developers do in
other programming languages. Instead they will say send a message. This re-
flects the idea that objects are responsible for their own actions and that the
method associated with the message is looked up dynamically. When sending
a message to an object, the object, and not the sender, selects the appropri-
ate method for responding to your message. In most cases, the method with
the same name as the message is executed.

As a user you do not need to understand how each message works, the only
thing you need to know is what the available messages are for the objects
that interest you. This way an object can hide its complexity, and coding can
be kept as simple as possible without losing flexibility.

14

2.7

2.7 Saving, Quitting and Restarting a Pharo Session

Welcome (1/29) : -

ProfStef next.

Figure 2-11 PharoTutorial is a simple interactive tutorial to learn about Pharo

How to find the available messages for each object is something we will ex-
plore later on.

Saving, Quitting and Restarting a Pharo Session

You can exit Pharo at any point, by closing the Pharo window as you do any
other application window. Additionally you can use the World Menu and
select either Save and quit or Quit.

In any case, Pharo will display a prompt to ask you about saving your image.
If you do save your image and reopen it, you will see that things are exactly
as you left them. This happens because the image file stores all the objects
(edited text, window positions, added methods... of course since they are all
objects) that Pharo has loaded into your memory so that nothing is lost on
exit.

When you start Pharo for the first time, the Pharo virtual machine loads the
image file that you specified. This file contains a snapshot of a large number
of objects, including a vast amount of pre-existing code and programming
tools (all of which are objects). As you work with Pharo, you will send mes-
sages to these objects, you will create new objects, and some of these objects
will die and their memory will be reclaimed (garbage-collected).

When you quit Pharo, you will normally save a snapshot that contains all
of your objects. If you save normally, you will overwrite your old image file
with the new snapshot. Alternatively, you may save the image under a new
name.

As mentioned earlier, in addition to the . image file, there is also a . changes
file. This file contains a log of all the changes to the source code that you
have made using the standard tools. Most of the time you do not need to

15

2.8

A quick tour of Pharo

worry about this file at all. As we shall see, however, the . changes file can
be very useful for recovering from errors, or replaying lost changes. More
about this later!

It may seem like the image is the key mechanism for storing and managing
software projects, but that is not the case. As we shall see soon, there are
much better tools for managing code and sharing software developed by
teams. Images are very useful, but you should learn to be very cavalier about
creating and throwing away images, since versioning tools like Monticello
offer much better ways to manage versions and share code amongst devel-
opers. In addition, if you need to persist objects, you can use several systems
such as Fuel (a fast object binary serializer), STON (a textual object serializer)
or a database.

Playgrounds and Transcripts

Let us start with some exercises:
1. Close all open windows within Pharo.

2. Open a Transcript and a Playground/workspace. (The Transcript can
be opened from the World > Tools > ... submenu.)

3. Position and resize the transcript and playground windows so that the
playground just overlaps the transcript (see Figure 2-12).

You can resize windows by dragging one of the corners. At any time only one
window is active; it is in front and has its border highlighted.

About Transcript. The Transcript is an object that is often used for log-
ging system messages. It is a kind of system console.

About Playground. Playgrounds are useful for typing snippets of code that
you would like to experiment with. You can also use playgrounds simply for
typing any text that you would like to remember, such as to-do lists or in-
structions for anyone who will use your image.

Type the following text into the playground:

[Transcript show: 'hello world'; cr.

Try double-clicking at various points on the text you have just typed. Notice
how an entire word, entire string, or all of the text is selected, depending on
whether you click within a word, at the end of the string, or at the end of the
entire expression. In particular, if you place the cursor before the first char-
acter or after the last character and double-click, you select the complete
paragraph.

16

2.9

2.9 Keyboard Shortcuts

Phar

x — 0O Transcript -

hello world
x -0 Playground @Oz~
Page > B =

Transcript show: 'hello world'; cr Doitand go

Print it

& Inspect it

& Basic Inspect it
Debug it
Profile it
Code search... »

¥ Cut

L Copy

[l Paste

[l Paste...

Figure 2-12 Executing an expresssion: displaying a string in the Transcript.

Select the text you have typed, right click and select Do it. Notice how the
text “hello world” appears in the transcript window (See Figure 2-12). Do it
again.

Keyboard Shortcuts

If you want to evaluate an expression, you do not always have to right click.
Instead, you can use keyboard shortcuts shown in menu items. Even though
Pharo may seem like a mouse driven enviroment it contains over 200 short-
cuts that allow you operate a variaty of tools, as well as the facility to assign
a keyboard shortcut to any of the 80000 methods contained in the Pharo im-
age. To have a look at the available shortcuts go to World Menu > System >
Keymap Browser.

Depending on your platform, you may have to press one of the modifier

keys which are Control, Alt, and Command. We will use CMD in the rest of

the book: so each time you see something like CMD-d, just replace it with the
appropriate modifier key depending on your 0S. The corresponding modifier
key in Windows is CTRL, and in Linux is either ALT or CTRL, so each time you
see something like CMD-d, just replace it with the appropriate modifier key
depending on your OS.

In addition to Do it, you might have noticed Do it and go,Print it,In-
spect it and several other options in the context menu. Let’s have a quick
look at each of these.

17

A quick tour of Pharo

x - 0O Playground O~
Page *x — O Inspectoron a Smallinteger D20 B =
2+ 4 a Smallinteger (7) 4

Raw Integer Meta

Variable Value
I self T

nyn
self

Figure 2-13 Inspecting a simple number using Inspect

Doing vs. Printing

Type the expression 3 + 4 into the playground. Now Do it with the key-
board shortcut.

Do not be surprised if you saw nothing happen! What you just did is send

the message + with argument 4 to the number 3. Normally the resulting 7
would have been computed and returned to you, but since the playground
did not know what to do with this answer, it simply did not show the answer.
If you want to see the result, you should Print it instead. Print it actu-
ally compiles the expression, executes it, sends the message printString to
the result, and displays the resulting string.

Select 3+4 and Print it (CMD-p). This time we see the result we expect.
3+ 4

>>> 7

We use the notation >>> as a convention in this book to indicate that a par-
ticular Pharo expression yields a given result when you Print it.

Inspect

Select or place the cursor on the line of 3+4, and this time Inspect it (CMD-
i).

Now you should see a new window titled "Inspector on a Smallinteger(7)”

as shown in Figure 2-13. The inspector is an extremely useful tool that al-

lows you to browse and interact with any object in the system. The title tells
us that 7 is an instance of the class SmallInteger. The top panel allows us

18

2.9 Keyboard Shortcuts

* — O Playground G 7~
Page B -=
Morph new openInWorld x — O Inspectoron a Morph(10500 [R

a Morph(1050084864) s Q

Raw Morph Meta

Variable Value

I self aMorph(10500¢.,
» (©) bounds (0@0) corner: (5.,
» Il color Color blue
» () extension nil
» () fullBounds (0@0) corner: (3,
> ¢ owner aWorldMorphiE,

"a Morph(1050084864)"
self

Figure 2-14 Inspecting a Morph using Inspect

to browse the instance variables of an object and their values. The bottom
panel can be used to write expressions to send messages to the object. Type
self squared in the bottom panel of the inspector, and Print it.

The inspector presents specific tabs that will show different information and
views on the object depending on the kind of object you are inspecting. In-
spect Morph new openInWorld you should get a situation similar to the one
of Figure 2-14.

Other Operations
Other right-click options that may be used are the following:

» Do it and go additionally opens a navigable inspector on the side of
the playground. It allows us to navigate the object structure. Try with
the previous expression Morph new openInWorld and navigate the
structure.

* Basic Inspect it opens the classic inspector that offers a more min-
imal GUI and live updates of changes to the object.

* Debug it opens the debugger on the code.

 Profile it profiles the code with the Pharo profile tool which shows
how much time is spent for each message sent.

+ Code search offers several options provided by System Browser, such
as browsing the source code of an expression, searching for senders
and implementors, and so on.

19

2.10

A quick tour of Pharo

x -0 Integer>>#factorial -
Scoped Variables Véean
¥ (© ExactFloatPrintPolicy A —all- A factorial
Package Filter 4 © FloatPrintPolicy accessing v ged:
R © InexactFloatPrintPolicy arithmetic lem:
Objects .
o I Magnitude benchmarks nthRoot:
I Number bit manipulation nthRootRounded:
A b3 Float comparing nthRootTruncated:
Kernel-Tests z BoxedFloat64 converting raisedTo:modulo:
Keymapping-Core b3 ¢ b odulo:
Keymapping-KeyCombir 5 o Protocols . Methods
Keymapping-Pragmas 5 _ . N -
Keymapping-Settings ScaledDecimal filter streaming take:
b Keymapping-Tests I Integer v mathematical functions
- Kevmanning-Tools-Soe}c' A Hier. © Class ? Com. pr?nting -

factorial Method selector

Method comment

=0 ifTrue: [* 1].

> 0 ifTrue: [self = (self - 1) factorial]. | Method body
error: 'Not valid for negative integers'

1/6[1] Formatasyouread W +L

Quality Assistant feeback

Figure 2-15 The System Browser showing the factorial method of class In-
teger

The System Browser

The System Browser, also known as "Class Browser”, is one of the key tools
used for programming. As we shall see, there are several interesting browsers
available for Pharo, but this is the basic one you will find in any image. The
current implementation of the System Browser is called Nautilus, named af-
ter the submarine in Jules Verne’s novel Twenty Thousand Leagues Under
the Sea.

Opening the System Browser on a Given Method

This is not the usual way that we open a browser on a method: we use more
advanced tools! But for the sake of this exercise, execute the following code
snippet:

[Nautilus openOnMethod: Integer>>#factorial

It will open a system browser on the method factorial. We should get a
System Browser like in Figure 2-15. The title bar indicates that we are brows-
ing the class Integer and its method factorial. Figure 2-15 shows the dif-
ferent entities displayed by the browser: packages, classes, protocols, meth-
ods and method definition.

20

2.10 The System Browser

x -0 Object>>#printString =
Scoped Variables History Navigator Ve
Kern w (= Protobject logging-Deprecated - fullPrintString
> Fllesystem-core 4 © Object memory usage - isLiteral
v Kernel < Boolean message performing - longPrintOn:
Kernel c False nil testing ~ longPrintOn:limitedTosindent:
BasicObjects L . .
Chronology € True pointing to longPrintString
Classes c UndefinedObject primitive failure longPrintStringLimitedTo:
Copying printing - printOn:
Exceptions private - printString
Messaging reading = printStringLimitedTo:
Methods reflective operations ~ storeOn:
Models .
Numbers self evaluating storeString
Objects v A Hier. © Class 7 Com. ff_”?fl_emema“"” -
printstring
"Answer a Str 5 e scription of the receiver.
If you want t nt W character limit, use fullPrintst

A self printStringLimitedTo: 58000

1/5[1] Formatasyouread W 4L

Figure 2-16 The System Browser showing the printString method of class
Object

In Pharo, the default System Browser is Nautilus. However, it is possible to
have other System Browsers installed in the Pharo enviroment such as Alt-
Browser. Each System Browser may have its own GUI that may be very dif-
ferent from the Nautilus GUIL. From now on, we will use the terms Browser,
System Browser and Nautilus interchangeably.

Navigating Using the System Browser

Pharo has Spotter (see below) to navigate the system. Now we just want to
show you the working flow of the System Browser. Usually with Spotter we
go directly to the class or the method.

Let us look how to find the printString method defined in class Object. At
the end of the navigation, we will get the situation depicted in 2-16.

Open the Browser by selecting World > System Browser. When a new Sys-
tem Browser window first opens, all panes but the leftmost are empty. This
first pane lists all known packages, which contain groups of related classes.

Filter packages. Type part of the name of the package in the left most filter.
It filters the list of packages to be shown in the list under it. Type 'Kern’ for

21

2.1

A quick tour of Pharo

example.

Expand the Kernel package and select the Objects element. When we se-
lect a package, it causes the second pane to show a list of all of the classes in
the selected package. You should see the hierarchy of ProtoObject

Select the Object class. When a class is selected, the remaining two panes
will be populated. The third pane displays the protocols of the currently se-
lected class. These are convenient groupings of related methods. If no proto-
col is selected you should see all methods in the fourth pane.

Select the printing protocol. You may have to scroll down to find it. You
can also click on the third pane and type pr, to typeahead-find the printing
protocol. Now select it, and you will see in the fourth pane only methods
related to printing.

Select the printString Method. Now we see in the bottom pane the source
code of the printString method, shared by all objects in the system (except
those that override it).

There are much better way to find a method and we will look at them now.

Finding Classes

There are several ways to find a class in Pharo. The first, as we have just seen
above, is to know (or guess) what package it is in, and to navigate to it using
the browser.

A second way is to send the browse message to the class, asking it to open a
browser on itself. Suppose we want to browse the class Point.

Using the Message browse

Type Point browse into a playground and Do it. A browser will open on
the Point class.

Using CMD-b to Browse

There is also a keyboard shortcut CMD-b (browse) that you can use in any text
pane; select the word and press CMD-b. Use this keyboard shortcut to browse
the class Point.

Notice that when the Point class is selected but no protocol or method is
selected, instead of the source code of a method, we see a class definition.
This is nothing more than an ordinary message that is sent to the parent

22

211 Finding Classes

point o

) Point v
{} PointArray

C' PointArrayTest

€ PointTest

C PointerEyeElement

AJx64Assembler=>#pointerSize

No usage data is being sent. Would you like to send

. Go to settings
anonymous usage data to help us improve Spotter?

Figure 2-17 Opening Spotter

class, asking it to create a subclass. Here we see that the class Object is be-
ing asked to create a subclass named Point with two instance variables, class
variables, and to put the class Point in the Kernel-BasicObjects package.
If you click on the Comments button at the bottom of the class pane, you can
see the class comment in a dedicated pane.

In addition the system supports the following mouse shortcuts

+ CMD-Click on a word: open the definition of a class when the word is
a class name. You get also the implementors of the message when you
click on a selector that is in the body of a method.

+ CMD-Shift-Click on a word: open a list browser with all the refs of
the class when the word is a class name. You get also the senders of the
message when you click on a selector that is in the body of a method.

Using Spotter

The fastest (and probably the coolest) way to find a class is to use Spotter.
Pressing Shift+Enter opens Spotter, a very powerful tool for finding classes,
methods, and many other related actions. Figure 2-17 shows that we look for
Point.

23

A quick tour of Pharo

#imple printStringI ¥ ox
570 =
AJinstruction=>#printStringLimitedTo: v B
Character=>#printStringHex
EyePointerWrapper=>#printstring
GLMAnnouncingCollection==#printString

GTObjectVariablesBrowser=>#printStringOf:

Figure 2-18 Looking for implementors matching printString

Spotter offers several possibilities as shown in Figure 2-17. You can specify
to Spotter the kind of categories you are interested in. For example, using
#class followed by the word you look for, indicates that you are interested
in classes. This is the default so you do not need to type #class.

Figure 2-18 shows how we can ask Spotter to show all the implementors of a
given messages. We do not have to type the full category name. Other Cate-
gories are menu, packages, method (#implementor), examples (#example),
pragma (#pragma), senders (#sender), class references (#reference) but
also playground code snippets (using #playground).You can just type the
beginning of the category to identify it i.e., #ref Point will give all the ref-
erence to the class Point.

Spotter can be used even to browse through the 0S file system, and has a
history category where previous searches are stored for quickly going back
to popular searches.

Navigating Results

In addition we can use Spotter to navigate to our search results similarly to
how we use System Browser. Spotter categorizes its search results: for ex-

24

211 Finding Classes

ample, classes are under Classes category, methods under the Implementors
category, help topics under Help Topics category, etc.

Clicking on the right arrow will take us to our selection and create a tab on
top that we can click to go back to where we were. Depending on what we
click on, we step into our selection and are exposed to more categories.

For example, if our selection is the Point class, we will dive inside a group of
categories made for instance methods, class methods, super instance meth-
ods etc.

The interface is fully controllable through the keyboard. The user can move
with Up/Down arrows between items or Cmd-Shift-Up/Cmd-Shift-Down
arrows (note that on Windows and Linux Cmd key is the Alt key) through
categories. At the same time, the search field has the focus, so the user can
switch seamlessly between selecting items and refining the search. Press-
ing Enter on a selection opens the System Browser on that specific selected
search result.

Using 'Find class’ in System Browser

In the SystemBrowser you can also search for a class via its name. For exam-
ple, suppose that you are looking for some unknown class that represents
dates and times.

In the System Browser, click anywhere in the package pane or the class pane,
and launch the Class Search window by typing CMD-f CMD-c, or selecting
Find class (f,c) from the right-click context menu. Type time in the dia-
log box and click OK (or press Enter).

A list of classes is displayed, whose names contain the substring time. Choose
one (say, Time), and the browser will show it, along with a class comment
that suggests other classes that might be useful. If you want to browse one of
the others, select its name (in any text pane), and type CMD-b.

Note that if you type the complete (and correctly capitalized) name of a class
in the find dialog, the browser will go directly to that class without showing
you the list of options.

Using the Finder

You can also open the Finder that is available from the World > Tools...
menu, and type part of the name of the class and change the Selectors to
Classes in the right combo box. It is less efficient than using Spotter or the
SystemBrowser as explained above. The Finder is more useful for other types
of code searches such as find methods based on examples, as we will show
later.

25

212

A quick tour of Pharo

Finding Methods

Sometimes you can guess the name of a method, or at least part of the name
of a method, more easily than the name of a class. For example, if you are in-
terested in the current time, you might expect that there would be a method
called "now”, or containing "now” as a substring. But where might it be?
Spotter and Finder can help you.

Spotter

With Spotter you can also find methods. Either by getting a class and navi-
gating or using category such as:

+ #implementor a method name will display all the methods that are
implemented and have the same name. For example you will get all the
do: methods.

+ #tselector a method name will display all the selectors that matches
this name

With Finder

Select World Menu > Tools > Finder. Type now in the top left search box,
click Search (or just press the Enter key). You should see a list of results
similar to the one in Figure 2-19.

The Finder will display a list of all the method names that contain the sub-
string "now”. To scroll to now itself, move the cursor to the list and type "n”;
this type-ahead trick works in all scrolling windows. Expanding the "now”
item shows you the classes that implement a method with this name. Select-
ing any one of them will display the source code for the implementation in

the code pane on the bottom.

Finding Methods Using Examples

At other times, you may have a good idea that a method exists, but will have
no idea what it might be called. The Finder can still help! For example, sup-
pose that you would like to find a method that turns a string into upper case
(for example, transforming 'eureka' into 'EUREKA'). We can give the inputs
and expected output of a method and the Finder will try to find it for you.

The Finder has a really powerful functionality: you can give the receiver,
arguments and expected result and the finder tries to find the corresponding
message.

26

212 Finding Methods

x -0 Finder =
now W Search Regexp = Selectors WV Packages... All Packages
noWrapStrategy (TxBasicViewMorph) A

¥ now

DateAndTime class
GTEventDelivery
Halt class
NOCDatedEntry
STONTestAssociation
TTLAssociation
TTLCache
Time class

now: (Halt class)

» nowHasDef

» nowHasRef
e hd

Browse Senders Implementors. Versions Inheritance Hierarchy

now

| nanoTicks |
nanoTicks := self clock microsecondClockvValue * le3.
A self basicNew

setJdn: SgueakEpoch

seconds: @

nano: nanoTicks

offset: self localoffset

Figure 2-19 The Finder showing all classes defining a method named now.

Trying Finder

In the Finder, select the Examples mode using the second combo-box (the
one that shows Selectors by default).

Type 'eureka' . 'EUREKA' into the search box and press the Enter key.

The Finder will then suggest a method that does what you were looking for,
as well as display a list of classes that implement methods with the same
name. In this case, it determined that the asUppercase method is the one
that performed the operation that fit your example.

Click on the 'eureka' asUppercase --> 'EUREKA' expression, to show the
list of classes that implement that method.

An asterisk at the beginning of a line in the list of classes indicates that this
method is the one that was actually used to obtain the requested result.

So, the asterisk in front of String lets us know that the method asUpper-
case defined in the class String was executed and returned the result we
wanted. The classes that do not have an asterisk are just other implementors
of asUppercase, which share the method name but were not used to return
the wanted result. So the method Character>>asUppercase was not exe-
cuted in our example, because 'eureka' is not a Character instance (but is
instead a String).

You can also use the Finder to search for methods by arguments and results.

27

2.13

A quick tour of Pharo

For example, if you are looking for a method that will find the greatest com-
mon factor of two integers, you might try 25 . 35 . 5 asan example. You
can also give the method finder multiple examples to narrow the search
space; the help text in the bottom pane explains how.

Defining a New Method

The advent of Test Driven Development (TDD) has changed the way we write
code. The idea behind TDD is that we write a test that defines the desired
behaviour of our code before we write the code itself. Only then do we write
the code that satisfies the test.

Suppose that our assignment is to write a method that "says something loudly
and with emphasis”. What exactly could that mean? What would be a good
name for such a method? How can we make sure that programmers who may
have to maintain our method in the future have an unambiguous descrip-
tion of what it should do? We can answer all of these questions by giving an
example.

Our goal is to define a new method named shout in the class String. The
idea is that this message should turn a string into its uppercase version as
shown in the example below:

"No panic' shout
>>> '"NO PANIC!'

However, before creating the shout method itself, we must first create a test
method! In the next section, we can use the ”No Panic” example to create
our test method.

Defining a New Test Method

How do we create a new method in Pharo? First, we have to decide which
class the method should belong to. In this case, the shout method that we
are testing will go in class String, so the corresponding test will, by conven-
tion, go in a class called StringTest.

First, open a browser on the class StringTest, and select an appropriate
protocol for our method, in this case 'tests - converting'. The high-
lighted text in the bottom pane is a template that reminds you what a Pharo
method looks like. Delete this template code (remember, you can either click
on the beginning or the end of the text, or press CMD-a, to "Select All”), and
start typing your method. We can turn our "No Panic” code example into the
test method itself:
testShout

self assert: ('No panic' shout = 'NO PANIC!')

28

213 Defining a New Method

x-0O StringTest>>#testShout -
Scoped Variables Hi gat v|en

¥ © CharacterTest all- A © testhsCamelCase
i StringTest as yet unclassified testShout
support SymbolTest initalization testSubstrings
Unordered BytesymbolTest requirements testTrimgoth
Weak WidestringTest test-copy testTrimLeft
Collections-Unordered test-creation testTrimRight
R EZ::‘E;ﬁ;""WE“ test - equality testwithBlanksCondensed
¥ 5 compresion test-setarithmetic testWithFirstCharacterDownshifted
» 1 Compression-Tests test-comparing testWithSeparatorsCompacted
ConfigurationCommand testing testiWithoutLeadingDigits
ConfigurationCommand i

ContributingToTheCataly ,
« » | AMiern | ©Clss 2 Com.

testing -formatting , @ testwithoutTrailingbigits

testshout

self assert: 'No Panic' shout = 'NO PANIC!'

33[45] Formatasyouread W +L

Figure 2-20 Defining a test method in the class StringTest.

Once you have typed the text into the browser, notice that the corner is or-
ange. This is a reminder that the pane contains unsaved changes. So, select
Accept (s) by right clicking in the bottom pane, or just type CMD-s, to com-
pile and save your method. You should see a situation similar to the one de-
picted in Figure 2-20.

If this is the first time you have accepted any code in your image, you will
likely be prompted to enter your name. Since many people have contributed
code to the image, it is important to keep track of everyone who creates

or modifies methods. Simply enter your first and last names, without any
spaces.

Because there is as yet no method called shout, the automatic code checker
(Quality Assitance) in the lower browser pane will inform you, that the mes-
sage shout is sent but not implemented. This can be quite useful if you have
merely made a typing mistake, but in this case, we really do mean shout,
since that is the method we are about to create. We confirm this by selecting
the first option from the menu of choices.

Running Your Test Method

Run your newly created test: open the Test Runner from the World Menu
(or press on the circle icon in front of the method name this is faster and
cooler).

In the Test Runner the leftmost two panes are a bit like the top panes in the
System Browser. The left pane contains a list of packages, but it’s restricted
to those packages that contain test classes.

29

A quick tour of Pharo

x =0 MessageNotUnderstood: ByteString>>shout Bytecode GT
stack + Create bProceed (& Restart M Into 7 Over ¥ Through -=
ByteString(Object) doesNotUnderstand: #shout

StringTest testShout

StringTest(TestCase) performTest

stringTest(TestCase) runCase [self setup. self performTes
BlockClosure ensure:

StringTest(TestCase) runCase

Source | SetUp @ Whereis? # Browse

testShout
self assert: 'No panic' shout = 'NO PANIC!'

Variables

Type Variable Value
self StringTest>>#testShout
arrayWithCharacters (Sash $c)
collectionNotincluded "nilnil'

elementinNonEmpty sc
emptystring i

Figure 2-21 Looking at the error in the debugger.

Define #shout in which class?

ByteString

String.
ArrayedCollection
SequenceableCollection
Collection

Object

ProtoObject

Cancel

Figure 2-22 Pressing the Create button in the debugger prompts you to select in
which class to create the new method.

Select CollectionsTests-Strings package, and the pane to the right will
show all of the test classes in it, which includes the class StringTest. Class
names are already selected, so click Run Selected to run all these tests.

You should see the upper right pane turn red, which indicates that there

was an error in running the tests. The list of tests that gave rise to errors is
shown in the bottom right pane. As you can see, the method StringTest>>test-
Shout is the culprit. (Note that StringTest>>testShout is the Pharo way of
identifying the testShout method of the StringTest class.) If you click on

that method in the bottom right pane, the erroneous test will run again, this
time in such a way that you see the error happen: MessageNotUnderstood:
ByteString>>shout (see Figure 2-21).

The window that opens with the error message is the Pharo debugger. We
will look at the debugger and how to use it in Chapter: The Pharo Environ-
ment.

30

213 Defining a New Method

x -0 MessageNotUnderstood: ByteString>>shout Bytecode GT =
stack »Proceed CRestart M Into & Over = Through -=

ByteString(String) shout

StringTest testShout

stringTest{TestCase) performTest

stringTest(TestCase) runCase [self setUp. self performTes:
BlockClosure ensure:

Source SetUp ©L Whereis? - Browse

shout
self shouldBeImplemented.

Variables

Type Variable Value
self *No panic'
thisContext ByteString(String)>>shout
stack top nil

Figure 2-23 The automatically created shout method waiting for a real defini-
tion.

Implementing the Tested Method

The error is, of course, exactly what we expected: running the test gener-
ates an error because we have not yet written a method that tells strings how
to shout. Nevertheless, it’s good practice to make sure that the test fails be-
cause this confirms that we have set up the testing machinery correctly and
that the new test is actually being run. Once you have seen the error, you can
Abandon the running test, which will close the debugger window.

Coding in the Debugger

Instead of pressing Abandon, you can define the missing method using the
Create button right in the debugger. This will prompt you to select a class in
which to define the new method (see Figure 2-22), then prompt you to select
a protocol for that method, and finally take you to a code editor window in
the debugger, in which you can edit the code for this new method. Note that
since the system cannot implement the method for you, it creates a generic
method that is tagged as to be implemented (see Figure 2-23).

Now let’s define the method that will make the test succeed! Right inside the
debugger edit the shout method with this definition:

shout
~ self asUppercase,'!"

The comma is the string concatenation operation, so the body of this method
appends an exclamation mark to an upper-case version of whatever String

31

2.14

A quick tour of Pharo

object the shout message was sent to. The " tells Pharo that the expression
that follows is the answer to be returned from the method, in this case the
new concatenated string.

When you've finished implementing the method, do not forget to compile

it using CMD-s and you can press Proceed and continue with the tests. Note
that Proceed simply continues on running the test suite, and does not re-run
the failed method.

Does this method work? Let’s run the tests and see. Click on Run Selected
again in the Test Runner, and this time you should see a green bar and text
indicating that all of the tests ran with no failures and no errors. When you
get to a green bar, it’s a good idea to save your work by saving the image
(World Menu > Save), and take a break. So, do that right now!

Chapter Summary

This chapter has introduced you to the Pharo environment and shown you
how to use some of the major tools, such as the System Browser, Spotter,
the Finder, the Debugger, and the Test Runner. You have also seen a little of
Pharo’s syntax, even though you may not understand it all yet.

* A running Pharo system consists of a virtual machine, a .sources file,
and .image and . changes files. Only these last two change, as they
record a snapshot of the running system.

+ When you open a Pharo image, you will find yourself in exactly the
same state (i.e., with exactly the same running objects) that you had
when you last saved that image.

* You can click on the Pharo background to bring up the World Menu
and launch various tools.

+ A Playground is a tool for writing and evaluating snippets of code. You
can also use it to store arbitrary text.

* You can use keyboard shortcuts on text in the playground, or any
other tool, to evaluate code. The most important of these are Do it
(CMD-d), Print it (CMD-p), Inspect it (CMD-i), and Browse it (CMD-
b).

+ The System Browser is the main tool for browsing Pharo code and for
developing new code.

+ The Test runner is a tool for running unit tests, and aids in Test Driven
Development.

+ The Debugger allows you to examine errors and exceptions (such as
errors or failures encountered when running tests). You can even cre-
ate new methods right in the debugger.

32

CHAPTER

A first application

In this chapter, we will develop a simple game: LightsOut (http://en.wikipedia.
org/wiki/Lights_Out_(game)). Along the way we will show most of the tools that
Pharo programmers use to construct and debug their programs, and show
how programs are shared with other developers. We will see the browser,
the object inspector, the debugger and the Monticello package browser.

In Pharo you can develop in a traditional way, by defining a class, then its
instance variables, then its methods. However, in Pharo your development
flow can be much more productive than that! You can define instance vari-
ables and methods on the fly. You can also code in the debugger using the
exact context of currently executed objects. This chapter will sketch such
alternate way and show you how you can be really productive.

Figure 3-1 The Lights Out game board

33

http://en.wikipedia.org/wiki/Lights_Out_(game)
http://en.wikipedia.org/wiki/Lights_Out_(game)

3.1

3.2

A first application

x =0 Nautilus - System Browser =

Scoped Variables History Navigat Ve

PBE-LightsOut
Pharo-Help
Polymorph-Taskbai
> Polymorph-Widgets
Pragmacollector
ProfStef-Core
Profstef-Help

ProfStef-Tests v .
P » A, Hier. c Class = 7 Com.

Object subclass: #NameQfSubclass
instanceVariableNames: '
classvariableNames: ''
package: 'PBE-LightOut’

Figure 3-2 Create a Package and class template

The Lights Out game

To show you how to use Pharo’s programming tools, we will build a simple

game called Lights Out. The game board consists of a rectangular array of

light yellow cells. When you click on one of the cells, the four surrounding

cells turn blue. Click again, and they toggle back to light yellow. The object
of the game is to turn blue as many cells as possible.

Lights Out is made up of two kinds of objects: the game board itself, and 100
individual cell objects. The Pharo code to implement the game will contain
two classes: one for the game and one for the cells. We will now show you
how to define these classes using the Pharo programming tools.

Creating a new Package

We have already seen the browser in Chapter : A Quick Tour of Pharo where
we learned how to navigate to packages, classes and methods, and saw how
to define new methods. Now we will see how to create packages and classes.

From the World menu, open a System Browser. Right-click on an existing
package in the Package pane and select Add package. .. from the menu.
Type the name of the new package (we use PBE-LightsOut) in the dialog box
and click OK (or just press the return key). The new package is created, and
positioned alphabetically in the list of packages (see Figure 3-2).

Hints: You can type PBE in the filter to get your package filtered out the
other ones (See Figure 3-3).

34

3.3

3.3 Defining the class LOCell

x -0 Nautilus - System Browser -
Scoped variables History Navigator ¥ e

pag i
(2] Last Modified Method:
» <& Configurations
% Work
PBE-LightsOut

< p | A Hier € Class 7 Com.

Object subclass: #NameOfSubclass
instanceVariableNames: ''
classVariableNames: ''
package: 'PBE-Lightout'

Figure 3-3 Filtering our package to work more efficiently

Listing 3-4 LOCell class definition

SimpleSwitchMorph subclass: #LOCell
instanceVariableNames: 'mouseAction'
classVariableNames: '’
package: 'PBE-LightsOut'

Defining the class LOCell

At this point there are, of course, no classes in the new package. However,
the main editing pane displays a template to make it easy to create a new
class (see Figure 3-3).

This template shows us a Pharo expression that sends a message to a class
called Object, asking it to create a subclass called NameOfSubClass. The
new class has no variables, and should belong to the category (package) PBE-
LightsOut.

Creating a new class

We simply edit the template to create the class that we really want. Modify
the class creation template as follows:

» Replace Object with SimpleSwitchMorph.

* Replace NameOfSubClass with LOCell.

+ Add mouseAction to the list of instance variables.
You should get the following class definition:

This new definition consists of a Pharo expression that sends a message to
the existing class SimpleSwitchMorph, asking it to create a subclass called
LOCell. (Actually, since LOCell does not exist yet, we passed the symbol
#L0OCell as an argument, representing the name of the class to create.) We

35

A first application

x =0 LOCell =
Scoped Variables History Navigator Ve
PBE v ! Locell no messages

[zz] Last Modified Method:
» % Configurations
£ Work
4 PBE-Lightout
PBE-LightsOut

4 » A Hier. (2 Class 7 Com.

hw‘mpleSw‘itchMorph subclass: #LOCell
instanceVariableNames: 'mouseAction'
classvariableNames: "'
package: 'PBE-Lightout'

1/4[1] Formatasyouread W +L
© Class not referenced 7 X Helpful? i 94
1. Noclass comment 7 X Helpful? ol 9
@ [mouseAction] Instance variables not read AND written 7 X Helpful? e 9¥

Figure 3-5 The newly-created class LOCell

also tell it that instances of the new class should have a mouseAction in-
stance variable, which we will use to define what action the cell should take
if the mouse should click on it.

At this point you still have not created anything. Note that the top right of
the panel changed to orange. This means that there are unsaved changes. To
actually send this subclass message, you must save (accept) the source code.
Either right-click and select Accept, or use the shortcut CMD-s (for "Save”).
The message will be sent to SimpleSwitchMorph, which will cause the new
class to be compiled. You should get the situation depicted in Figure 3-5.

Once the class definition is accepted, the class is created and appears in the
class pane of the browser (see Figure 3-5). The editing pane now shows the
class definition. Below you get the Quality Assistant’s feedback: It runs auto-
matically quality rules on your code and reports them.

About comments

Pharoers put a very high value on the readability of their code, but also good
quality comments.

Method comments. People have the tendency to believe that it is not nec-
essary to comment well written methods: it is plain wrong and encourages
sloppiness. Of course, bad code should renamed and refactored. Obviously
commenting trivial methods makes no sense. A comment should not be the

36

3.4

3.4 Adding methods to a class

code written in english but an explanation of what the method is doing, its
context, or the rationale behind its implementation. When reading a com-
ment, the reader should be comforted that his hypotheses are correct.

Class comments. For the class comment, the Pharo class comment template
gives a good idea of a strong class comment. Read it! It is based on CRC for
Class Responsibility Collaborators. So in a nutshell the comments state the
responsibility of the class in a couple of sentences and how it collaborates
with other classes to achieve this responsibilities. In addition we can state
the API (main messages an object understands), give an example (usually in
Pharo we define examples as class methods), and some details about internal
representation or implementation rationale.

Select the comment button and define a class comment following this tem-
plate

On categories vs. packages

Historically, Pharo packages were implemented as "categories” (a group of
classes). With the newer versions of Pharo, the term category is being depre-
cated, and replaced exclusively by package.

If you use an older version of Pharo or an old tutorial, the class template will
be as follow:

SimpleSwitchMorph subclass: #LOCell
instanceVariableNames: 'mouseAction'
classVariableNames: ''
category: 'PBE-LightsOut'

It is equivalent to the one we mentioned earlier. In this book we only use the
term package. The Pharo package is also what you will be using to version
your source code using the Monticello versioning tool.

Adding methods to a class

Now let’s add some methods to our class. Select the protocol 'no messages'
in the protocol pane. You will see a template for method creation in the edit-
ing pane. Select the template text, and replace it by the following (do not
forget to compile it):

Note that the characters ' ' on line 3 are two separate single quotes with
nothing between them, not a double quote! ' ' denotes the empty string. An-
other way to create an empty string is String new. Do not forget to accept
this method definition.

37

A first application

Listing 3-6 Initializing instance of LOCell
[initialize
super initialize.
self label: ''.

self borderwidth: 2.

bounds := 0 @ 0 corner: 16 @ 16.
offColor := Color paleYellow.
onColor := Color paleBlue darker.
self useSquareCorners.

self turnoff

x - 0O LOCell>>#initialize -
Scoped Variables History Navigator Ve
PBE v O Locell —all - + initialize

(2] Last Modified Method: initialization
» & Configurations
< Work
PBE-LightsOut

& Hier. (c) Class 7 Com.

4 >

initialize
super initialize.
self label: ''.
self borderWidth: 2.
bounds := @ @ @ corner: 16 @ 16.
offColer := Color paleYellow.
onColor := Color paleBlue darker.
self useSquareCorners.
self turnoff

1/9[1] Formatasyouread W +L

Figure 3-7 The newly-created method initialize

Initialize methods. Notice that the method is called initialize. The name
is very significant! By convention, if a class defines a method named ini-
tialize, it is called right after the object is created. So, when we execute
LoCell new, the message initialize is sent automatically to this newly
created object. initialize methods are used to set up the state of objects,
typically to set their instance variables; this is exactly what we are doing
here.

Invoking superclass initialization. The first thing that this method does

(line 2) is to execute the initialize method of its superclass, SimpleSwitch-
Morph. The idea here is that any inherited state will be properly initialized

by the initialize method of the superclass. It is always a good idea to
initialize inherited state by sending super initialize before doing any-

38

3.5

3.5 Inspecting an object

thing else. We don’t know exactly what SimpleSwitchMorph’s initialize
method will do (and we don'’t care), but it’s a fair bet that it will set up some
instance variables to hold reasonable default values. So we had better call it,
or we risk starting in an unclean state.

The rest of the method sets up the state of this object. Sending self label:
'', for example, sets the label of this object to the empty string.

About point and rectangle creation. The expression 0a0 corner: 16316
probably needs some explanation. 090 represents a Point object with x and
y coordinates both set to 0. In fact, 020 sends the message @ to the number
0 with argument 0. The effect will be that the number 0 will ask the Point
class to create a new instance with coordinates (0,0). Now we send this
newly created point the message corner: 16216, which causes it to create
a Rectangle with corners 0@0 and 16@16. This newly created rectangle will
be assigned to the bounds variable, inherited from the superclass.

Note that the origin of the Pharo screen is the top left, and the y coordinate
increases downwards.

About the rest. The rest of the method should be self-explanatory. Part of
the art of writing good Pharo code is to pick good method names so that the
code can be read like a kind of pidgin English. You should be able to imagine
the object talking to itself and saying "Self, use square corners!”, "Self, turn

off!”.

Notice that there is a little green arrow next to your method (see Figure 3-
7). This means the method exists in the superclass and is overridden in your
class.

Inspecting an object

You can immediately test the effect of the code you have written by creating
anew LOCell object and inspecting it: Open a Playground, type the expres-
sion LOCell new, and Inspect it (using the menu item with the same name).

The left-hand column of the inspector shows a list of instance variables and
the value of the instance variable is shown in the right column (see Figure
3-8).

If you click on an instance variable the inspector will open a new pane with

the detail of the instance variable (see Figure 3-9).

Executing expressions. The bottom pane of the inspector is a mini-playground.
It’s useful because in this playground the pseudo-variable self is bound to
the object selected.

39

x — 0O Inspector on a LOCell(225557760) [t
a Locell(22555T760) 2 Q
Raw Extension Submorphs Morph Meta
x -0
Variable Value =
Page B self aLOCell(225557760)
LoCell new » 1 actWhen #buttonUp
» T actionSelector #flash
» {} arguments an Array [0 items] ()
» [l bordercolor Color gray
» I borderwidth 3
» (€ bounds (0@0) corner: (39@25)
» [color Color lightGray
» (€ extension a MorphExtension (221396224)
» (© fullBounds nil
» e [abel a StringMorph(806658304)'Flash’
» (£ mouseAction nil \d
"a LOCell(225557760)"
self
Figure 3-8 The inspector used to examine a LOCell object
x = 0O Inspector on a LOCell(545769984) O~
a LOCell(545769984) & Q a Rectangle ((0@0) corner: (16@16)) = I d
l..| E..| SU...| Mor...| Meta Raw Meta
Variable Value * Variable Value
»= 1 borderColor #raised © self (0@0) ca
» I borderWidth 2 » (© corner (16@16)
» £ bounds (o@0) .. » © origin (0@0)
> color Color
» (€ extension aMorj,
e (c fullBnunds nil
"a LOCell(545769984)" "(0@D) corner: (16@16)"
self self
. O
Figure 3-9 When we click on an instance variable, we inspect its value (another

object)

3.6

3.6 Defining the class LOGame

x =0 Inspector on a LOCell(545769984) [0
a LOCell(545769984) @ € aRectangle ((0@0) corner: (16@16)) &
l...| E...| Su...| Mor...| Meta Raw Meta

Variable Value Variable Value

» 1 borderColor #raised S self {0@0) ca
» I borderwidth 2 » @& comer (16@16)
» C ' bounds (0@0) ., » © origin (0@0)

> color Color

» (L) extension aMory,,

» (C) fullRanndc nil

"a LOCel1(545769984)" "(e@e) corner: (l6@le)"

self openInworld self

Figure 3-10 An LOCell open in world

Go to that Playground at the bottom of the pane and type the text self bounds:

(2000200 corner: 250@250) Do it. To refresh the values, click on the up-
date button (the blue little circle) at the top right of the pane. The bounds
variable should change in the inspector. Now type the text self openIn-
World in the mini-playground and Do it.

The cell should appear near the top left-hand corner of the screen (as shown
in Figure 3-10) and exactly where its bounds say that it should appear. Meta-
click on the cell to bring up the Morphic halo. Move the cell with the brown
(next to top-right) handle and resize it with the yellow (bottom-right) han-
dle. Notice how the bounds reported by the inspector also change. (You may
have to click refresh to see the new bounds value.) Delete the cell by clicking
on the x in the pink handle.

Defining the class LOGame

Now let’s create the other class that we need for the game, which we will
name LOGame.

Class creation

Make the class definition template visible in the browser main window. Do
this by clicking on the package name (or right-clicking on the Class pane and
selecting Add Class). Edit the code so that it reads as follows, and Accept it.

41

A first application

Listing 3-11 Defining the LOGame class

BorderedMorph subclass: #LOGame
instanceVariableNames: "'
classVariableNames: ''
package: 'PBE-LightsOut'

Listing 3-12 Initialize the game
[initialize

| sampleCell width height n |
super initialize.
n := self cellsPerSide.
sampleCell := LOCell new.
width := sampleCell width.
height := sampleCell height.
self bounds: (5 @ 5 extent: (width * n) @ (height * n) + (2 * self

borderwidth)).
cells := Matrix new: n tabulate: [:i :j | self newCellAt: i at: j
1

Lz
implpeall wddeh boiaht o 1

it Unknown variable: cells please correct, or cancel:

1 #(5 Declare new temporary variable
ety .
.+ .| Declare newinstance variable

it Cancel

* boy

i ard
e Cancel

Figure 3-13 Declaring cells as a new instance variable

Here we subclass BorderedMorph. Morph is the superclass of all of the graph-
ical shapes in Pharo, and (unsurprisingly) a BorderedMorph is a Morph with a
border. We could also insert the names of the instance variables between the
quotes on the second line, but for now, let’s just leave that list empty.

Initializing our game

Now let’s define an initialize method for LOGame. Type the following into
the browser as a method for LOGame and try to Accept it.

Pharo will complain that it doesn’t know the meaning of cells (see Figure
3-13). It will offer you a number of ways to fix this.

Choose Declare new instance variable, because we want cells to be an
instance variable.

42

3.6 Defining the class LOGame

x -0 x - 0O MessageNotUnderstood: LOGame=>>cellsPerSide Bytecode ~
Page Stack »Proceed (% Restart M Into # Over = Through + Create -=
LOGame new LOGame(Object) doesNotUnderstand: #cellsPerSide

LOGame initialize

LOGame class(Behavior) new

UndefinedObject Dolt

Nnalramnilar LEVTETRY

Source) Whereis? # Browse

initialize

| sampleCell width height n |

super initialize.

n := self cellsPerSide.

sampleCell := LOCell new.

width := sampleCell width.

height := sampleCell height.

self bounds: (5 @ 5 extent: (width # n) @ (height * n) + (2 % self
borderwidth)).

cells := Matrix new: n tabulate: [:i :j | self newCellAt: i at: j]

Variables

Type Variable Value
self a LOGame(TT7060096)
borderColor Color black
borderwidth 1

Figure 3-14 Pharo detecting an unknown selector

Taking advantage of the debugger

At this stage if you open a Playground, type LOGame new, and Do it, Pharo
will complain that it doesn’t know the meaning of some of the terms (see
Figure 3-14). It will tell you that it doesn’t know of a message cellsPer-
Side, and will open a debugger. But cellsPerSide is not a mistake; it is just
a method that we haven’t yet defined. We will do so, shortly.

Now let us do it: type LOGame new and Do it. Do not close the debugger.

Click on the button Create of the debugger, when prompted, select LOGame,
the class which will contain the method, click on ok, then when prompted
for a method protocol enter accessing. The debugger will create the method
cellsPerSide on the fly and invoke it immediately. As there is no magic,

the created method will simply raise an exception and the debugger will stop
again (as shown in Figure 3-15) giving you the opportunity to define the be-
havior of the method.

Here you can write your method. This method could hardly be simpler: it
answers the constant 10. One advantage of representing constants as meth-
ods is that if the program evolves so that the constant then depends on some
other features, the method can be changed to calculate this value.

cellsPerSide
"The number of cells along each side of the game"
" 10

43

A first application

x =0 MessageNotUnderstood: LOGame>>cellsPerSide Bytecode ~
Stack »Proceed (% Restart M Into # Over 2% Through -=
LOGame cellsPerSide

' Locame initialize
LOGame class(Behavior) new
UndefinedObject Dolt
OpalCompiler evaluate
Source ©), Whereis? # Browse
cellsPerSide

self shouldBeImplemented.

Variables

Type Variable Value
self a LOGame(868847360)
borderColor Color black
borderWidth 1
bounds (0@0) corner: (50@40)

Figure 3-15 The system created a new method with a body to be defined.

Define the method cellsPerSide in the debugger. Do not forget to com-
pile the method definition by using Accept. You should obtain a situation
as shown by Figure 3-16. If you press the button Proceed the program will
continue its execution - here it will stop since we did not define the method
newCellAt:. We could use the same process but for now we stop to explain
a bit what we did so far. Close the debugger, and look at the class definition
once again (which you can do by clicking on LOGame on the second pane of
the System Browser), you will see that the browser has modified it to in-
clude the instance variable cells.

Studying the initialize method
Let us now study the method initialize.

At line 2, the expression | sampleCell width height n | declares 4 tem-
porary variables. They are called temporary variables because their scope
and lifetime are limited to this method. Temporary variables with explana-
tory names are helpful in making code more readable. Lines 4-7 set the value
of these variables.

How big should our game board be? Big enough to hold some integral num-

a4

3.6 Defining the class LOGame

x — 0O MessageNotUnderstood: LOGame=>>cellsPerSide Bytecode
Stack »Proceed (5 Restart M Into 1 Over s Through -=
LOGame cellsPerSide
LOGame initialize
LOGame class(Behavior) new
UndefinedObject Dolt
Analramnilar rralinatn
Source) Whereis? # Browse
cellsPerSide
"The number of cells along each side of the game"
A 10
Variables
Type Variable Value
self a LOGame(777060096)
borderColor Color black
borderWidth 1

Figure 3-16 Defining cellsPerSide in the debugger

Listing 3-17 Initialize the game
[initialize
| sampleCell width height n |
super initialize.
n := self cellsPerSide.
sampleCell := LOCell new.
width := sampleCell width.
height := sampleCell height.
self bounds: (5 @ 5 extent: (width * n) @ (height * n) + (2 * self

borderwidth)).
cells := Matrix new: n tabulate: [:i :j | self newCellAt: i at: j
1

ber of cells, and big enough to draw a border around them. How many cells
is the right number? 5?7 10? 100? We don’t know yet, and if we did, we would
probably change our minds later. So we delegate the responsibility for know-
ing that number to another method, which we name cellsPerSide, and
which we will write in a minute or two. Don’t be put off by this: it is actually
good practice to code by referring to other methods that we haven’t yet de-
fined. Why? Well, it wasn’t until we started writing the initialize method

45

3.7

A first application

that we realized that we needed it. And at that point, we can give it a mean-
ingful name, and move on, without interrupting our flow.

The fourth line uses this method, n := self cellsPerSide. sends the
message cellsPerSide to self, i.e., to this very object. The response, which
will be the number of cells per side of the game board, is assigned to n.

The next three lines create a new LOCel1l object, and assign its width and
height to the appropriate temporary variables.

Line 8 sets the bounds of the new object. Without worrying too much about
the details just yet, believe us that the expression in parentheses creates

a square with its origin (i.e., its top-left corner) at the point (5,5) and its
bottom-right corner far enough away to allow space for the right number
of cells.

The last line sets the LOGame object’s instance variable cells to a newly cre-
ated Matrix with the right number of rows and columns. We do this by send-
ing the message new: tabulate: to the Matrix class (classes are objects
too, so we can send them messages). We know that new: tabulate: takes
two arguments because it has two colons (:) in its name. The arguments go
right after the colons. If you are used to languages that put all of the argu-
ments together inside parentheses, this may seem weird at first. Don’t panic,
it’s only syntax! It turns out to be a very good syntax because the name of
the method can be used to explain the roles of the arguments. For exam-
ple, it is pretty clear that Matrix rows: 5 columns: 2 has5 rows and 2
columns, and not 2 rows and 5 columns.

Matrix new: n tabulate: [:i :j | self newCellAt: i at: j]cre-
ates a new n X n matrix and initializes its elements. The initial value of each
element will depend on its coordinates. The (i,j)t" element will be initialized
to the result of evaluating self newCellAt: i at: j.

Organizing methods into protocols

Before we define any more methods, let’s take a quick look at the third pane
at the top of the browser. In the same way that the first pane of the browser
lets us categorize classes into packages, the protocol pane lets us catego-
rize methods so that we are not overwhelmed by a very long list of method
names in the method pane. These groups of methods are called "protocols”.

The browser also offers us the --all-- virtual protocol, which, you will not
be surprised to learn, contains all of the methods in the class.

If you have followed along with this example, the protocol pane may well
contain the protocol as yet unclassified. Right-click in the protocol pane
and select categorize all uncategorized to fix this, and move the initial-
ize method to a new protocol called initialization.

46

3.8 Finishing the game

Listing 3-18 An initialization helper method

[LoGame >> newCellAt: i at: j

"Create a cell for position (i,j) and add it to my on-screen
representation at the appropriate screen position. Answer the
new cell”

| ¢ origin |

c := LOCell new.

origin := self innerBounds origin.

self addMorph: c.

c position: ((i - 1) * c width) @ ((j - 1) * c height) + origin.
c mouseAction: [self toggleNeighboursOfCellAt: i at: j].

How does the System Browser know that this is the right protocol? Well, in
general Pharo can’t know exactly, but in this case there is also an initial-
ize method in the superclass, and it assumes that our initialize method
should go in the same protocol as the one that it overrides.

A typographic convention. Pharoers frequently use the notation Class >>
method to identify the class to which a method belongs. For example, the
cellsPerSide method in class LOGame would be referred to as LOGame >>
cellsPerSide. Just keep in mind that this is not Pharo syntax exactly, but
merely a convenient notation to indicate "the instance method cellsPer-
Side which belongs to the class L0OGame”. (Incidentally, the corresponding
notation for a class-side method would be LOGame class >> someClass-
SideMethod.)

From now on, when we show a method in this book, we will write the name
of the method in this form. Of course, when you actually type the code into
the browser, you don’t have to type the class name or the >>; instead, you
just make sure that the appropriate class is selected in the class pane.

Finishing the game

Now let’s define the other method that are used by LOGame >> initialize.
Let’s define LOGame >> newCellAt: at: inthe initialization protocol.

Pay attention the following code is not fully correct. Therefore, it will pro-
duce an error and this is on purpose.

Formatting. As you can see there are some tabulation and empty lines. In
order to keep the same convention you can right-click on the method edit
area and click on Format (or use CMD-Shift-f shortcut). This will format
your method.

The method defined above created a new L0OCe11, initialized to position (i, j)
in the Matrix of cells. The last line defines the new cell’s mouseAction to be

47

A first application

Listing 3-19 The callback method

[LoGame >> toggleNeighboursOfCellAt: i at: j

i>1

ifTrue: [(cells at: i - 1 at: j) toggleState].
i < self cellsPerSide

ifTrue: [(cells at: i + 1 at: j) toggleState].
j>1

ifTrue: [(cells at: i at: j - 1) toggleState].
j < self cellsPerSide

ifTrue: [(cells at: i at: j + 1) toggleState]

leNeighboursOfCellAt:at: -

- all - cellsPerSide

S LOGame>>#toggleNeighboursOfCellAt:at: —

@Cewﬁt

< initialization toggleNeighboursOfCellAtat:

Figure 3-20 Drag a method to a protocol

Listing 3-21 A typical setter method

LOCell >> mouseAction: aBlock
mouseAction := aBlock

theblock [self toggleNeighboursOfCellAt: i at: j 1. In effect, this
defines the callback behaviour to perform when the mouse is clicked. The
corresponding method also needs to be defined.

The method toggleNeighboursOfCellAt:at: toggles the state of the four
cells to the north, south, west and east of cell (i, j). The only complication is
that the board is finite, so we have to make sure that a neighboring cell exists
before we toggle its state.

Place this method in a new protocol called game logic. (Right-click in the
protocol pane to add a new protocol.) To move (re-classify) the method, you
can simply click on its name and drag it to the newly-created protocol (see
Figure 3-20).

To complete the Lights Out game, we need to define two more methods in
class LOCe11 this time to handle mouse events.

48

39

3.9 Let'stry our code

Listing 3-22 An event handler

LOCell >> mouseUp: anEvent
mouseAction value

The method above does nothing more than set the cell’s mouseAction vari-
able to the argument, and then answers the new value. Any method that
changes the value of an instance variable in this way is called a setter method;
a method that answers the current value of an instance variable is called a
getter method.

Setter/Getter convention. If you are used to getters and setters in other
programming languages, you might expect these methods to be called set -
MouseAction and getMouseAction. The Pharo convention is different. A
getter always has the same name as the variable it gets, and a setter is named
similarly, but with a trailing ”:”, hence mouseAction and mouseAction:.
Collectively, setters and getters are called accessor methods, and by conven-
tion they should be placed in the accessing protocol. In Pharo, all instance
variables are private to the object that owns them, so the only way for an-
other object to read or write those variables is through accessor methods like
this one. In fact, the instance variables can be accessed in subclasses too.

Go to the class L0Ce11, define LOCell >> mouseAction: and put it in the
accessing protocol.

Finally, we need to define a method mouseUp:. This will be called automati-
cally by the GUI framework if the mouse button is released while the cursor
is over this cell on the screen. Add the method LOCe1ll >> mouseUp: and
then Categorize automatically the methods.

What this method does is to send the message value to the object stored in
the instance variable mouseAction. In LOGame >> newCellAt: i at: jwe
created the block [self toggleNeighboursOfCellAt: i at: j] whichis
toggling all the neighbours of a cell and we assigned this block to the mouse-
Action of the cell. Therefore sending the value message causes this block to
be evaluated, and consequently the state of the cells will toggle.

Let's try our code

That’s it: the Lights Out game is complete! If you have followed all of the
steps, you should be able to play the game, consisting of just 2 classes and
7 methods. In a Playground, type LOGame new openInWorld and Do it.

The game will open, and you should be able to click on the cells and see how
it works. Well, so much for theory... When you click on a cell, a debugger will
appear. In the upper part of the debugger window you can see the execution
stack, showing all the active methods. Selecting any one of them will show,

49

A first application

x -0 MessageNotUnderstood: LOGame>>toggleState Bytecode ~

Stack »Proceed (% Restart 3 Into # Over »*Through -+ Create -=
7 |LoGame(Object) doesNotUnderstand: #toggleState

LOGame toggleNeighboursOfCellAt:at:

LOGame newCellAt:at: [self toggleNeighboursofCellAt: i at

LOCell mouselp:

LOCell{Marph) handleMouseUp:

Source), Whereis? # Browse

toggleNeighboursofcellAt: i at: j

i»1

ifTrue: [(cells at: i - 1 at: j) teggleState].
i < self cellsPerSide

ifTrue: [(cells at: i + 1 at: j) 1.
ji>1

ifTrue: [(cells at: i at: j - 1) 7.
j < =self cellsPerSide

ifTrue: [(cells at: i at: j + 1)] !

Variables

Type Variable Value
self a L0Game(628956160)
borderColor Color black
borderWidth 1
bounds (5.0@5.0) corner: (167.0@167.0)

Figure 3-23 The debugger, with the method toggleNeighboursOfCell:at:
selected

in the middle pane, the Smalltalk code being executed in that method, with
the part that triggered the error highlighted.

Click on the line labeled LOGame >> toggleNeighboursOfCellAt: at:
(near the top). The debugger will show you the execution context within this
method where the error occurred (see Figure 3-23).

At the bottom of the debugger is a variable zone. You can inspect the object
that is the receiver of the message that caused the selected method to exe-
cute, so you can look here to see the values of the instance variables. You can
also see the values of the method arguments.

Using the debugger, you can execute code step by step, inspect objects in pa-
rameters and local variables, evaluate code just as you can in a playground,
and, most surprisingly to those used to other debuggers, change the code
while it is being debugged! Some Pharoers program in the debugger almost
all the time, rather than in the browser. The advantage of this is that you see
the method that you are writing as it will be executed, with real parameters
in the actual execution context.

In this case we can see in the first line of the top panel that the toggleState
message has been sent to an instance of LOGame, while it should clearly have
been an instance of LOCell. The problem is most likely with the initializa-
tion of the cells matrix. Browsing the code of LOGame >> initialize shows

50

3.9 Let'stry our code

Listing 3-24 Fixing the bug.

[LoGame >> newCellAt: i at: j
"Create a cell for position (i,j) and add it to my on-screen
representation at the appropriate screen position. Answer the
new cell”

| ¢ origin |

c := LOCell new.

origin := self innerBounds origin.

self addMorph: c.

c position: ((i - 1) * c width) @ ((j - 1) * c height) + origin.
c mouseAction: [self toggleNeighboursOfCellAt: i at: j].

N

C

Listing 3-25 Overriding mouse move actions

[LOCell >> mouseMove: anEvent

that cells is filled with the return values of newCellAt: at:, but when we
look at that method, we see that there is no return statement there! By de-
fault, a method returns self, which in the case of newCellAt: at: isindeed
an instance of LOGame. The syntax to return a value from a method in Pharo
is®

Close the debugger window. Add the expression * c to the end of the method
LOGame >> newCellAt:at: so that it returns c.

Often, you can fix the code directly in the debugger window and click Pro-
ceed to continue running the application. In our case, because the bug was
in the initialization of an object, rather than in the method that failed, the
easiest thing to do is to close the debugger window, destroy the running in-
stance of the game (with the halo CMD-Alt-Shift and click), and create a
new one.

Execute LOGame new openInWorld again because if you use the old game
instance it will still contain the block with the old logic.

Now the game should work properly... or nearly so. If we happen to move
the mouse between clicking and releasing, then the cell the mouse is over
will also be toggled. This turns out to be behavior that we inherit from Sim-
pleSwitchMorph. We can fix this simply by overriding mouseMove: to do
nothing:

Finally we are done!

About the debugger. By default when an error occurs in Pharo, the system
displays a debugger. However, we can fully control this behavior. For exam-
ple we can write the error in a file. We can even serialize the execution stack
in a file, zip and reopen it in another image. Now when we are in develop-
ment mode the debugger is available to let us go as fast as possible. In pro-

51

A first application

P

Figure 3-26 File Out our PBE-LightsOut

duction system, developers often control the debugger to hide their mistakes
from their clients.

3.10 Saving and sharing Pharo code

Now that you have Lights Out working, you probably want to save it some-
where so that you can archive it and share it with your friends. Of course,
you can save your whole Pharo image, and show off your first program by
running it, but your friends probably have their own code in their images,
and don’t want to give that up to use your image. What you need is a way of
getting source code out of your Pharo image so that other programmers can
bring it into theirs.

Note We'll be discussing the various ways to save and share code in a
future chapter, Chapter : Sharing Code and Source Control. For now, here
is an overview of some of the available methods.

Saving plain code

The simplest way of doing this is by "filing out” the code. The right-click
menu in the Package pane will give you the option to File Out the whole of
package PBE-LightsOut. The resulting file is more or less human readable,
but is really intended for computers, not humans. You can email this file to
your friends, and they can file it into their own Pharo images using the file
list browser.

Right-click on the PBE-LightsOut package and file out the contents (see Fig-
ure 3-26). You should now find a file named PBE-LightsOut.st in the same
folder on disk where your image is saved. Have a look at this file with a text
editor.

Open a fresh Pharo image and use the File Browser tool (Tools --> File
Browser) to file in the PBE-LightsOut.st fileout (see Figure 3-27) and filelIn.
Verify that the game now works in the new image.

52

3.10 Saving and sharing Pharo code

x — 0O Common tools-Pharo 4.0 (stable) -
(= Common tools-Moose Suite 5.1 (beta) Z v Install Changes code Filein
» (= Common tools-Pharo 4.0 (beta)
» (= Common tools-Pharo 4.0 (beta)-01 File name Size Last mod. Permissions *
(Z=Common tools-Pharo 4.0 (beta)-02 Common tools-Phara 4.0 (stable).changes 171.88 kB 2015-05-09T19:05 rw-rw-rw-
» (= Common tools-Pharo 4.0 (beta)-03 Common tools-Pharo 4.0 (stable).image 24.50 MB 2015-05-09T19:05 rw-rw-rw-
> (& Comman tools-Pharo 4.0 (beta)-04 PBE LightsOut st 242kB 2015-05-09T19:0 rw-rw-rw-
» (= Common tools-Pharo 4.0 (beta)-05 PharoDebug.i 2801 k8 2015-05-09T17:25
¥ [~ Commen tools-Pharo 4.0 (stable) arobebug.log . e A W
(= play-cache PharoScreenshot.L.png 57.84 kB 2015-05-09TOL:1E rW-rw-rw-
(= Common tools-Pharo 4.0 (stable}-01 PharoScreenshot.10.png 85.06 kB 2015-05-09T03:35 rw-rw-rw-
(= Commaon tools-Pharo 5.0 (beta) PharnScreenshat 11 nno 158 kR I015-N5-N9TN2-A7 rw-rw-rw- A
(= Commeon tools-Pharo 5.0 (beta)-01 BorderedMorph subclass: #L.0Game A
(= milliseconds instancevariableNames: 'cells’
(Z=Moose Jenkins-Forum-#2116-Forum.zip classVariableNames: "
(= onsendto poolDictionaries: "
(= Pharo 2.0 (old stable)-latest category: 'PBE-LightsOut'!
(=-Pharo 4.0 (beta)-40610
&-Pharo 4.0 (beta)-40611 ILOGame methodsFor: 'event handling' stamp: 'CyrilFerlicot 5/9/2015 17:48'|
(=Pharo 4.0 (beta)-latest X
mouseMove: anEvent! |
(= Pharo 4.0 (beta)-latest-spur32
P ILOGame methodsFor: "initialization' stamp: 'CyrilFerlicot 5/9/2015 17:44'l
> (= Pharo Contribution Jenkins-Pillar-dev-All by MeWCelAiat:j o) .
» (= Pharo Contribution Jenkins-XMLParser-479¢ "Create a cell for position (i,j) and add it to my on-screen representation at the appropriate screen
» (=Pharo3 w position. Answer the new cell”
<4 > v

Figure 3-27 Import your code with the file browser

Monticello packages

Although fileouts are a convenient way of making a snapshot of the code you
have written, they are definitevely "old school”. Just as most open-source
projects find it much more convenient to maintain their code in a repository
using SVN or Git, so Pharo programmers find it more convenient to manage
their code using Monticello packages. These packages are represented as
files with names ending in .mcz. They are actually zip-compressed bundles
that contain the complete code of your package.

Using the Monticello package browser, you can save packages to repositories
on various types of server, including FTP and HTTP servers. You can also just
write the packages to a repository in a local file system directory. A copy of
your package is also always cached on your local disk in the package-cache
folder. Monticello lets you save multiple versions of your program, merge
versions, go back to an old version, and browse the differences between ver-
sions. In fact, Monticello is a distributed revision control system. This means
it allows developers to save their work on different places, not on a single
repository as it is the case with CVS or Subversion.

You can also send a .mcz file by email. The recipient will have to place it in
her package-cache folder; she will then be able to use Monticello to browse
and load it.

Monticello Browser

Open the Monticello browser from the World menu (see Figure 3-28).

53

A first application

x — 0O Monticello Browser -

+Package +Config +5lice Browse Changes +Repository Save Open
v ¥V Package W

* PBE-LightsOut (StephaneDucasse.1) A JUsers/ducasse/Library/Application Support/Pharofim
AST-Core (Thelntegrator.398) http://smalltalkhub.com/mc/Pharo/Pharo50/main
AST-FFI-Pharo50Compatibility (EstebanLorenzano.1) http://smalltalkhub.com/mc/Pharo/Pharo50inbox/ma
AST-Tests-Core (Thelntegrator.86)
Alien (eem.25)

Announcements-Core (EstebanLorenzano.6s)

Announcements-Help (Thelntegrator.12)
Annnuncemants-Tacte-Cnra (Thalntaorator 271

Figure 3-28 Monticello browser. The package PBE-LightsOut is not save yet

In the right-hand pane of the browser is a list of Monticello repositories,
which will include all of the repositories from which code has been loaded
into the image that you are using. The top list item is a local directory called
the package-cache. It caches copies of the packages that you have loaded or
published over the network. This local cache is really handy because it lets
you keep your own local history. It also allows you to work in places where
you do not have internet access, or where access is slow enough that you do
not want to save to a remote repository very frequently.

Saving and loading code with Monticello

On the left-hand side of the Monticello browser is a list of packages that have
a version loaded into the image. Packages that have been modified since they
were loaded are marked with an asterisk. (These are sometimes referred to
as dirty packages.) If you select a package, the list of repositories is restricted
to just those repositories that contain a copy of the selected package.

Add the PBE-LightsOut package to your Monticello browser using the +
Package button and type PBE-LightsOut.

SmalltalkHub: a Github for Pharo

We think that the best way to save your code and share it is to create an
account for your project in SmalltalkHub. SmalltalkHub is like GitHub: it
is a web front-end to a HTTP Monticello server that lets you manage your
projects. There is a public server at http://www.smalltalkhub.com/.

To be able to use SmalltalkHub you will need an account. Open the site in
your browser. Then, click on the Join link and follow the instructions to cre-
ate a new account. Finally, login to your account. Click on the + New project
to create a new project. Fill in the information requested and click Regis-
ter project button. You will be sent to your profile page, on the right side

54

http://www.smalltalkhub.com/

3.10 Saving and sharing Pharo code

Listing 3-29 A repository pattern

MCHttpRepository
location:
"http://www.smalltalkhub.com/mc/UserName/ProjectName/main’
user: 'YourName'
password: 'Optional_Password'

Information Required

w= a HTTP Repository:

+Package +Co

MCHttpRepository

location: "http://smalltalkhub.com/mc/YourName/PBE-LightsOut/main’
* PBE-LightsOut () user: YourName' s\PH
AST-Core (Thelntegrator.2
AST-Tests-Core (Thelnteg
Announcements-Core (M3
Announcements-Help (Th
Announcements-Tests-Co
AsmJJit-Core (MarcusDenk
AsmJit-Extension (Marcus
AsmJit-Instructions (Thely OK Cancel
AsmJit-Operands (Stephaicoucasseos;

ack

password: 'Optionnal_YourPassword'

Figure 3-30 Create your first repository on SmalltalkHub

you will see the list of your projects and projects you watch by other coders.
Click on the project you just created.

Under Monticello registration title label you will see a box containing a
smalltalk message similar to

Copy the contents and go back to Pharo. Once your project has been created
on SmalltalkHub, you have to tell your Pharo system to use it. With the PBE-
LightsOut package selected, click the +Repository button in the Monticello
browser. You will see a list of the different Repository types that are avail-
able. To add a SmalltalkHub repository select smalltalkhub.com. You will
be presented with a dialog in which you can provide the necessary informa-
tion about the server. You should paste the code snippet you have copied
from SmalltalkHub (see Figure 3-30). This message tells Monticello where

to find your project online. You can also provide your user name and pass-
word. If you do not, then Pharo will ask for them each time you try to save
into your online repository at SmalltalkHub.

Once you have accepted, your new repository should be listed on the right-
hand side of the Monticello browser. Click on the Save button to save a first
version of your Lights Out game on SmalltalkHub. Don’t forget to put a com-
ment so that you, or others, will have an idea of what your commit contains
(see Figure 3-31).

To load a package into your image, open Monticello , select the repository

55

A first application

x — 0O Monticello Browser
x — 0 Edit Version Name and Log Message: - Chang
PBE-LightsOut-CyrilFerlicot.1 =
First commit : creation of a basic Lights-Out game. ¥ C\Use
Creation of the LOCell class. -

hitp:/,

Creation of the LOGame class.
First version of the game works.

Accept Cancel 0Old log messages...

Figure 3-31 Do your first commit

where the package is located and click open button. It will open a new win-
dow with two columns, left one is the Package to be loaded, the right one is
the version of the package to be loaded. Select the Package and the version
you want to load and click the load button.

Open the PBE-LightsOut repository you have just saved. You should see the
package you just saved.

Monticello has many more capabilities, which will be discussed in depth in
Chapter : Sharing Code and Source Control.

About Git. If you are already familiar with Git and Github there are several
solutions to manage your projects with Git.

This blog posts provides a summary: http://blog.yuriy.tymch.uk/2015/07/pharo-and-github-versio
html#! There is a chapter in preparation on about how to use Git with Pharo.
Request it on the Pharo mailing-list.

3.11 Chapter summary

In this chapter you have seen how to create packages, classes and methods.
In addition, you have learned how to use the System browser, the inspector,
the debugger and the Monticello browser.

+ Packages are groups of related classes.

* A new class is created by sending a message to its superclass.

56

http://blog.yuriy.tymch.uk/2015/07/pharo-and-github-versioning-revision-2.html#!
http://blog.yuriy.tymch.uk/2015/07/pharo-and-github-versioning-revision-2.html#!

3.1

Chapter summary

Protocols are groups of related methods inside a class.

A new method is created or modified by editing its definition in the
browser and then accepting the changes.

The inspector offers a simple, general-purpose GUI for inspecting and
interacting with arbitrary objects.

The browser detects usage of undeclared variables, and offers possible
corrections.

The initialize method is automatically executed after an object is
created in Pharo. You can put any initialization code there.

The debugger provides a high-level GUI to inspect and modify the state
of a running program.

You can share source code by filing out a package, class or method.

A better way to share code is to use Monticello to manage an external
repository, for example defined as a SmalltalkHub project.

57

4.1

CHAPTER

Syntax in a nutshell

Pharo adopts a syntax very close to that of its ancestor, Smalltalk. The syn-
tax is designed so that program text can be read aloud as though it were a
kind of pidgin English. The following method of the class Week shows an ex-
ample of the syntax. It checks whether DayNames already contains the argu-
ment, i.e. if this argument represents a correct day name. If this is the case,
it will assign it to the variable StartDay.

startDay: aSymbol

(DayNames includes: aSymbol)
ifTrue: [StartDay := aSymbol]
ifFalse: [self error: aSymbol,

name']

is not a recognised day

Pharo’s syntax is minimal. Essentially there is syntax only for sending mes-
sages (i.e. expressions). Expressions are built up from a very small number of
primitive elements (message sends, assignments, closures, returns...). There
are only 6 keywords, and there is no syntax for control structures or declar-
ing new classes. Instead, nearly everything is achieved by sending messages
to objects. For instance, instead of an if-then-else control structure, condi-
tionals are expressed as messages (such as ifTrue:) sent to Boolean objects.
New (sub-)classes are created by sending a message to their superclass.

Syntactic elements

Expressions are composed of the following building blocks:

1. The six reserved keywords, or pseudo-variables: self, super, nil, true,
false, and thisContext

59

3
4.
5
6

Syntax in a nutshell

. Constant expressions for literal objects including numbers, characters,
strings, symbols and arrays

. Variable declarations
Assignments
. Block closures

. Messages

We can see examples of the various syntactic elements in the Table below.

Syntax What it represents
startPoint a variable name
Transcript a global variable name
self pseudo-variable

1 decimal integer

2rie1 binary integer

1.5 floating point number
2.4e7 exponential notation
$a the character 'a’
"Hello' the string 'Hello'
#Hello the symbol #Hello
#(1 2 3) a literal array
{1.2.1+2} a dynamic array

"a comment" a comment

| x vy | declaration of variables x and y
x =1 assign 1 to x

[:x | x + 2]
<primitive: 1>

a block that evaluates to x + 2
virtual machine primitive or annotation

3 factorial unary message factorial

3+ 4 binary message +

2 raisedTo: 6 modulo: 10 keyword message raisedTo:modulo:
~ true return the value true

X 1= 2 . X 1= X * X expression separator (.)

Transcript show:

'hello'; cr message cascade (;)

Local variables. startPoint is a variable name, or identifier. By conven-
tion, identifiers are composed of words in ”camelCase” (i.e., each word ex-
cept the first starting with an upper case letter). The first letter of an in-
stance variable, method or block argument, or temporary variable must be
lower case. This indicates to the reader that the variable has a private scope.

Shared variables. Identifiers that start with upper case letters are global
variables, class variables, pool dictionaries or class names. Transcriptisa
global variable, an instance of the class ThreadSafeTranscript.

The receiver. self is a keyword that refers to the object inside which the
current method is executing. We call it "the receiver” because this object

60

4.1 Syntactic elements

has received the message that caused the method to execute. self is called a
”pseudo-variable” since we cannot assign to it.

Integers. In addition to ordinary decimal integers like 42, Pharo also pro-
vides a radix notation. 2r101 is 101 in radix 2 (i.e., binary), which is equal to
decimal 5.

Floating point numbers. can be specified with their base-ten exponent:
2.4e7is2.4 X 10"7.

Characters. A dollar sign introduces a literal character: $a is the literal for
the character 'a'. Instances of non-printing characters can be obtained

by sending appropriately named messages to the Character class, such as
Character space and Character tab.

Strings. Single quotes ' ' are used to define a literal string. If you want a
string with a single quote inside, just double the quote, asin 'G' 'day'.

Symbols. Symbols are like Strings, in that they contain a sequence of char-
acters. However, unlike a string, a literal symbol is guaranteed to be globally
unique. There is only one Symbo1l object #Hello but there may be multiple
String objects with the value 'Hello"'.

Compile-time arrays. are defined by #(), surrounding space-separated
literals. Everything within the parentheses must be a compile-time constant.
For example, #(27 (true false) abc) is aliteral array of three elements:
the integer 27, the compile-time array containing the two booleans, and the
symbol #abc. (Note that this is the same as #(27 #(true false) #abc).)

Run-time arrays. Curly braces { } define a (dynamic) array at run-time.
Elements are expressions separated by periods. So{ 1. 2. 1 + 2 } defines
an array with elements 1, 2, and the result of evaluating 1+2.

Comments. are enclosed in double quotes ” ”. "hello” is a comment, not a
string, and is ignored by the Pharo compiler. Comments may span multiple
lines.

Local variable definitions. Vertical bars | | enclose the declaration of one
or more local variables in a method (and also in a block).

Assignment. := assigns an object to a variable.

Blocks. Square brackets [] define a block, also known as a block closure
or a lexical closure, which is a first-class object representing a function. As
we shall see, blocks may take arguments ([:i | ...]) and can have local
variables.

Primitives. < primitive: ... > denotes an invocation of a virtual ma-
chine primitive. For example, < primitive: 1 > isthe VM primitive for
SmallInteger. Any code following the primitive is executed only if the
primitive fails. The same syntax is also used for method annotations (prag-
mas).

61

4.2

Syntax in a nutshell

Unary messages. These consist of a single word (like factorial) sent to
areceiver (like 3). In 3 factorial, 3 is the receiver, and factorial is the
message selector.

Binary messages. These are message with an argument and whose selector
looks like mathematical expressions (for example: +) sent to a receiver, and
taking a single argument. In 3 + 4, the receiver is 3, the message selector is
+, and the argument is 4.

Keyword messages. They consist of multiple keywords (like raisedTo:
modulo:), each ending with a colon and taking a single argument. In the ex-
pression 2 raisedTo: 6 modulo: 10,the message selector raisedTo:mod-
ulo: takes the two arguments 6 and 10, one following each colon. We send
the message to the receiver 2.

Method return. " is used to return a value from a method.

Sequences of statements. A period or full-stop (.) is the statement separa-
tor. Putting a period between two expressions turns them into independent
statements.

Cascades. Semicolons (;) can be used to send a cascade of messages to a
single receiver. In Transcript show: 'hello'; cr we first send the key-
word message show: 'hello' to the receiver Transcript, and then we send
the unary message cr to the same receiver.

The classes Number, Character, String and Boolean are described in more
detail in Chapter : Basic Classes.

Pseudo-variables

In Pharo, there are 6 reserved keywords, or pseudo-variables: nil, true,
false, self, super, and thisContext. They are called pseudo-variables be-
cause they are predefined and cannot be assigned to. true, false, and nil
are constants, while the values of self, super, and thisContext vary dy-
namically as code is executed.

+ true and false are the unique instances of the Boolean classes True
and False. See Chapter : Basic Classes for more details.

+ self always refers to the receiver of the currently executing method.

+ super also refers to the receiver of the current method, but when you
send a message to super, the method-lookup changes so that it starts
from the superclass of the class containing the method that uses su-
per. For further details see Chapter : The Pharo Object Model.

» nil is the undefined object. It is the unique instance of the class Unde-
finedObject. Instance variables, class variables and local variables are
initialized to nil.

62

4.3 Message sends

* thisContext is a pseudo-variable that represents the top frame of the
execution stack. thisContext is normally not of interest to most pro-
grammers, but it is essential for implementing development tools like
the debugger, and it is also used to implement exception handling and
continuations.

4.3 Message sends

There are three kinds of messages in Pharo. This distinction has been made
to reduce the number of mandatory parentheses.

1. Unary messages take no argument. 1 factorial sends the message
factorial to the object 1.

2. Binary messages take exactly one argument. 1 + 2 sends the message +
with argument 2 to the object 1.

3. Keyword messages take an arbitrary number of arguments. 2 raisedTo:
6 modulo: 10 sends the message consisting of the message selector
raisedTo:modulo: and the arguments 6 and 10 to the object 2.

Unary messages. Unary message selectors consist of alphanumeric charac-
ters, and start with a lower case letter.

Binary messages. Binary message selectors consist of one or more charac-
ters from the following set:

[+-/*~<>=a%|8?,

Keyword message selectors. Keyword message selectors consist of a series
of alphanumeric keywords, where each keyword starts with a lower-case
letter and ends with a colon.

Message precedence. Unary messages have the highest precedence, then
binary messages, and finally keyword messages, so:

2 raisedTo: 1 + 3 factorial
>>> 128

First we send factorial to 3, then we send + 6 to 1, and finally we send
raisedTo: 7 to 2. Recall that we use the notation expression >>> to show
the result of evaluating an expression.

Precedence aside, execution is strictly from left to right, so:

1+ 2 %3
>>> 9

return 9 and not 7. Parentheses must be used to alter the order of evaluation:

63

4.4

Syntax in a nutshell

1+ (2 % 3)
>>> 7

Periods and semi-colons. Message sends may be composed with periods
and semi-colons. A period separated sequence of expressions causes each
expression in the series to be evaluated as a statement, one after the other.

Transcript cr.
Transcript show: 'hello world'.
Transcript cr

This will send cr to the Transcript object, then send it show: 'hello world’,
and finally send it another cr.

When a series of messages is being sent to the same receiver, then this can be
expressed more succinctly as a cascade. The receiver is specified just once,
and the sequence of messages is separated by semi-colons:

Transcript
cr;
show: 'hello world';
cr

This has precisely the same effect as the previous example.

Method syntax

Whereas expressions may be evaluated anywhere in Pharo (for example, in a
playground, in a debugger, or in a browser), methods are normally defined in
a browser window, or in the debugger. Methods can also be filed in from an
external medium, but this is not the usual way to program in Pharo.

Programs are developed one method at a time, in the context of a given class.
A class is defined by sending a message to an existing class, asking it to cre-
ate a subclass, so there is no special syntax required for defining classes.

Here is the method 1ineCount in the class String. The usual convention is
to refer to methods as ClassName>>methodName. Here the method is then
String>>lineCount. Note that ClassName>>methodName is not part of the
Pharo syntax just a convention used in books to clearly define a method.

EString >> lineCount
"Answer the number of lines represented by the receiver, where
every cr adds one line."

| cr count |

cr := Character cr.

count := 1 min: self size.

self do: [:c | ¢ == cr ifTrue: [count := count + 1]].
~ count

64

4.5

|

|
|

4.5 Block syntax

Syntactically, a method consists of:

1. the method pattern, containing the name (i.e., 1ineCount) and any
arguments (none in this example)

2. comments (these may occur anywhere, but the convention is to put
one at the top that explains what the method does)

3. declarations of local variables (i.e., cr and count); and
4. any number of expressions separated by dots (here there are four)

The execution of any expression preceded by a * (a caret or upper arrow,
which is Shift-6 for most keyboards) will cause the method to exit at that
point, returning the value of that expression. A method that terminates

without explicitly returning some expression will implicitly return self.

Arguments and local variables should always start with lower case letters.
Names starting with upper-case letters are assumed to be global variables.
Class names, like Character, for example, are simply global variables refer-
ring to the object representing that class.

Block syntax

Blocks (lexical closures) provide a mechanism to defer the execution of ex-
pressions. A block is essentially an anonymous function with a definition
context. A block is executed by sending it the message value. The block an-
swers the value of the last expression in its body, unless there is an explicit
return (with *) in which case it returns the value of the returned expression.

[12 +2 1] value
>>> 3

[3 =3 ifTrue: ["~ 33 1. 44] value
>>> 33

Blocks may take parameters, each of which is declared with a leading colon.
A vertical bar separates the parameter declaration(s) from the body of the
block. To evaluate a block with one parameter, you must send it the message
value: with one argument. A two-parameter block must be sent value:value:,
and so on, up to 4 arguments.

[:x] 1+ x] value: 2
>>> 3

[:x:y | x+ vy 1 value: 1 value: 2
>>> 3

If you have a block with more than four parameters, you must use value-
WithArguments: and pass the arguments in an array. (A block with a large
number of parameters is often a sign of a design problem.)

65

4.6

Syntax in a nutshell

Blocks may also declare local variables, which are surrounded by vertical
bars, just like local variable declarations in a method. Locals are declared
after any arguments:
[:x :y |
|z |
Z 1= X + Y.
z] value: 1 value: 2
>>> 3

Blocks are actually lexical closures, since they can refer to variables of the
surrounding environment. The following block refers to the variable x of its
enclosing environment:

[x|
X = 1.
[:y |
>>> 3

x + vy] value: 2

Blocks are instances of the class BlockClosure. This means that they are
objects, so they can be assigned to variables and passed as arguments just
like any other object.

Conditionals and loops in a nutshell

Pharo offers no special syntax for control constructs. Instead, these are typ-
ically expressed by sending messages to booleans, numbers and collections,
with blocks as arguments.

Some conditionals

Conditionals are expressed by sending one of the messages ifTrue:, if-
False: or ifTrue:ifFalse: to the result of a boolean expression. See Chap-
ter : Basic Classes, for more about booleans.

(17 = 13 > 220)
ifTrue: ['bigger' 1]
ifFalse: ['smaller']
>>>'bigger'

Some loops

Loops are typically expressed by sending messages to blocks, integers or col-
lections. Since the exit condition for a loop may be repeatedly evaluated, it
should be a block rather than a boolean value. Here is an example of a very
procedural loop:

66

4.6 Conditionals and loops in a nutshell

n := 1.

[n <1000] whileTrue: [n := n*2].
n

| >>> 1024

whileFalse: reverses the exit condition.
[n := 1.

[n> 1000] whileFalse: [n := n*2].
n
| >>> 1024

timesRepeat: offers a simple way to implement a fixed iteration:

(n o= 1.

10 timesRepeat: [n := n*2].
n

| >>> 1024

We can also send the message to:do: to a number which then acts as the
initial value of a loop counter. The two arguments are the upper bound, and
a block that takes the current value of the loop counter as its argument:

result := String new.
1 to: 10 do: [:n | result := result, n printString, ' 'J].
result

>>> '123 45678910 "'

High-order iterators

Collections comprise a large number of different classes, many of which sup-
port the same protocol. The most important messages for iterating over
collections include do:, collect:, select:, reject:,detect: and in-
ject:into:. These messages define high-level iterators that allow one to
write very compact code.

An Interval is a collection that lets one iterate over a sequence of numbers
from the starting point to the end. 1 to: 10 represents the interval from

1 to 10. Since it is a collection, we can send the message do: to it. The argu-
ment is a block that is evaluated for each element of the collection.

result := String new.
(1 to: 10) do: [:n | result := result, n printString, ' '].
result

>>> '123456789 10"

collect: builds a new collection of the same size, transforming each ele-
ment. (You can think of collect: as the Map in the MapReduce program-
ming model).

(1 to:10) collect: [:each | each * each]
>>> #(1 4 9 16 25 36 49 64 81 100)

67

Syntax in a nutshell

select: and reject: build new collections, each containing a subset of the
elements satisfying (or not) the boolean block condition.

detect: returns the first element satisfying the condition. Don’t forget that
strings are also collections (of characters), so you can iterate over all the
characters.

["hello there' select: [:char | char isVowel]
>>> 'eoee'

["hello there' reject: [:char | char isVowel]
>>> 'h1l thr'

["hello there' detect: [:char | char isVowel]
>>> $e

Finally, you should be aware that collections also support a functional-style
fold operator in the inject:into: method. You can also think of it as the
Reduce in the MapReduce programming model. This lets you generate a cu-
mulative result using an expression that starts with a seed value and injects
each element of the collection. Sums and products are typical examples.

(1 to: 10) inject: 0 into: [:sum :each | sum + each]
>>> 55

This is equivalent to 0+1+2+3+4+5+6+7+8+9+10.

More about collections can be found in Chapter : Collections.

4.7 Primitives and pragmas

In Pharo everything is an object, and everything happens by sending mes-
sages. Nevertheless, at certain points we hit rock bottom. Certain objects can
only get work done by invoking virtual machine primitives.

For example, the following are all implemented as primitives: memory allo-
cation (new, new:), bit manipulation (bitAnd:, bitOr:, bitShift:), pointer
and integer arithmetic (+, -, <, >, *, /, =, ==...), and array access (at:, at:put:).

Primitives are invoked with the syntax <primitive: aNumber>. A method
that invokes such a primitive may also include Pharo code, which will be exe-
cuted only if the primitive fails.

Here we see the code for SmallInteger>>+, If the primitive fails, the expres-
sion super + aNumber will be executed and returned.

+ aNumber
"Primitive. Add the receiver to the argument and answer with the
result
if it is a SmalllInteger. Fail if the argument or the result is not
a

SmallInteger Essential No Lookup. See Object documentation

68

4.8 Chapter summary

whatIsAPrimitive."

<primitive: 1>
~ super + aNumber

In Pharo, the angle bracket syntax is also used for method annotations called
pragmas.

4.8 Chapter summary

+ Pharo has only six reserved identifiers (also called pseudo-variables):
true, false, nil, self, super, and thisContext.

» There are five kinds of literal objects: numbers (5, 2.5, 1.9e15, 2r111),
characters ($a), strings (' hello'), symbols (#hello), and arrays (#('hello’
#hidor{ 1 .2 .1+ 2 })

» Strings are delimited by single quotes, comments by double quotes. To
get a quote inside a string, double it.

« Unlike strings, symbols are guaranteed to be globally unique.

» Use #(...) todefine aliteral array. Use { ... } to define a dy-
namic array. Note that #(1+2) size >>> 3,but {1+2} size >>> 1

+ There are three kinds of messages: unary (e.g., 1 asString, Array
new), binary (e.g.,3 + 4, 'hi', ' there'), and keyword (e.g., 'hi’
at: 2 put: $o)

* A cascaded message send is a sequence of messages sent to the same
target, separated by semi-colons: OrderedCollection new add:
#calvin; add: #hobbes; size >>> 2

Local variables are declared with vertical bars. Use := for assignment.
x| x :=1

+ Expressions consist of message sends, cascades and assignments, eval-
uated left to right (and optionally grouped with parentheses). State-
ments are expressions separated by periods.

» Block closures are expressions enclosed in square brackets. Blocks may
take arguments and can contain temporary variables. The expressions
in the block are not evaluated until you send the block a value message
with the correct number of arguments. [:x | x + 2] value: 4

« There is no dedicated syntax for control constructs, just messages that
conditionally evaluate blocks.

69

5.1

CHAPTER 5 .

Understanding message syntax

Although Pharo’s message syntax is simple, it is unconventional and can take
some time getting used to. This chapter offers some guidance to help you get
acclimatized to this special syntax for sending messages. If you already feel
comfortable with the syntax, you may choose to skip this chapter, or come
back to it later.

Identifying messages

In Pharo, except for the syntactic elements listed in Chapter : Syntax in a
Nutshell (:= ~ . ; # () {} [: | 1<>), everything is a message send.
There is no operators, just messages sent to objects. Therefore you can de-
fine a message named + in your class but there is also no precedence because
Pharo always takes the simplest form of definition.

The order in which messages are sent is determined by the type of message.
There are just three types of messages: unary, binary, and keyword mes-
sages. Pharo distinguishes such three types of messages to minimize the
number of parentheses. Unary messages are always sent first, then binary
messages and finally keyword ones. As in most languages, parentheses can
be used to change the order of execution. These rules make Pharo code as
easy to read as possible. And most of the time you do not have to think about
the rules.

Message structure

As most computation in Pharo is done by message passing, correctly identi-
fying messages is key to avoiding future mistakes. The following terminology
will help us:

71

Understanding message syntax

message
1
total <= max

PN

receiver message selector message arguments

N

Colorr: 1g 0h:0

L message |
a message send

Figure 5-1 Two message sends composed of a receiver, a method selector, and a
set of arguments.

Figure 5-2 aMorph color: Color yellowiscomposed of two message
sends: Color yelowand aMorph color: Color yellow.

+ A message is composed of the message selector and the optional mes-
sage arguments.

+ A message is sent to a receiver.

» The combination of a message and its receiver is called a message send
as shown in Figure 5-1.

A message is always sent to a receiver, which can be a single literal, a block
or a variable or the result of evaluating another message.

To help you identify the receiver of a message, we will underline it for you.
We will also surround each message send with an ellipse, and number the
message sends starting from the first one to help you see the send order in
Figure 5-2.

Figure 5-2 represents two message sends, Color yellowand aMorph color:
Color yellow, hence there are two ellipses. The message send Color yel-
low is executed first, so its ellipse is numbered 1. There are two receivers:

1) aMorph which receives the message color: ... and 2) Color which re-
ceives the message yellow. Both receivers are underlined.

A receiver can be the first element of a message, such as 100 in the message
send 100 + 200 or Color in the message send Color yellow. However, a

72

5.2 Three types of messages

receiver can also be the result of other messages. For example in the mes-
sage Pen new go: 100, the receiver of the message go: 100 is the object
returned by the message send Pen new. In all the cases, a message is sent

to an object called the receiver which may be the result of another message

send.
Message send Message type Action
Color yellow unary Creates a color
aPen go: 100 keyword Forwards pen 100 pixels
100 + 20 binary 100 receives the message +
Browser open unary Opens a new browser
Pen new go: 100 un. and keyw. Creates and moves pen 100 px

aPen go: 100 + 20 keyw. and bin.

Pen moves forward 120 px

The table shows several characteristics of message sends.

* You should note that not all message sends have arguments. Unary
messages like open do not have arguments. Single keyword and binary
messages like go: 100 and + 20 each have one argument.

+ There are also simple messages and composed ones. Color yellow
and 100 + 20 are simple: a message is sent to an object, while the
message send aPen go: 100 + 20 is composed of two messages: +
20 is sent to 100 and go: is sent to aPen with the argument being the

result of the first message.

« Areceiver can be an expression (such as an assignment, a message
send or a literal) which returns an object. In Pen new go: 100, the
message go: 100 is sent to the object that results from the execution

of the message send Pen new.

5.2 Three types of messages

Pharo distinguishes between three kinds of messages to reduce mandatory
parentheses. A few simple rules based on the such different message deter-
mine the order in which the messages are sent.

There are three different types of messages:

» Unary messages are messages that are sent to an object without any

other information. For example, in 3 factorial, factorial is a unary
message.

* Binary messages are messages consisting of operators (often arithmetic).
They are binary because they always involve only two objects: the re-
ceiver and the argument object. For example in 10 + 20, + is a binary
message sent to the receiver 10 with argument 20.

73

Understanding message syntax

» Keyword messages are messages consisting of one or more keywords,
each ending with a colon (:) and taking an argument. For example in
anArray at: 1 put: 10, the keyword at: takes the argument 1 and
the keyword put: takes the argument 10.

Unary messages

Unary messages are messages that do not require any argument. They fol-
low the syntactic template: receiver messageName. The selector is sim-
ply made up of a succession of characters not containing : (e.g., factorial,
open, class).

[89 sin

| >>> 0.860069405812453

(3 sqrt
| >>> 1.732050807568877

[Float pi
| >>> 3.141592653589793
["blop' size

>>> 4

[true not
>>> false

[Object class
| >>> Object class "The class of Object is Object class (BANG)"

Important Unary messages are messages that do not require any argu-
ment. They follow the syntactic template: receiver selector.

Binary messages

Binary messages are messages that require exactly one argument and whose
selector consists of a sequence of one or more characters from the set: +,
-,%,/,8,=,> 1|,<,~ and @. Note that -- (double minus) is not allowed for
parsing reasons.

[1008100
| >>> 1009100 “creates a Point object”

(3 + 4
>>> 7

(10 - 1
>>> 9

[4 <= 3
| >>> false

74

5.2 Three types of messages

{(4/3) % 3 ==

>>> true "equality is just a binary message, and Fractions are exact"

{(3/@ == (3/4)

>>> false "two equal Fractions are not the same object”

Important Binary messages are messages that require exactly one argu-
ment and whose selector is composed of a sequence of characters from: +,
-, % /,8,=>1,< ~ and a. -- is not possible. They follow the syntactic
template: receiver selector argument.

Keyword messages

Keyword messages are messages that require one or more arguments and
whose selector consists of one or more keywords each ending in :. Keyword
messages follow the syntactic template: receiver selectorWordOne: ar-
gumentOne wordTwo: argumentTwo.

Each keyword takes an argument. Hence r:g:b: is a method with three ar-
guments, playFileNamed: and at: are methods with one argument, and
at:put: is a method with two arguments. To create an instance of the class
Color one can use the method r:g:b: (asin Color r: 1 g: 0 b: 0), which
creates the color red. Note that the colons are part of the selector.

Note InJava or C++, the method invocation Color r: 1 g: 0 b: 0
would be written Color.rgh(1, 0, 0).

[1 to: 10
| >>> (1 to: 10) "creates an interval"

[color r: 1 g: 0 b: 0
| >>> Color red "creates a new color"

[12 between: 8 and: 15

>>> true

[nums := Array newFrom: (1 to: 5).
nums at: 1 put: 6.

nums

|>>> #(6 2 3 4 5)

Important Keyword messages are messages that require one or more
arguments. Their selector consists of one or more keywords each ending
in a colon (:). They follow the syntactic template: receiver selector-
WordOne: argumentOne wordTwo: argumentTwo.

75

5.3

|
|

Understanding message syntax

PP

. >

is equivalent to (aPen color: 1:(

)

olor yellow

olor yell

aPen color: ow:

Figure 5-3 Unary messages are sent first so Color yellow is sent. This returns
a color

Message composition

The three types of messages each have different precedence, which allows
them to be composed in an elegant way and with few parentheses.

+ Unary messages are always sent first, then binary messages and finally,
keyword messages.

+ Messages in parentheses are sent prior to any other messages.
+ Messages of the same kind are evaluated from left to right.

These rules lead to a very natural reading order. If you want to be sure that
your messages are sent in the order that you want, you can always add more
parentheses, as shown in Figure 5-3. In this figure, the message yellow is
an unary message and the message color: a keyword message, therefore
the message send Color yellow is sent first. However as message sends in
parentheses are sent first, putting (unnecessary) parentheses around Color
yellow just emphasizes that it will be sent first. The rest of the section illus-
trates each of these points.

Unary > Binary > Keywords

Unary messages are sent first, then binary messages, and finally keyword
messages. We also say that unary messages have a higher priority over the
other types of messages.

Important Rule one. Unary messages are sent first, then binary mes-
sages, and finally keyword based messages. Unary > Binary > Keyword

As these examples show, Pharo’s syntax rules generally ensure that message
sends can be read in a natural way:

1000 factorial / 999 factorial
>>> 1000

2 raisedTo: 1 + 3 factorial
>>> 128

76

5.3 Message composition

Listing 5-4 Decomposing the evaluation of aPen color: Color yellow

[aPen color: Color yellow
"unary message is sent first"
(1) Color yellow

>>> aColor

"keyword message is sent next"
(2) aPen color: aColor

Listing 5-5 Decomposing aPen go: 100 + 20

[aPen go: 100 + 20
"binary message first"
(1) 100 + 20
>>> 120
"then keyword message"
(2) aPen go: 120

Unfortunately the rules are a bit too simplistic for arithmetic message sends,
so you need to introduce parentheses whenever you want to impose a prior-
ity over binary operators:

1+ 2 %3
>>> 9

>>> 7

{1+(2*3)

Example 1. In the message aPen color: Color yellow, there is one unary
message yellow sent to the class Color and a keyword message color: sent
to aPen. Unary messages are sent first so the message send Color yellow

is sent (1). This returns a color object which is passed as argument of the
message aPen color: aColor (2) as shown in the following script. Figure
5-3 shows graphically how messages are sent.

Example 2. In the message aPen go: 100 + 20, there is a binary message
+ 20 and a keyword message go:. Binary messages are sent prior to keyword
messages so 100 + 20 is sent first (1): the message + 20 is sent to the object
100 and returns the number 120. Then the message aPen go: 120 is sent
with 120 as argument (2). The following example shows how the message
send is executed:

Example 3. As an exercise we let you decompose the evaluation of the mes-
sage Pen new go: 100 + 20 which is composed of one unary, one keyword
and one binary message (see Figure 5-7).

77

Understanding message syntax

aPen go: 100 +2

:
.
\
0;
.
.

Figure 5-6

Figure 5-7 Decomposing Pen new go: 100 +

Parentheses first

Parenthesised messages are sent prior to other messages.

3 + 4 factorial
>>> 27 "(not 5040)"

(3 + 4) factorial
>>> 5040

Here we need the parentheses to force sending lowMajorScaleOn: before
play.
(FMSound lowMajorScaleOn: FMSound clarinet) play
"(1) send the message clarinet to the FMSound class to create a
clarinet sound.
(2) send this sound to FMSound as argument to the lowMajorScaleOn:
keyword message.
(3) play the resulting sound."

Important Rule two. Parenthesised messages are sent prior to other
messages. (Msg) > Unary > Binary > Keyword

Example 4. The message (65325 extent: 134@100) center returns
the center of a rectangle whose top left point is (65, 325) and whose size is
134x100. The following script shows how the message is decomposed and
sent. First the message between parentheses is sent. It contains two binary
messages, 650325 and 1340100, that are sent first and return points, and a
keyword message extent: which is then sent and returns a rectangle. Fi-
nally the unary message center is sent to the rectangle and a point is re-
turned. Evaluating the message without parentheses would lead to an error
because the object 100 does not understand the message center.

78

5.3 Message composition

2
]
down
Figure 5-8 Decomposing Pen new

Listing 5-9 Example of Parentheses.

[(65@325 extent: 1349100) center
"Expression within parentheses then binary"
(1) 65@325
>>> aPoint
"binary"

(2)134@100

>>> anotherPoint

"keyword"

(3) aPoint extent: anotherPoint
>>> aRectangle

"unary"

(4) aRectangle center

>>> 132@375

Listing 5-10 Example of Unnecessary Parentheses.

[1.5 tan rounded asString = (((1.5 tan) rounded) asString)
| >>> true

From left to right

Now we know how messages of different kinds or priorities are handled. The
final question to be addressed is how messages with the same priority are
sent. They are sent from the left to the right. Note that you already saw this
behaviour in the previous script where the two point creation messages ()
were sent first.

The following script shows that execution from left to right for messages of
the same type reduces the need for parentheses.

Important Rule three. When the messages are of the same kind, the or-
der of evaluation is from left to right.

Example 5. In the message sends Pen new down all messages are unary
messages, so the leftmost one, Pen new, is sent first. This returns a newly
created pen to which the second message down is sent, as shown in Figure
5-8.

79

Understanding message syntax

Listing 5-11 Decomposing20+2*5

["As there is no priority among binary messages, the leftmost message
+ is evaluated first
even if by the rules of arithmetic the * should be sent first."

20 + 2 * 5
(1) 20 + 2
>>> 22

(2) 22 = 5
>>> 110

1 2
*5

Figure 5-12 The two messages + and * are of the same kind so their execution is
from left to right.

Arithmetic inconsistencies

The message composition rules are simple but they result in inconsistency
for the execution of arithmetic message sends expressed in terms of binary
messages. Here we see the common situations where extra parentheses are
needed.

[3 + 45
| >>> 35 "(not 23) Binary messages sent from left to right"

[3 + (4 % 5)
>>> 23

1+ 1/3
>>> (2/3) "and not 4/3"

1+ (1/3)
>>> (4/3)

[1/3 + 2/3
>>> (7/9) "and not 1"

[(1/3) + (2/3)

>>> 1

Example 6. In the message sends 20 + 2 = 5, there are only binary mes-
sages + and *. However in Pharo there is no special priority for the opera-
tions + and . They are just binary messages, hence * does not have priority
over +. Here the leftmost message + is sent first, and then the * is sent to the
result as shown in the following script and Figure 5-12.

As shown in the previous example the result of this message send is not 30
but 110. This result is perhaps unexpected but follows directly from the rules

80

5.3 Message composition

Listing 5-13 Decomposing 20 + (2 * 5)
["The messages surrounded by parentheses are evaluated first

therefore * is sent prior to + which produces the correct
behaviour."

20 + (2 % 5)
(1) (2 » 5)
>>> 10
(2) 20 + 10
>>> 30

Figure 5-15 Equivalent messages using parentheses.

used to send messages. This is the price to pay for the simplicity of the Pharo
model. To get the correct result, we should use parentheses. When messages
are enclosed in parentheses, they are evaluated first. Hence the message
send 20 + (2 = 5) returns the result as shown by the following script and
Figure 5-14.

Note Arithmetic operators such as + and * do not have different prior-
ity. + and * are just binary messages, therefore » does not have priority
over +. Use parentheses to obtain the desired result.

Table : Message sends and their fully parenthesized equivalents

1

.

~

:\’/@ new\":go:

is equivalentto ({(Bot new); go:

Figure 5-16 Equivalent messages using parentheses.

81

5.4

Understanding message syntax

Implicit precedence Explicitly parenthesized equivalent
aPen color: Color yellow aPen color: (Color yellow)

aPen go: 100 + 20 Pen go: (100 + 20)

aPen penSize: aPen penSize + 2 aPen penSize: ((aPen penSize) + 2)

2 factorial + 4 (2 factorial) + 4

Note that the first rule stating that unary messages are sent prior to binary
and keyword messages avoids the need to put explicit parentheses around
them. Table above shows message sends written following the rules and
equivalent message sends if the rules would not exist. Both message sends
result in the same effect or return the same value.

Hints for identifying keyword messages

Often beginners have problems understanding when they need to add paren-
theses. Let’s see how keywords messages are recognized by the compiler.

Parentheses or not?

The characters [,], (and) delimit distinct areas. Within such an area, a key-
word message is the longest sequence of words terminated by : that is not
cut by the characters ., or ;. When the characters [,], (and { surround some
words with colons, these words participate in the keyword message local to
the area defined.

In this example, there are two distinct keyword messages: rotateBy:mag-
nify:smoothing: and at:put:.

aDict
at: (rotatingForm
rotateBy: angle
magnify: 2
smoothing: 1)
put: 3

Note The characters [,], (and) delimit distinct areas. Within such an
area, a keyword message is the longest sequence of words terminated by :
that is not cut by the characters ., or ; .When the characters [, 1, (and)
surround some words with colons, these words participate in the keyword
message local to the area defined.

Precedence hints

If you have problems with these precedence rules, you may start simply by
putting parentheses whenever you want to distinguish two messages having
the same precedence.

82

5.5 Expression sequences

The following piece of code does not require parentheses because the mes-
sage send x isNil is unary, and is sent prior to the keyword message ifTrue:.

(x isNil)
ifTrue: [...]

The following code requires parentheses because the messages includes:
and ifTrue: are both keyword messages.

ord := OrderedCollection new.
(ord includes: $a)
ifTrue: [...]

Without parentheses the unknown message includes:ifTrue: would be
sent to the collection!

Whentouse[Jor()

You may also have problems understanding when to use square brackets
(blocks) rather than parentheses. The basic principle is that you should use
[1 when you do not know how many times, potentially zero, an expression
should be executed. [expression] will create a block closure (an object,
as always) from expression, which may be executed zero or more times,
depending on the context. (Recall from Chapter : Syntax in a that an expres-
sion can either be a message send, a variable, a literal, an assignment or a

block.)

Following this principle, the conditional branches of ifTrue: or ifTrue:if-
False: require blocks. Similarly, both the receiver and the argument of the
whileTrue: message require the use of square brackets since we do not
know how many times either the receiver (the loop conditional) or the ar-
gument (the "loop body”) will be executed.

Parentheses, on the other hand, only affect the order of sending messages.
Soin (expression), the expression will always be executed exactly once.

["both the receiver and the argument must be blocks"
| [x isReady] whileTrue: [y doSomething]

["the argument is evaluated more than once, so must be a block"
4 timesRepeat: [Beeper beep]

["receiver is evaluated once, so is not a block"
| (x isReady) ifTrue: [y doSomething]

5.5 Expression sequences
Expressions (i.e., message sends, assignments and so on) separated by peri-

ods are evaluated in sequence. Note that there is no period between a vari-
able definition (the | box | section) and the following expressions. The

83

Understanding message syntax

value of a sequence is the value of the last expression. The values returned
by all the expressions except the last one are ignored. Note that the period
is a separator between expressions, and not a terminator. Therefore a final
period is optional.

| box |

box := 20@30 corner: 60@90.
box containsPoint: 40@50
>>> true

5.6 Cascaded messages

Pharo offers a way to send multiple messages to the same receiver using a
semicolon (;). This is called the cascade in Pharo jargon. It follows the pat-
tern: expression msgl; msg2

Transcript show: 'Pharo is
Transcript show: 'fun '
Transcript cr.

is equivalent to:

Transcript
show: 'Pharo is';

show: 'fun ';
cr

Note that the object receiving the cascaded messages can itself be the result
of a message send. In fact, the receiver of all the cascaded messages is the
receiver of the first message involved in a cascade. In the following example,
the first cascaded message is setX: setY since it is followed by a cascade.
The receiver of the cascaded message setX:setY: is the newly created point
resulting from the evaluation of Point new, and not Point. The subsequent
message isZero is sent to that same receiver.

Point new setX: 25 setY: 35; isZero
>>> false

Important expression msgl. expression msg?2 is equivalent to ex-
pression msgl; msg2

5.7 Chapter summary
+ A message is always sent to an object named the receiver, which itself

may be the result of other message sends.

+ There are three types of messages: unary, binary, and keyword.

84

5.7 Chapter summary

Unary messages are messages that do not require any argument. They
are of the form of receiver selector.

Binary messages are messages that involve two objects, the receiver
and another object, whose selector is composed of one or more charac-
ters from the following list: +, -, *, /, |, &, =, >, <, ~, and @. They are of
the form: receiver selector argument.

Keyword messages are messages that involve more than one object and
that contain at least one colon character (:). They are of the form: re-
ceiver selectorWordOne: argumentOne wordTwo: argumentTwo.

Rule One. Unary messages are sent first, then binary messages, and
finally keyword messages.

Rule Two. Messages in parentheses are sent before any others.

Rule Three. When the messages are of the same type, the order of
evaluation is from left to right.

In Pharo, traditional arithmetic operators such as + and * have the
same priority. + and * are just binary messages, therefore » does not
have priority over +. You must use parentheses to obtain the desired
arithmetical order of operations.

85

6.1

6.2

CHAPTER

The Pharo object model

The Pharo programming model is heavily inspired by the one of Smalltalk.
It is simple and uniform: everything is an object, and objects communicate
only by sending each other messages. Instance variables are private to the
object. Methods are all public and dynamically looked up (late-bound). In
this chapter we present the core concepts of the Pharo object model. We re-
visit concepts such as self and super and define precisely their semantics.
Then we discuss the consequences of representing classes as objects. This
will be extended in Chapter: Classes and Metaclasses.

The rules of the model

The object model is based on a set of simple rules that are applied uniformly.
The rules are as follows:

Rule 1. Everything is an object.

Rule 2. Every object is an instance of a class.

Rule 3. Every class has a superclass.

Rule 4. Everything happens by sending messages.

Rule 5. Method lookup dynamically follows the inheritance chain.

Let us look at each of these rules in some detail.

Everything is an Object

The mantra everything is an object is highly contagious. After only a short
while working with Pharo, you will start to be surprised at how this rule sim-

87

The Pharo object model

plifes everything you do. Integers, for example, are truly objects, so you can
send messages to them, just as you do to any other object. At the end of this
chapter, we added an implementation note on the object implementation for
the curious reader.

["send '+ &' to 3, yielding 7"
3+ 4
>>> 7

["send factorial, yielding a big number"
20 factorial
| >>> 2432902008176640000

The object 7 is different than the object returned by 20 factorial, but be-
cause they are both polymorphic objects, none of the code, not even the im-
plementation of factorial, needs to know about this.

Coming back to everything is an object rule, perhaps the most fundamental
consequence of this rule is that classes are objects too. Classes are not second-
class objects: they are really first-class objects that you can send messages

to, inspect, and change. This means that Pharo is a truly reflective system,
which gives a great deal of expressive power to developers.

I Important Classes are objects too.

6.3 Every object is an instance of a class
Every object has a class; you can find out which one by sending it the mes-
sage class.

[1 class
| >>> Smalllnteger

[20 factorial class
| >>> LargePositiveInteger

["hello' class
| >>> ByteString

[(485) class
| >>> Point

EObject new class
| >>> Object

A class defines the structure of its instances via instance variables, and the
behavior of its instances via methods. Each method has a name, called its se-
lector, which is unique within the class.

Since classes are objects, and every object is an instance of a class, it follows that
classes must also be instances of classes. A class whose instances are classes

88

6.4

6.4 Instance structure and behavior

is called a metaclass. Whenever you create a class, the system automatically
creates a metaclass for you. The metaclass defines the structure and behav-
ior of the class that is its instance. 99% of the time you will not need to think
about metaclasses, and may happily ignore them. (We will have a closer look
at metaclasses in Chapter : Classes and Metaclasses.)

Instance structure and behavior

Now we will briefly present how we specify the structure and behavior of
instances.

Instance variables

Instance variables in Pharo are private to the instance itself. This is in con-
trast to Java and C++, which allow instance variables (also known as fields or
member variables) to be accessed by any other instance that happens to be of
the same class. We say that the encapsulation boundary of objects in Java and
C++ is the class, whereas in Pharo it is the instance.

In Pharo, two instances of the same class cannot access each other’s instance
variables unless the class defines accessor methods. There is no language syn-
tax that provides direct access to the instance variables of any other object.
(Actually, a mechanism called reflection does provide a way to ask another
object for the values of its instance variables; meta-programming is intended
for writing tools like the object inspector, whose sole purpose is to look in-
side other objects.)

Instance variables can be accessed by name in any of the instance methods of
the class that defines them, and also in the methods defined in its subclasses.
This means that Pharo instance variables are similar to protected variables in
C++ and Java. However, we prefer to say that they are private, because it is
considered bad style in Pharo to access an instance variable directly from a
subclass.

Instance encapsulation example

The method Point>>dist: computes the distance between the receiver and
another point. The instance variables x and y of the receiver are accessed
directly by the method body. However, the instance variables of the other
point must be accessed by sending it the messages x and y.

191 dist: 4@5

>>> 5.0

The key reason to prefer instance-based encapsulation to class-based encap-
sulation is that it enables different implementations of the same abstraction
to coexist. For example, the method dist: need not know or care whether

89

The Pharo object model

Listing 6-1 Distance between two points

[Point >> dist: aPoint
"Answer the distance between aPoint and the receiver."

| dx dy |

dx := aPoint x - x.

dy := aPoint y - v.

" ((dx * dx) + (dy = dy)) sqrt

the argument aPoint is an instance of the same class as the receiver. The
argument object might be represented in polar coordinates, or as a record

in a database, or on another computer in a distributed system. As long as it
can respond to the messages x and y, the code of method dist (shown above)
will still work.

Methods

All methods are public and virtual (i.e., dynamically looked up). Methods

are grouped into protocols that indicate their intent. Some common protocol
names have been established by convention, for example, accessing for all
accessor methods, and initialization for establishing a consistent initial
state for the object. The protocol private is sometimes used to group meth-
ods that should not be seen from outside. Nothing, however, prevents you
from sending a message that is implemented by such a "private” method.

Methods can access all instance variables of the object. Some developers pre-
fer to access instance variables only through accessors. This practice has
some value, but it also clutters the interface of your classes, and worse, ex-
poses its private state to the world.

6.5 The instance side and the class side

Since classes are objects, they can have their own instance variables and
their own methods. We call these class instance variables and class methods, but
they are really no different from ordinary instance variables and methods:
They simply operate on different objects (classes in this case). An instance
variable describes instance state and a method describes instance behavior.
Similarly, class instance variables are just instance variables defined by a
metaclass (and describe the state of classes - instances of metaclasses), and
class methods are just methods defined by a metaclass (and that will be exe-
cuted on classes).

A class and its metaclass are two separate classes, even though the former is
an instance of the latter. However, this is largely irrelevant to you as a pro-
grammer: you are concerned with defining the behavior of your objects and
the classes that create them.

90

6.5 The instance side and the class side

x -0 Color
Scoped Variables vens
v © sit A conversions A isgitmapFill

Graphics-Primitives. 4 © ocnafPort copying isBlack
Graphics-Shapes © warpBit equality « isColor
Graphics Tests Bitmap groupsof shades isGradientfill <«———instance methods
Graphics-Transformatior &) Color other isGray
Growl
HelpSystem-Core
HelpSystem-Tests
HowToContributetelp
HudsonBuildTools20 v [© sitsit A all- 4 aaFontsColormapDepth
ImportingResource-Help 2|® GnfPort accesing black

Importing? Graphics-Primitives "
ssueTracking Graphics-Shapes © warpalt accessing blue

© ColorMap x-0 Color class -

© EllipseMidpointTracer

© Manifestoraphicserimitive Scoped Variables vick

IssoeTracking Tests /=2yl L B Graphics Tests sitmap color from user brickColorRegistry
Graphics-Transformatior | € Color colormaps brown
messageSelectorAndArgunentNanes Growl © ColorMap defaults cachedColormapFrom:to:

HelpSystem-Core

© EllipseMidpointTracer examples colorFrom:
HelpSystem-Tests peetidpontirace R
ToC

| temporary variable nases i
ene o

esource-Help other colorPaletteForDepthextent:

computeColomapromto:
Instance side emmnte drn et el
Color class
instanceVariableNames: '

sy
Class side Class methods

Figure 6-2 Browsing a class and its metaclass

For this reason, the browser helps you to browse both class and metaclass

as if they were a single thing with two "sides”: the instance side and the class
side, as shown in Figure 6-2. By default, when you select a class in the browser,
you're browsing the instance side (i.e., the methods that are executed when
messages are sent to an instance of Color). Clicking on the Class side button
switches you over to the class side (the methods that will be executed when
messages are sent to the class Color itself).

For example, Color blue sends the message blue to the class Color. You
will therefore find the method blue defined on the class side of Color, not
on the instance side.

["Class-side method blue (convenient instance creation method)"
aColor := Color blue.

>>> Color blue

"Color instances are self-evaluating"

["Instance-side accessor method red (returns the red RGB value)"
Color blue red
>>> 0.0

["Instance-side accessor method blue (returns the blue RGB value)"
Color blue blue
>>> 1.0

You define a class by filling in the template proposed on the instance side.
When you accept this template, the system creates not just the class that you
defined, but also the corresponding metaclass (which you can then edit by
clicking on the Class side button). The only part of the metaclass creation
template that makes sense for you to edit directly is the list of the meta-
class’s instance variable names.

91

The Pharo object model

Once a class has been created, browsing its instance side (Class side un-
checked) lets you edit and browse the methods that will be possessed by in-
stances of that class (and of its subclasses).

Class methods

Class methods can be quite useful; browse Color class for some good ex-
amples. You will see that there are two kinds of methods defined on a class:
instance creation methods, like Color class>>blue, and those that perform
a utility function, like Color class>>wheel:. This is typical, although you
will occasionally find class methods used in other ways.

It is convenient to place utility methods on the class side because they can be
executed without having to create any additional objects first. Indeed, many
of them will contain a comment designed to make it easy to execute them.

Browse method Color class>>wheel:, double-click just at the beginning of
the comment "(Color wheel: 12) inspect" and press CMD-d. You will see
the effect of executing this method.

For those familiar with Java and C++, class methods may seem similar to
static methods. However, the uniformity of the Pharo object model (where
classes are just regular objects) means that they are somewhat different:
whereas Java static methods are really just statically-resolved procedures,
Pharo class methods are dynamically-dispatched methods. This means that
inheritance, overriding and super-sends work for class methods in Pharo,
whereas they don’t work for static methods in Java.

Class instance variables

With ordinary instance variables, all the instances of a class have the same
set of variable names (though each instance has its own private set of val-
ues), and the instances of its subclasses inherit those names. The story is ex-
actly the same with class instance variables: each class has its own private
class instance variables. A subclass will inherit those class instance variables,
but the subclass will have its own private copies of those variables. Just as objects
don’t share instance variables, neither do classes and their subclasses share
class instance variables.

For example, you could use a class instance variable called count to keep
track of how many instances you create of a given class. However, any sub-
class would have its own count variable, so subclass instances would be
counted separately.

Example: Class instance variables and subclasses

Suppose we define the class Dog, and its subclass Hyena. Suppose that we add
a count class instance variable to the class Dog (i.e. we define it on the meta-

92

6.5 The instance side and the class side

Listing 6-3 Dogs and Hyenas

EObject subclass: #Dog
instanceVariableNames:
classVariableNames: ''
package: 'PBE-CIV'

[

Listing 6-4 Keeping count of new dogs

[Dog class >> initialize
count := 0.

[Dog initialize.

Hyena initialize.

Dog count

>>> 0

class Dog class). Hyena will naturally inherit the class instance variable
count from Dog.

[Dog class
instanceVariableNames: 'count'

Dog subclass: #Hyena
instanceVariableNames:
classVariableNames: "'
package: 'PBE-CIV'

Now suppose we define class methods for Dog to initialize its count to 0, and
to increment it when new instances are created:
Dog class >> new

count := count +1.

A

super new

Dog class >> count
~ count

Now when we create a new Dog, the count value of the class Dog is incre-
mented, and so is that of the class Hyena (but the hyenas are counted sepa-
rately).

Side note: Notice the use of initialize on the classes, in the following code.
In Pharo, when you instantiate an object such as Dog new, initializeis
called automatically as part of the new message send (you can see for yourself
by browsing Behavior>>new). But with classes, simply defining them does
not automatically call initialize, and so we have to call it explicitly here.
By default class initialize methods are automatically executed only when
classes are loaded. See also the discussion about lazy initialization, below.

Hyena count
>>> 0

93

The Pharo object model

(| aDog |
aDog := Dog new.
Dog count

>>> 1 "Incremented"

[Hyena count
| >>> 0 "Still the same"

Class instance variables are private to a class in exactly the same way that in-
stance variables are private to an instance. Since classes and their instances
are different objects, this has the following consequences:

1. A class does not have access to the instance variables of its own instances.
So, the class Color does not have access to the variables of an object instanti-
ated from it, aColorRed. In other words, just because a class was used to cre-
ate an instance (using new or a helper instance creation method like Color
red), it doesn’t give the class any special direct access to that instance’s vari-
ables. The class instead has to go through the accessor methods (a public
interface) just like any other object.

2. The reverse is also true: an instance of a class does not have access to the
class instance variables of its class. In our example above, aDog (an individ-
ual instance) does not have direct access to the count variable of the Dog
class (except, again, through an accessor method).

Important A class does not have access to the instance variables of its
own instances. An instance of a class does not have access to the class
instance variables of its class.

For this reason, instance initialization methods must always be defined on
the instance side, the class side has no access to instance variables, and so
cannot initialize them! All that the class can do is to send initialization mes-
sages, using accessors, to newly created instances.

Java has nothing equivalent to class instance variables. Java and C++ static
variables are more like Pharo class variables (discussed in Section 6.9), since
in those languages all of the subclasses and all of their instances share the
same static variable.

Example: Defining a Singleton

The Singleton pattern provides a typical example of the use of class instance
variables and class methods. Imagine that we would like to implement a class
WebServer, and to use the Singleton pattern to ensure that it has only one
instance.

We define the class WebServer as follow.

Then, clicking on the Class side button, we add the (class) instance variable
uniqueInstance.

94

6.5 The instance side and the class side

Listing 6-6 A sample singleton class, WebServer

EObject subclass: #WebServer
instanceVariableNames: 'sessions'
classVariableNames: ''

package: 'Web'

Listing 6-7 The class side of the singleton class

[webServer class
instanceVariableNames: 'uniquelInstance'

Listing 6-8 New state for classes

>Object class allInstVarNames

>>> "#('superclass' 'methodDict' 'format' 'layout’
'instanceVariables' 'organization' 'subclasses' 'name'
'classPool' 'sharedPools' 'environment' 'category'
"traitComposition' 'localSelectors')"

As aresult, the class WebServer class will have a new instance variable (in
addition to the variables that it inherits from Behavior, such as superclass
and methodDict). It means that the value of this extra instance variable will
describe the instance of the class WebServer class i.e. the class WebServer.
WebServer class allInstVarNames
>>>"#('superclass' 'methodDict' 'format' 'layout’

'instanceVariables' 'organization' 'subclasses' 'name'’

‘classPool' 'sharedPools' 'environment' 'category'

"traitComposition' 'localSelectors' #uniquelInstance)"

We can now define a class method named uniqueInstance, as shown below.
This method first checks whether uniqueInstance has been initialized. If it
has not, the method creates an instance and assigns it to the class instance
variable uniqueInstance. Finally the value of uniqueInstance is returned.
Since uniqueInstance is a class instance variable, this method can directly
access it.

The first time that WebServer uniquelInstance is executed, an instance of
the class WebServer will be created and assigned to the uniqueInstance
variable. The next time, the previously created instance will be returned in-
stead of creating a new one. (This pattern, checking if a variable is nil in an
accessor method, and initializing its value if it is nil, is called lazy initializa-
tion).

Note that the instance creation code in the code above.

Listing 6-9 Class-side accessor method uniqueInstance

WebServer class >> uniqueInstance
uniqueInstance ifNil: [uniquelInstance := self new].
* uniquelnstance

95

The Pharo object model

is written as self new and not as WebServer new. What is the difference?
Since the uniqueInstance method is defined in WebServer class, you
might think that there is no difference. And indeed, until someone creates

a subclass of WebServer, they are the same. But suppose that ReliableWeb-
Server is a subclass of WebServer, and inherits the uniqueInstance method.
We would clearly expect ReliableWebServer uniqueInstance to answer a
ReliableWebServer. Using self ensures that this will happen, since self
will be bound to the respective receiver, here the classes WebServer and Re-
liableWebServer. Note also that WebServer and ReliableWebServer will
each have a different value for their uniqueInstance instance variable.

A note on lazy initialization. Do not over-use the lazy initialization pattern. The
setting of initial values for instances of objects generally belongs in the ini-
tialize method. Putting initialization calls only in initialize helps from
a readability perspective - you don’t have to hunt through all the accessor
methods to see what the initial values are. Although it may be tempting to
instead initialize instance variables in their respective accessor methods (us-
ing ifNil: checks), avoid this unless you have a good reason.

For example, in our uniqueInstance method above, we used lazy initializa-
tion because users won’t typically expect to call WwebServer initialize.
Instead, they expect the class to be "ready” to return new unique instances.
Because of this, lazy initialization makes sense. Similarly, if a variable is ex-
pensive to initialize (opening a database connection or a network socket, for
example), you will sometimes choose to delay that initialization until you
actually need it.

Every class has a superclass
Each class in Pharo inherits its behaviour and the description of its structure
from a single superclass. This means that Smalltalk has single inheritance.

>Sma111nteger superclass
>>> Integer

EInteger superclass
>>> Number

[Number superclass
>>> Magnitude

>Magnitude superclass
| >>> Object

EObject superclass
| >>> ProtoObject

EProtoobject superclass
>>> nil

96

6.6 Every class has a superclass

Traditionally the root of an inheritance hierarchy is the class Object (since
everything is an object). In Pharo, the root is actually a class called ProtoOb-
ject, but you will normally not pay any attention to this class. ProtoObject
encapsulates the minimal set of messages that all objects must have and Pro-
toObject is designed to raise as many as possible errors (to support proxy
definition). However, most classes inherit from Object, which defines many
additional messages that almost all objects understand and respond to. Un-
less you have a very good reason to do otherwise, when creating application
classes you should normally subclass Object, or one of its subclasses.

A new class is normally created by sending the message subclass: in-
stanceVariableNames: ... to an existing class. There are a few other
methods to create classes. To see what they are, have a look at Class and
its subclass creation protocol.

Although Pharo does not provide multiple inheritance, it supports a mecha-
nism called Traits for sharing behaviour across unrelated classes. Traits are
collections of methods that can be reused by multiple classes that are not re-
lated by inheritance. Using traits allows one to share code between different
classes without duplicating code.

Abstract methods and abstract classes

An abstract class is a class that exists to be subclassed, rather than to be in-
stantiated. An abstract class is usually incomplete, in the sense that it does
not define all of the methods that it uses. The “placeholder” methods, those
that the other methods assume to be (re)defined are called abstract methods.

Pharo has no dedicated syntax to specify that a method or a class is abstract.
Instead, by convention, the body of an abstract method consists of the ex-
pression self subclassResponsibility. This indicates that subclasses
have the responsibility to define a concrete version of the method. self
subclassResponsibility methods should always be overridden, and thus
should never be executed. If you forget to override one, and it is executed, an
exception will be raised.

Similarly, a class is considered abstract if one of its methods is abstract. Noth-
ing actually prevents you from creating an instance of an abstract class; ev-
erything will work until an abstract method is invoked.

Example: the abstract class Magnitude

Magnitude is an abstract class that helps us to define objects that can be
compared to each other. Subclasses of Magnitude should implement the
methods <, = and hash. Using such messages, Magnitude defines other meth-
ods such as >, >=, <=, max:, min: between:and: and others for comparing
objects. Such methods are inherited by subclasses. The method Magnitude>><
is abstract, and defined as shown in the following script.

97

The Pharo object model

Listing 6-10 Magnitude>> <

< aMagnitude
"Answer whether the receiver is less than the argument."

“self subclassResponsibility

Listing 6-11 Magnitude>> >=

[>= aMagnitude
"Answer whether the receiver is greater than or equal to the
argument.”

“(self < aMagnitude) not

Listing 6-12 Character>> <=

< aCharacter
"Answer true if the receiver's value < aCharacter's value."

“self asciiValue < aCharacter asciiValue

By contrast, the method >=is concrete, and is defined in terms of <.

The same is true of the other comparison methods (they are all defined in
terms of the abstract method <).

Character is a subclass of Magnitude; it overrides the < method (which, if
you recall, is marked as abstract in Magnitude by the use of self subclass-
Responsibility) with its own version (see the method definition below).

Character also explicitly defines methods = and hash; it inherits from Mag-
nitude the methods >=, <=, ~= and others.

Traits

A trait is a collection of methods that can be included in the behaviour of a
class without the need for inheritance. This makes it easy for classes to have
a unique superclass, yet still share useful methods with otherwise unrelated
classes.

To define a new trait, simply right-click in the class pane and select Add
Trait, or replace the subclass creation template by the trait creation tem-
plate, below.

Listing 6-13 Defining a new trait

Trait named: #TAuthor
uses: { }
package: 'PBE-LightsOut'

98

6.6 Every class has a superclass

Listing 6-14 An author method

TAuthor >> author
"Returns author initials"

A '

on "oscar nierstrasz"

Listing 6-15 Using a trait

BorderedMorph subclass: #LOGame
uses: TAuthor
instanceVariableNames: 'cells’
classVariableNames: "'
package: 'PBE-LightsOut'

Here we define the trait TAuthor in the package PBE-LightsOut. This trait
does not use any other existing traits. In general we can specify a trait compo-
sition expression of other traits to use as part of the uses: keyword argument.
Here we simply provide an empty array.

Traits may contain methods, but no instance variables. Suppose we would
like to be able to add an author method to various classes, independent of
where they occur in the hierarchy.

We might do this as follows:

Now we can use this trait in a class that already has its own superclass, for
instance the LOGame class that we defined in Chapter : A First Application.
We simply modify the class creation template for LOGame to include a uses:
keyword argument that specifies that TAuthor should be used.

If we now instantiate LOGame, it will respond to the author message as ex-
pected.

LOGame new author
>>> 'on'

Trait composition expressions may combine multiple traits using the + oper-
ator. In case of conflicts (i.e., if multiple traits define methods with the same
name), these conflicts can be resolved by explicitly removing these meth-
ods (with -), or by redefining these methods in the class or trait that you are
defining. It is also possible to alias methods (with @), providing a new name
for them.

Traits are used in the system kernel. One good example is the class Behav-
ior.

Here we see that the method addTraitSelector:withMethod: defined in
the trait TPureBehavior has been aliased to basicAddTraitSelector:with-
Method:.

29

6.7

|
|

The Pharo object model

Listing 6-16 Behavior defined using traits

Object subclass: #Behavior
uses: TPureBehavior @
{#basicAddTraitSelector:withMethod:->#addTraitSelector:withMethod:}
instanceVariableNames: 'superclass methodDict format'
classVariableNames: 'ObsoleteSubclasses'
package: 'Kernel-Classes'

Everything happens by sending messages

This rule captures the essence of programming in Pharo.

In procedural programming (and in some static features of some object-
oriented languages such as Java), the choice of which piece of code to exe-
cute when a procedure is called is made by the caller. The caller chooses the
procedure to execute statically, by name.

In Pharo, we do not "invoke methods”. Instead, we send messages. This is just
a terminology point but it is significant. It implies that this is not the respon-
sibility of the client to select the method to be executed, it is the one of the
receiver of the message.

When sending a message, we do not decide which method will be executed.
Instead, we tell an object to do something for us by sending it a message. A
message is nothing but a name and a list of arguments. The receiver then de-
cides how to respond by selecting its own method for doing what was asked.
Since different objects may have different methods for responding to the
same message, the method must be chosen dynamically, when the message is
received.

3 + 4

>>> 7 "send message + with argument 4 to integer 3"
(1@2) + &

>>> 596 "send message + with argument 4 to point (1@2)"

As a consequence, we can send the same message to different objects, each of
which may have its own method for responding to the message. We do not tell
the SmallInteger 3 or the Point (1@2) how to respond to the message + 4.
Each has its own method for +, and responds to + 4 accordingly.

One of the consequences of Pharo’s model of message sending is that it en-
courages a style in which objects tend to have very small methods and del-
egate tasks to other objects, rather than implementing huge, procedural
methods that assume too much responsibility. Joseph Pelrine expresses this
principle succinctly as follows:

“Don’t do anything that you can push off onto someone else.”

Many object-oriented languages provide both static and dynamic operations
for objects. In Pharo there are only dynamic message sends. For example, in-

100

6.8

6.8 Method lookup follows the inheritance chain

stead of providing static class operations, we simply send messages to classes
(which are simply objects).

0k, so nearly everything in Pharo happens by sending messages. At some
point action must take place:

Variable declarations are not message sends. In fact, variable declarations are
not even executable. Declaring a variable just causes space to be allocated for
an object reference.

Assignments are not message sends. An assignment to a variable causes that
variable name to be freshly bound in the scope of its definition.

Returns are not message sends. A return simply causes the computed result
to be returned to the sender.

Primitives (and Pragmas/annotations) are not message sends. They are imple-
mented in the virtual machine.

Other than these few exceptions, pretty much everything else does truly
happen by sending messages. In particular, since there are no public fields

in Pharo, the only way to update an instance variable of another object is to
send it a message asking that it update its own field. Of course, providing set-
ter and getter methods for all the instance variables of an object is not good
object-oriented style. Joseph Pelrine also states this very nicely:

"Don’t let anyone else play with your data.”

Method lookup follows the inheritance chain
What exactly happens when an object receives a message? This is a two step
process: method lookup and method execution.

Lookup. First, the method having the same name as the message is looked
up.

Method Execution. Second, the found method is applied to the receiver
with the message arguments: When the method is found, the arguments are
bound to the parameters of the method, and the virtual machine executes it.

The lookup process is quite simple:

1. The class of the receiver looks up the method to use to handle the mes-
sage.

2. If this class does not have that method method defined, it asks its super-
class, and so on, up the inheritance chain.

It is essentially as simple as that. Nevertheless there are a few questions that
need some care to answer:

¢ What happens when a method does not explicitly return a value?

101

The Pharo object model

Listing 6-17 A locally implemented method

EEllipseMorph >> defaultColor
"Answer the default color/fill style for the receiver"
* Color yellow

Listing 6-18 An inherited method

[Morph >> openInworld
"Add this morph to the world."
self openInWorld: self currentWorld

* What happens when a class reimplements a superclass method?
* What is the difference between self and super sends?

* What happens when no method is found?

The rules for method lookup that we present here are conceptual; virtual
machine implementors use all kinds of tricks and optimizations to speed up
method lookup. That’s their job, but you should never be able to detect that
they are doing something different from our rules.

First let us look at the basic lookup strategy, and then consider these further
questions.

Method lookup

Suppose we create an instance of E1lipseMorph.
[anEllipse := EllipseMorph new.
If we now send this object the message defaultColor, we get the result
Color yellow.
anEllipse defaultColor
>>> Color yellow
The class E11ipseMorph implements defaultColor, so the appropriate

method is found immediately.

In contrast, if we send the message openInWorld to anEllipse, the method
is not immediately found, since the class E11ipseMorph does not implement
openInWorld. The search therefore continues in the superclass, Bordered-
Morph, and so on, until an openInWorld method is found in the class Morph
(see Figure 6-19).

Returning self

Notice that E1lipseMorph>>defaultColor explicitly returns Color yel-
low, whereas Morph>>openInWorld does not appear to return anything.

102

6.8 Method lookup follows the inheritance chain

Key
instance-of —>>
message send ———=> Zﬁ

lookup > Morph
e > initialize

defaultColor
openinWorld

e BorderedMorph

JUPTPPER >| initialize
anEllipse openinWorld 3"
L 52| EllipseMorph
\ defaultColor

anEllipse

Figure 6-19 Method lookup follows the inheritance hierarchy

Listing 6-20 Explicitly returning self
Morph >> openInWorld
"Add this morph to the world."

self openInWorld: self currentWorld
~ self

Actually a method always answers a message with a value (which is, of course,
an object). The answer may be defined by the " construct in the method,

but if execution reaches the end of the method without executing a ", the
method still answers a value - it answers the object that received the mes-
sage. We usually say that the method answers self, because in Pharo the pseudo-
variable self represents the receiver of the message, much like the keyword
this in Java. Other languages, such as Ruby, by default return the value of

the last statement in the method. Again, this is not the case in Pharo, instead
you can imagine that a method without an explicit return ends with * self.

I 'mportant self represents the receiver of the message.

This suggests that openInWorld is equivalent to openInWorldReturnSelf,
defined below.

Why is explicitly writing * self not a so good thing to do? When you re-
turn something explicitly, you are communicating that you are returning
something of interest to the sender. When you explicitly return self, you
are saying that you expect the sender to use the returned value. This is not
the case here, so it is best not to explicitly return self. We only return self
on special case to stress that the receiver is returned.

103

The Pharo object model

Listing 6-21 Super initialize

BorderedMorph >> initialize
"initialize the state of the receiver"

super initialize.
self borderInitialize

This is a common idiom in Pharo, which Kent Beck refers to as Interesting
return value:

"Return a value only when you intend for the sender to use the value.”

Important By default (if not specified differently) a method returns the
message receiver.

Overriding and extension

If we look again at the E1lipseMorph class hierarchy in Figure 6-19, we see
that the classes Morph and E1lipseMorph both implement defaultColor. In
fact, if we open a new morph (Morph new openInWorld) we see that we get a
blue morph, whereas an ellipse will be yellow by default.

We say that EllipseMorph overrides the defaultColor method that it inher-
its from Morph. The inherited method no longer exists from the point of view
of anEllipse.

Sometimes we do not want to override inherited methods, but rather extend
them with some new functionality, that is, we would like to be able to invoke
the overridden method in addition to the new functionality we are defining
in the subclass. In Pharo, as in many object-oriented languages that support
single inheritance, this can be done with the help of super sends.

A frequent application of this mechanism is in the initialize method.
Whenever a new instance of a class is initialized, it is critical to also initialize
any inherited instance variables. However, the knowledge of how to do this
is already captured in the initialize methods of each of the superclass in
the inheritance chain. The subclass has no business even trying to initialize
inherited instance variables!

It is therefore good practice whenever implementing an initialize method
to send super initialize before performing any further initialization:

We need super sends to compose inherited behaviour that would otherwise
be overridden.

Important It is a good practice that an initialize method start by
sending super initialize.

104

6.8 Method lookup follows the inheritance chain

Listing 6-22 A self send

Morph >> fullPrintOn: aStream
new

aStream nextPutAll: self class name,

Listing 6-23 A self send

Morph >> constructorString
~ String streamContents: [:s | self fullPrintOn: s 1.

Self sends and super sends

self represents the receiver of the message and the lookup of the method
starts in the class of the receiver. Now what is super? super is not the super-
class! It is a common and natural mistake to think this. It is also a mistake to
think that lookup starts in the superclass of the class of the receiver.

Important self represents the receiver of the message and the method
lookup starts in the class of the receiver.

How do self sends differ from super sends?

Like self, super represents the receiver of the message. Yes you read it
well! The only thing that changes is the method lookup. Instead of lookup
starting in the class of the receiver, it starts in the superclass of the class of the
method where the super send occurs.

Important super represents the receiver of the message and the
method lookup starts in the superclass of the class of the method where
the super send occurs.

We shall see with the following example precisely how this works. Imagine
that we define the following three methods:

First we define the method fullPrintOn: on class Morph that just adds to
the stream the name of the class followed by the string * new’ - the idea is
that we could execute the resulting string and gets back an instance similar
to the receiver.

Second we define the method constructorString that send the message
fullPrintOn:.

Finally, we define the method fullPrintOn: on the class BorderedMorph
superclass of ELlipseMorph. This new method extends the superclass behav-
ior: it invokes it and adds extra behavior.

Consider the message constructorString sent to an instance of E1lipse-
Morph:

EllipseMorph new constructorString
>>> '(EllipseMorph new) setBorderWidth: 1 borderColor: Color black'

105

The Pharo object model

Listing 6-24 Combining super and self sends

EBorderedMorph >> fullPrintOn: aStream
aStream nextPutAll: '('.
super fullPrintOn: aStream.
aStream
nextPutAll: ') setBorderWidth: ';
print: borderWidth;
nextPutAll: ' borderColor: ', (self colorString: borderColor)

1

Morph
~77"->{ constructorString
.. self fullPrintOn: fullPrintOn:

2\
BorderedMorph

-->| fullPrintOn:
A

super fullPrintOn:

anEllipse >

constructorString

EllipseMorph

defaultColor

Key
instance-of —>>
message send ———=>
lookup ... >

Figure 6-25 self and super sends

How exactly is this result obtained through a combination of self and super
sends? First, anEllipse constructorString will cause the method con-
structorString to be found in the class Morph, as shown in Figure 6-25.

The method Morph>>constructorString performs a self send of full-
PrintOn:. The message fullPrintOn: is looked up starting in the class E1-
lipseMorph, and the method BorderedMorph>>fullPrintOn: is found in
BorderedMorph (see Figure 6-25). What is critical to notice is that the self
send causes the method lookup to start again in the class of the receiver,
namely the class of anEllipse.

At this point, BorderedMorph>>fullPrintOn: does a super send to extend
the fullPrintOn: behaviour it inherits from its superclass. Because this is
a super send, the lookup now starts in the superclass of the class where the
super send occurs, namely in Morph. We then immediately find and evaluate
Morph>>fullPrintOn:.

Stepping back

A self send is dynamic in the sense that by looking at the method contain-
ing it, we cannot predict which method will be executed. Indeed an instance
of a subclass may receive the message containing the self expression and

106

6.8 Method lookup follows the inheritance chain

redefine the method in that subclass. Here E11ipseMorph could redefine
the method fullPrintOn: and this method would be executed by method
constructorString. Note that by only looking at the method construc-
torString, we cannot predict which fullPrintOn: method (either the one
of EllipseMorph, BorderedMorph, or Morph) will be executed when execut-
ing the method constructorString, since it depends on the receiver the
constructorString message.

Important A self send triggers a method lookup starting in the class of
the receiver. A self send is dynamic in the sense that by looking at the
method containing it, we cannot predict which method will be executed.

Note that the super lookup did not start in the superclass of the receiver.
This would have caused lookup to start from BorderedMorph, resulting in an
infinite loop!

If you think carefully about super send and Figure 6-25, you will realize that
super bindings are static: all that matters is the class in which the text of the
super send is found. By contrast, the meaning of self is dynamic: it always
represents the receiver of the currently executing message. This means that
all messages sent to self are looked up by starting in the receiver’s class.

Important A super send triggers a method lookup starting in the su-
perclass of the class of the method performing the super send. We say that su-
per sends are static because just looking at the method we know the class
where the lookup should start (the class above the class containing the
method).

Message not understood

What happens if the method we are looking for is not found?

Suppose we send the message foo to our ellipse. First the normal method
lookup would go through the inheritance chain all the way up to Object
(or rather ProtoObject) looking for this method. When this method is not
found, the virtual machine will cause the object to send self doesNotUn-
derstand: #foo. (See Figure 6-26.)

Now, this is a perfectly ordinary, dynamic message send, so the lookup starts
again from the class E1lipseMorph, but this time searching for the method
doesNotUnderstand:. As it turns out, Object implements doesNotUnder-
stand:. This method will create a new MessageNotUnderstood object which
is capable of starting a Debugger in the current execution context.

Why do we take this convoluted path to handle such an obvious error? Well,
this offers developers an easy way to intercept such errors and take alterna-
tive action. One could easily override the method Object>>doesNotUnder-
stand: in any subclass of Object and provide a different way of handling
the error.

107

The Pharo object model

Object
""""
A

R
2 A
4 [BorderedMorph

H A

; i |_EllipseMorph

w

anEllipse foo self doesNotUnderstand: #foo

Key T~
instance-of ~ ——» P>
message send ——>
lookup >

Figure 6-26 Message foo is not understood

In fact, this can be an easy way to implement automatic delegation of mes-
sages from one object to another. A Delegator object could simply delegate
all messages it does not understand to another object whose responsibility it
is to handle them, or raise an error itself!

6.9 Shared variables
Now we will look at an aspect of Pharo that is not so easily covered by our
five rules: shared variables.
Pharo provides three kinds of shared variables:
1. Globally shared variables.

2. Class variables: variables shared between instances and classes. (Not to be
confused with class instance variables, discussed earlier).

3. Pool variables: variables shared amongst a group of classes,

The names of all of these shared variables start with a capital letter, to warn
us that they are indeed shared between multiple objects.

Global variables

In Pharo, all global variables are stored in a namespace called Smalltalk,
which is implemented as an instance of the class SystemDictionary. Global
variables are accessible everywhere. Every class is named by a global vari-
able. In addition, a few globals are used to name special or commonly useful
objects.

The variable Processor names an instance of ProcessScheduler, the main
process schedler of Pharo.

Processor class
>>> ProcessorScheduler

108

6.9 Shared variables

Other useful global variables

Smalltalk is the instance of SmalltalkImage. It contains many function-
ality to manage the system. In particular it holds a reference to the main
namespace Smalltalk globals. This namespace includes Smalltalk itself
since it is a global variable. The keys to this namespace are the symbols that
name the global objects in Pharo code. So, for example:

[smalltalk globals at: #Boolean
| >>> Boolean

Since Smalltalk is itself a global variable:

[smalltalk globals at: #Smalltalk
| >>> Smalltalk

[(smalltalk globals at: #Smalltalk) == Smalltalk
| >>> true

World is an instance of PasteUpMorph that represents the screen. World
bounds answers a rectangle that defines the whole screen space; all Morphs
on the screen are submorphs of World.

ActiveHand is the current instance of HandMorph, the graphical representa-
tion of the cursor. ActiveHand’s submorphs hold anything being dragged by
the mouse.

Undeclared is another dictionary, which contains all the undeclared vari-
ables. If you write a method that references an undeclared variable, the
browser will normally prompt you to declare it, for example as a global or as
an instance variable of the class. However, if you later delete the declaration,
the code will then reference an undeclared variable. Inspecting Undeclared
can sometimes help explain strange behaviour!

Using globals in your code

The recommended practice is to strictly limit the use of global variables. It

is usually better to use class instance variables or class variables, and to pro-
vide class methods to access them. Indeed, if Pharo were to be implemented

from scratch today, most of the global variables that are not classes would be
replaced by singletons.

The usual way to define a global is just to perform Do it on an assignment
to a capitalized but undeclared identifier. The parser will then offer to de-
clare the global for you. If you want to define a global programmatically, just
execute Smalltalk globals at: #AGlobalName put: nil. Toremove it,
execute Smalltalk globals removeKey: #AGlobalName.

109

The Pharo object model

Color Color class
-rgb -superclass
-cachedDepth -subclass
CachedColormaps -methodDict
ColorNames initializeNames
name
isBlack y
\
....ColorNames. - shared
[--.rgb.i) ColorNames
CachedColormaps
private private
rgb superclass

cachedDepth subclass

Figure 6-27 Instance and class methods accessing different variables

Class variables

Sometimes we need to share some data amongst all the instances of a class
and the class itself. This is possible using class variables. The term class vari-
able indicates that the lifetime of the variable is the same as that of the class.
However, what the term does not convey is that these variables are shared
amongst all the instances of a class as well as the class itself, as shown in
Figure 6-27. Indeed, a better name would have been shared variables since
this expresses more clearly their role, and also warns of the danger of using
them, particularly if they are modified.

In Figure 6-27 we see that rgb and cachedDepth are instance variables of
Color, hence only accessible to instances of Color. We also see that super-
class, subclass, methodDict and so on are class instance variables, i.e., in-
stance variables only accessible to the Color class.

But we can also see something new: ColorRegistry and CachedColormaps
are class variables defined for Color. The capitalization of these variables
gives us a hint that they are shared. In fact, not only may all instances of
Color access these shared variables, but also the Color class itself, and any
of its subclasses. Both instance methods and class methods can access these
shared variables.

A class variable is declared in the class definition template. For example, the
class Color defines a large number of class variables to speed up color cre-
ation; its definition is shown below.

The class variable ColorRegistry is an instance of IdentityDictionary
containing the frequently-used colors, referenced by name. This dictionary
is shared by all the instances of Color, as well as the class itself. It is accessi-
ble from all the instance and class methods.

110

6.9 Shared variables

Listing 6-28 Color and its class variables

[object subclass: #Color

instanceVariableNames: 'rgb cachedDepth cachedBitPattern alpha'

classVariableNames: 'BlueShift CachedColormaps ColorRegistry
ComponentMask GrayToIndexMap GreenShift HalfComponentMask
IndexedColors
MaskingMap RandomStream RedShift'

package: 'Graphics-Primitives'

Listing 6-29 |Initializing the Color class

Color class >> initialize

self initializeColorRegistry.

Class initialization

The presence of class variables raises the question: how do we initialize
them?

One solution is lazy initialization (discussed earlier in this chapter). This can
be done by introducing an accessor method which, when executed, initializes
the variable if it has not yet been initialized. This implies that we must use
the accessor all the time and never use the class variable directly. This fur-
thermore imposes the cost of the accessor send and the initialization test. It
also arguably defeats the point of using a class variable, since in fact it is no
longer shared.

Another solution is to override the class method initialize (we’ve seen
this before in the Dog example).

If you adopt this solution, you will need to remember to invoke the initial-
ize method after you define it (by evaluating Color initialize). Although
class side initialize methods are executed automatically when code is
loaded into memory (from a Monticello repository, for example), they are
not executed automatically when they are first typed into the browser and
compiled, or when they are edited and re-compiled.

Pool variables

Pool variables are variables that are shared between several classes that
may not be related by inheritance. Pool variables were originally stored in
pool dictionaries; now they should be defined as class variables of dedicated
classes (subclasses of SharedPool). Our advice is to avoid them; you will
need them only in rare and specific circumstances. Our goal here is there-
fore to explain pool variables just enough so that you can understand them
when you are reading code.

111

The Pharo object model

Listing 6-30 Pool dictionaries in the Text class

EArrayedCollection subclass: #Text
instanceVariableNames: 'string runs'
classVariableNames: "'
poolDictionaries: 'TextConstants'
package: 'Collections-Text'

Listing 6-31 Text>>testCR

[Text >> testCR
" CR == Character cr

A class that accesses a pool variable must mention the pool in its class defi-
nition. For example, the class Text indicates that it is using the pool dictio-
nary TextConstants, which contains all the text constants such as CR and
LF. This dictionary has a key #CR that is bound to the value Character cr,
i.e., the carriage return character.

This allows methods of the class Text to access the keys of the dictionary in
the method body directly, i.e., by using variable syntax rather than an explicit
dictionary lookup. For example, we can write the following method.

Once again, we recommend that you avoid the use of pool variables and pool
dictionaries.

6.10 Internal object implementation note

Here is an implementation note for people that really want to go deep in-
side the way Pharo represents internally objects. The implementation distin-
guished between two different kinds of objects: # Objects with zero or more
fields that are passed by reference and exist on the Pharo heap. # Immediate
objects that are passed by value. Depending on version, these are a range of
the integers called Smallinteger, all Character objects and possibly a sub-
range of 64-bit floating-point numbers called SmallFloat64. In the imple-
mentation, such immediate objects occupy an object pointer, most of whose
bits encode the immediate’s value and some of the bits encode the object’s
class.

The first kind of object, an ordinary object, comes in a number of varieties:

1. Normal objects that have zero or more named instance variables, such
as Point which has an x and a y instance variable. Each instance vari-
able holds an object pointer, which can be a reference to another ordi-
nary object or an immediate.

2. Indexable objects like arrays that have zero or more indexed instance
variables numbered from 1 to N. Each indexed instance variable holds
an object pointer, which can be a reference to another ordinary object
or an immediate. Indexable objects are accessed using the messages

112

6.11

6.11 Chapter summary

at: and at:put:. For example ((Array new: 1) at: 1 put: 2;
at: 1) answers 2.

3. Objects like Closure or Context that have both named instance vari-
ables and indexed instance variables. In the object, the indexed in-
stance variables follow the named instance variables.

4. Objects like ByteString or Bitmap that have indexed instance vari-
ables numbered from 1 to N that contain raw data. Each datum may
occupy 8, 16 or 32-bits, depending on its class definition. The data can
be accessed as either integers, characters or floating-point numbers,
depending on how methods at: and at:put: are implemented. The
at: and at:put: methods convert between Pharo objects and raw
data, hiding the internal representation, but allowing the system to
represent efficiently data such as strings, and bitmaps.

The beauty of Pharo is that you normally don’t need to care about the differ-
ences between these three kinds of object.

Chapter summary
The object model of Pharo is both simple and uniform. Everything is an ob-
ject, and pretty much everything happens by sending messages.

« Everything is an object. Primitive entities like integers are objects, but
also classes are first-class objects.

Every object is an instance of a class. Classes define the structure of
their instances via private instance variables and the behaviour of their
instances via public methods. Each class is the unique instance of its
metaclass. Class variables are private variables shared by the class and
all the instances of the class. Classes cannot directly access instance
variables of their instances, and instances cannot access instance vari-
ables of their class. Accessors must be defined if this is needed.

Every class has a superclass. The root of the single inheritance hier-
archy is ProtoObject. Classes you define, however, should normally
inherit from Object or its subclasses. There is no syntax for defining
abstract classes. An abstract class is simply a class with an abstract
method (one whose implementation consists of the expression self
subclassResponsibility). Although Pharo supports only single in-
heritance, it is easy to share implementations of methods by packaging
them as traits.

Everything happens by sending messages. We do not call methods, we
send messages. The receiver then chooses its own method for respond-
ing to the message.

Method lookup follows the inheritance chain; self sends are dynamic
and start the method lookup in the class of the receiver, whereas su-

113

114

The Pharo object model

per sends start the method lookup in the superclass of class in which
the super send is written. From this perspective super sends are more
static than self sends.

There are three kinds of shared variables. Global variables are acces-
sible everywhere in the system. Class variables are shared between
a class, its subclasses and its instances. Pool variables are shared be-
tween a selected set of classes. You should avoid shared variables as
much as possible.

7.1

CHAPTER

Some of the key tools of the
Pharo environment

The goal of this chapter is to present the main tools of the Pharo program-
ming environment. You have already seen how to define methods and classes
using the browser; this chapter will show you more of its features, and intro-
duce you to some of the other browsers.

Of course, very occasionally you may find that your program does not work
as you expect. Pharo has an excellent debugger, but like most powerful tools,
it can be confusing on first use. We will walk you through a debugging ses-
sion and demonstrate some of the features of the debugger.

One of the unique features of Pharo (and its ancestors) is that while you are
programming, you are living in a world of live objects, not in a world of static
program text. This makes it possible to get very rapid feedback while pro-
gramming, which makes you more productive. There is a tool that let you
look at, and indeed change, live objects: the inspector.

Pharo environment overview

The System Browser is the central development tool. You will use it to cre-
ate, define, and organize your classes and methods. Using it you can also
navigate through all the library classes. Unlike other environments where
the source code is stored in separate files, in Pharo all classes and methods
are contained in the image.

The Finder tool will let you find methods, classes, pragmas, and more. You
can look for a method’s name, a class name, some source code, a pragma’s
name or even look for methods by providing an example!

115

Some of the key tools of the Pharo environment

The Monticello Browser is the starting point for loading code from, and
saving code in, Monticello packages. It is discussed in more detail in Chapter
: Sharing Code and Source Control.

The Process Browser provides a view of all of the processes (threads) exe-
cuting in Smalltalk.

The Test Runner lets you run and debug SUnit tests, and is described in
more detail in Chapter : SUnit.

The Transcript is a window on the Transcript output stream, which is
useful for writing log messages.

The Playground is a window into which you can type input. It can be used
for any purpose, but is most often used for typing Pharo expressions and
executing them via Do it. We have already briefly encountered the Play-
ground (and the Transcript) in Chapter : A Quick Tour of Pharo.

The Debugger has an obvious role, but you will discover that it has a more
central place compared to debuggers for other programming languages, be-
cause in Pharo you can program in the debugger. The debugger is not launched
from a menuy; it is normally entered by running a failing test, by typing CMD-

. to interrupt a running process, or by inserting a Halt now expression in
code.

Window groups

Managing multiple windows within a Pharo image can become a tedious pro-
cess. Window Groups are windows that offer tab support similar to the one
you are used to on your web browser. To create a window group, click on the
down arrow which appears on the top right corner of every window within
Pharo, and select Create window group. This will turn that window into a
window group with a tab bar, containing as its first tab the original contents
of the window. You can add other windows to the group (within the Pharo
image only, of course), by dragging and dropping their title bars onto the tab
bar, next to existing tabs. Each new window that you drag onto the tab bar
will be added as a new tab.

Themes and icon sets

If, like some of us, you are not a fan of the default bright theme, there is also
a dark theme that can be used with Pharo. It can be found in the Settings
browser in the World Menu (World > System > Settings), in the Appear-
ance section. The User interface theme pulldown allows you to switch
between the default Pharo3 theme and the Pharo3 Dark theme. You can
also experiment with available icon sets in the next pulldown in that section.

Please note that you may have to close and reopen existing windows to re-
draw them correctly with the new dark theme.

116

7.2

7.2 The main code browser

(] /home/kilon/Downloads/pharos.0/shared/Pharos.0.image

x -0 Group: Playground % Close
Playground x Nautilus- System Browser X 2 About
| Scoped | Variables History Navigat Change fitle...
Send to back
v Make next-to-topmost

(53] Last Modified Metl . Createwindow group
» £ Configurations Make unclosable

% Work Make undraggable
> 1 AST-Core

AST-Tests-Core O Maximize

A Hier. (© Class 7 Com. Window color...

Object subclass: #NameOfsubclass
instanceVariableNames: '*
classvariableNames: ''
category: '

140 Format as you rea

5 Group: Playground

Figure 7-1 Window Group with two tabs, one with Playground and one with Sys-
tem Browser

You can use the Catalog Browser to install additional themes. Open World
> Tools > Catalog Browser and search for theme in the search box. For
example, if you want something more colorful, you can download the Nireas
theme, which is a blue theme inspired by classic home computers like Amiga
500 and Amstrad CPC 6128. Nireas comes with a GUI tool that allows you to
customize the theme’s colors to your liking, if blue is not your thing.

Of course, if you are feeling especially adventurous, you can even make your
own themes using existing ones as templates.

The main code browser

Many different class browsers have been developed over the years for Pharo.
Pharo simplifies this story by offering a single browser that integrates var-
ious views. Figure 7-2 shows the browser as it appears when you first open
it.

The four small panes at the top of the browser represent a hierarchic view of
the methods in the system, much in the same way as the Mac 0S X Finder in
column mode provide a view of the files on the disk. The leftmost pane lists
packages of classes; select one (say Kernel) and the pane immediately to the
right will then show all of the classes in that package.

Similarly, if you select one of the classes in the second pane, say, Boolean
(see Figure 7-3), the third pane will show all of the protocols defined for that
class, as well as a virtual protocol --all--. Protocols are a way of categoriz-
ing methods; they make it easier to find and think about the behaviour of a
class by breaking it up into smaller, conceptually coherent pieces. The fourth
pane shows the names of all of the methods defined in the selected proto-

117

x - 0

Scoped Variables

Type: Pkgl|*
23] Last Modified Methods 4|
» - Configurations
£ Work
» [£1 AST-Core
[Z1 AST-FFI-Pharo50Compat
[1 AST-Tests-Core
» [Alien
[E1 Announcements-Core
[=1 Announcements-Help
» [£1 Announcements-Tests-C
[21 Athens-Balloon
» [E] Athens-Cairo vl
4 3

“Core§ |

A, Hier.

Object subclass: #NameOfSubclass
instanceVariableNames: ''
classvariableNames: '’
package: "'

() Class

1/41]

Nautilus - System Browser

History Navigator

7 Com.

Yan

[Formatasyouread W +L

Figure 7-2 The main code browser.

x -0
Scoped Variables
T “Core |'W (€ ProtoObject
o 4 © Object
Orfects ‘c. Boolean
Pragmas .
Processes False
Protocols L True
[E7 Kernel-Rules © UndefinedObject

» [£1 Kernel-Tests
» [£] Keymapping-Core
[E1 Keymapping-KeyCombir
[Keymapping-Pragmas
[E1 Keymapping-Settings
» [£] Keymapping-Tests
a F Kevmannmg—Tools-Sne’c' A Hier, © Class
Object subclass: #Boolean
instanceVariableNames: ''
classVariableNames: "'
package: 'Kernel-Objects'

1/401]

Boolean

History Navigator
—all--
controlling
converting
copying
logical operations
printing
self evaluating

&) *Fuel

&) *monticellofiletree-core
) *reflectivity

&) *ston-core

2 com. &) *unifiedFFi

/1, [asAlien] Method defined in all subclasses, but not in superclass 7 e X
/1. [xor:] Method defined in all subclasses, but not in superclass 7 % X

Ve
& A
===
and:
asBit
asExternalTypeOn:

deepCopy
equ:
fuelAccept:
ifFalse:
ifFalse:ifTrue:
ifTrue:

[l Formatasyouread W +L

Helpful? g %
Helpful? %

Figure 7-3 The browser with the class Boolean selected.

7.2 The main code browser

x — 0O Boolean>>#or: =
Scoped Variables History Navigato van
¥ (© ProtoObject —all-- v and:
e 2 a © Object controlling - ifFalse:
Objects c Boolean converting - ifFalse:ifTrue:
Pragmas . ;
Processes € False copying v ifTrue:
Protocols 3 True logical operations - ifTrueifFalse:
Kernel-Rules c UndefinedObject printing T or

> Kernel-Tests self evaluating

> Keymapping-Core F
Keymapping-KeyCombir
Keymapping-Pragmas
Keymapping-Settings

> Keymapping-Tests =]
Kevmannmg—Tools-Sne»(' A Hier. © Class ? com. (=)

or: alternativeBlock

"Non

self subclassResponsibility

1/6[1] Formatasyouread W +L

Figure 7-4 Browsing the or: method in class Boolean.

col. If you then select a method name, the source code of the corresponding
method appears in the large pane at the bottom of the browser, where you
can view it, edit it, and save the edited version. If you select class Boolean,
protocol controlling and the method or:, the browser should look like Fig-
ure 7-4.

Unlike directories in a file browser, the four top panes of the browser are not
quite equal. Whereas classes and methods are part of the Smalltalk language,
packages and protocols are not: they are a convenience introduced by the
browser to limit the amount of information that needs to be shown in each
pane. For example, if there were no protocols, the browser would have to
show a list of all of the methods in the selected class; for many classes this
list would be too large to navigate conveniently.

Because of this, the way that you create a new package or a new protocol

is different from the way that you create a new class or a new method. To
create a new package, right-click in the package pane and select Add pack-
age. ... To create a new protocol, right-click in the protocol pane and select
Add protocol.... Enter the name of the new thing in the dialog, and you
are done: there is nothing more to a package or a protocol than its name and
its contents.

In contrast, to create a new class or a new method, you will actually have to

119

Some of the key tools of the Pharo environment

PharokernelAssembly
Behavior

Methods
Models
Numbers

x — 0 Kernel =
Scoped Variables History gator Ve
¥ (© ProtoObject s
v Kemel 4| '€ MessageCatcher
Kemel € Object
BasicObjects € AbstractTimeZone
Chronology c LocalTimeZone
Classes c TimeZone
E)?(p:'p‘:lgons c AdditionalMthodState
Messaging © AssemblyManifest
c
c
c

ClassDescription v
Objects v
< > A, Hier € Class ? Com.

Object subclass: #NameOfSubclass
instancevariableNames: ''
classVariableNames: "'
package: 'Kernel'

1/4[1] Formatasyouread W +L
1. Pharo Bootstrap layer 2 X Helpful? b #*

Figure 7-5 Browser showing the class-creation template

write some Smalltalk code. If you click the currently selected package (in the
left-most pane), the bottom browser pane will display a class creation tem-
plate (Figure 7-5). You create a new class by editing this template: replace
Object by the name of the existing class of which you wish to create a sub-
class, replace NameOfSubclass by the name that you would like to give to
your new subclass, and fill in the instance variable names if you know them.
The package for the new class is by default the currently selected package,
but you can change this too if you like. If you already have the browser fo-
cused on the class that you wish to subclass, you can get the same template
with slightly different initialization by right-clicking in the class pane, and
selecting Add Class. You can also just edit the definition of an existing class,
changing the class name to something new. In all cases, when you accept

the new definition, the new class (the one whose name follows the #) is cre-
ated (as is the corresponding metaclass). Creating a class also creates a global
variable that references the class, which is why you can refer to all of the ex-
isting classes by using their names.

Can you see why the name of the new class has to appear as a Symbol (i.e.,
prefixed with #) in the class creation template, but after the class is created,
code can refer to the class by using the name as an identifier (without the #)?

The process of creating a new method is similar. First select the class in
which you want the method to live, and then select a protocol. The browser

120

7.2 The main code browser

* -0 Object -
Scoped Variables Histo gato Ve
¥ () ProtoObject o converting 4~ addDependent:
¥ [£1 Kernel 4 & MessageCatcher copying * breakDependents
Kernel € Object dependencies * canDiscardEdits
BasicObjects [3 AbstractTimeZone deprecation ~ dependents
Chronology (4 LocalTimeZone displaying ~ myDependents
Elasses c TimeZone error handling * myDependents:
CPYINg [3 AdditionalMethodState evaluating * removeDependent:
Exceptions . X X
Messaging € AssemblyManifest < finalization
Methods c PharoKernelAssembly flagging
Models [3 Behavior halting
Numbers < ClassDescription v introspection
Objects A i literal testin
< » A Hier. c Class 7 Com. g -

messageSelectorAndArgumentNames
"comment stating purpose of message"

| temporary variable names |
statementsl

1/5[1] - 5/5[12] Formatasyouread W +L

Figure 7-6 Showing the method-creation template.

will display a method-creation template, as shown in Figure 7-6, which you
can fill-in or edit.

Navigating the code space

The browser provides several tools for exploring and analyzing code. These
tools can be accessed by right-clicking in the various contextual menus, or,
in the case of the most frequently used tools, by means of keyboard short-
cuts.

Opening a new browser window

Sometimes you want to open multiple browser windows. When you are writ-
ing code you will almost certainly need at least two: one for the method that
you are typing, and another to browse around the system to see how things
work. You can open a browser on a class named by any selected text using
the CMD-b keyboard shortcut.

Todo Try this: In a playground window, type the name of a class (for
instance Morph), select it, and then press CMD-b. This trick is often useful;
it works in any text window.

121

x =0

Scoped Variables

v

A

> Morphic-Examples

Morphic-Tests

> Morphic-Widgets-Basic
Morphic-Widgets-ColorP
Morphic-Widgets-Extra

> Morphic-Widgets-FastTa

Morphic-Widgets-List

Morphic-Widgets-NewLis

Morphic-Widgets-Plugga ¥

3

¥

drawOn: aCanvas

= Morph

i BorderedMorph
i HandMorph
© MorphExtension

T
A Hier.

< Class

Some of the key tools of the Pharo environment

Morph>>#drawOn:

converting
copying

creation

debug and other
deferred message
drawing

drop shadows
dropping/grabbing
event handling
event testing
events-accessing

5 events-alarms

uinnts_nracaccing

‘

‘

.

"

“

Ve

changeClipSubmorphs =
clipLayoutCells
clipLayoutcells:
clipsubmorphs
clipSubmorphs:
clippingBounds
doesOwnRotation
drawDropHighlightOn:
drawDropShadowOn:
drawErrorOn:
drawMouseDownHighlightOn:

draw(
p—

Refactoring »
Rename method (all) Ctrl + R+ N

Add breakpoint

Add break once

Add break condition...
Find Method... trl +F +
Browse full tl+B+F
Generate test and jump
Generate test Ctrl + Shift
Senders of...
Implementors of...
Inheritance
Versions

aCanvas fillRectangle: self bounds fillStyle: self fillStyle borderStyle: self |

13011 g Categorize method Ctrl+ M+
Move to package...
T Remove... Ctrl+X+M

Compare two

Inspect Method

Toggle Bytecodes Ctrl+B +B
File Qut

Examples of ...

Figure 7-7 The Senders 0f...(b,n) menu item.

Message senders

While writing new code, refactoring existing code, or while trying to learn
how to use unfamiliar libraries, you will frequently want to know the senders
and implementors of various messages.

There are several ways of discovering where in the codebase a message is
used, by listing its senders:

1. From the method pane. Select a method in the method pane of the browser.
You can then right-click on it and select Senders of...(b,n) in the con-
text menu. Alternatively, you can also use the shortcut CMD-b CMD-n to do
the same thing (that’s what the b, n in the menu item stands for). To help
remember this shortcut, think: browse senders.

2. From the code pane. Highlight a particular message in the source code. This
can be done in a code pane of a browser, in a Playground window, or in any
text window. If you want to find the senders of a keyword message, you high-
light all of the keywords in the message, including arguments. Then, you

can right-click on the highlighted selector and choose Code search... >
senders of it (n). Alternatively, you can use the shortcut CMD-n instead
of right-clicking.

3. Using Spotter. Bring up a particular method in Spotter (press SHIFT-Enter

122

7.2 The main code browser

x — 0

Senders of drawOn: [51]

AthensCanvasWrapper (canvas drawing-general] draw:

AthensstrikeFontRenderer (rendering)

Canvas (drawing-general)

MergeJoinSection (as yet unclassified)

Morph (*Polymorph-Widgets)
Morph (*Athens-Morphic)

renderCharacters:from:to:
draw:

drawOn:
drawKeyboardFocusOn:

drawOnCanvasWrapperFor:

[Athens-Morphic]
[Athens-Cairo]
[Graphics-Canvas]
[Tool-Diff]
[Polymorph-Widgets]
[Athens-Morphic]

DiffMapMorph (nil) drawOn: [Tool-Diff]
EmbossedstringMorph (drawing) drawOn: [Morphic-Base]

FTCellMorph (drawing) drawOn: [Morphic-Widgets-FastTable]
FTColumnResizerMorph {drawing) drawOn: [Morphic-Widgets-FastTable]
FTTableContainerMorph (drawing) drawOn: [Morphic-Widgets-FastTable]

HandMorph (drawing) fullDrawOn:

HandMorph (drawing) nonCachingFullDrawOn: [Morphic-Core]

KMCatcherMorph (drawing) drawOn: [Keymapping-Settings] -
PRETEE R Y L oa AL S .

[Morphic-Core]

Browse Users Senders Implementors Version Source v

draw: anObject
AanObject drawOn: self

Figure 7-8 The Senders Browser showing that the Canvas>>draw method sends
the drawOn: message to its argument.

to bring up the Spotter search box, type in the message selector, arrow down
to a particular Implementor of that message, and press CMD-right arrow to
focus the search on it.) A list of Senders now appears in the search results.
Only a handful of senders are shown by default, but you can view the full list
by clicking on the arrow next to the Senders category (or arrow down to the
Senders list and expand it by pressing CMD-SHIFT-right arrow).

Let’s try some of these in action.

Open a browser on the Morph class, select the Morph>>drawOn: method

in the method pane. If you now press CMD-b CMD-n (or right-click in the
method pane and select Senders of... (Figure 7-7)), a browser will open
with the list of all methods in the image that send the selected message (Fig-
ure 7-8).

Now look at the third sender on the list, Canvas>>draw:. You can see that

this method sends drawOn: to whatever object is passed to it as an argu-

ment, which could potentially be an instance of any class at all. Dataflow
analysis can help figure out the class of the receiver of some messages, but

in general, there is no simple way for the browser to know which message-
sends might cause which methods to be executed. For this reason, the Senders

123

Some of the key tools of the Pharo environment

addAll: aKeyedCollecticn
akKeyedCollection == self iffalse: [
akeyedCollection keysAndvaluesDo: [:key :value |
self at: key put: valuell.
AaKeyedCollection

Format + Shift+F
Source code refactoring 3
Suggestions... tri+Th
P Doit D
P Printit
& Inspect it
& Basic Inspect it
il Debug it
15 [1] — 4/5 [30] #k Profile it Formatasyouread W +L

@, Find... Ctrl+F
@), Find again trl+G

| Codesearch.. . kbrowseit

#» Do again tr1+ 1| senders of it

+ Undo trl + 7 | implementors of it

Figure 7-9 Finding senders of a keyword message in the code pane.

browser shows exactly what its name suggests: all of the senders of the mes-
sage with the chosen selector. The senders browser is nevertheless extremely
useful when you need to understand how you can use a method: it lets you
navigate quickly through example uses. Since all of the methods with the
same selector should be used in the same way, all of the uses of a given mes-
sage ought to be similar.

Todo Switch tothe Dictionary class in the browser (remember, you
can right-click in the package or class pane and select Find class...,
or just use the CMD-f CMD-c shortcut), and select the addA11: method in
the method pane.

Looking at the source code, suppose you wanted to see all of the senders
ofthe at: key put: value message. You can simply highlight the whole
message send, and press CMD-n (or right-click and select Code Search >
senders of it (n)), to bring up the list of senders (see Figure 7-9).

Message implementors

Similarly, you may come across a message, and want to see how it’s imple-
mented. This is what the Implementors browser is for. It works in the same
way as the Senders browser, but instead lists all of the classes that imple-
ment a method with the same selector.

1. From the method pane. Select a method in the method pane. You can then
bring up the Implementors browser by right-clicking on the method and se-
lecting Implementors of...(b,m) in the context menu (or use the shortcut
CMD-b CMD-m). To help remember this shortcut, think: browse implementors.

2. From the code pane. Highlight a particular message in the source code (or
any text window). If you want to find the implementors of a keyword mes-
sage, you highlight all of the keywords in the message. Then, you can right-

124

7.2 The main code browser

click on the highlited selector and choose Code search... > implemen-
tors of it (m) from the menu (or just use the shortcut CMD-n).

3. Using Spotter. Bring up a method in Spotter (press SHIFT-Enter to bring
up the Spotter search box, and start typing the message selector). The Im-
plementors category will show up in the search results, showing the first
handful of implementors. To see the full list, click on the arrow to the right
of Implementors category (or arrow down to Implementors and press SHIFT-
CMD-right arrow).

Try this out: Press SHIFT-Enter and type drawOn: in the Spotter search box.
You should see a list showing 5 out of 100 implementors of that method. It
shouldn’t be all that surprising that so many classes implement this method:
drawOn: is the message that is understood by every object that is capable of
drawing itself on the screen.

Notice that if you only typed drawOn and left out the colon (:), the number
of implementors in the search results is larger. This is because Spotter is do-
ing a partial search, and including any methods that have ’drawOn’ in the
name, such as drawOn:offset:, drawOnAthensCanvas:, and so on. This is
useful for when you want to find a method but can only remember a part of
its name.

Method inheritance and overriding

The inheritance browser displays all the methods overridden by the dis-
played method. To see how it works, select the ImageMorph>>drawOn: method
in the browser. Note the arrow icons next to the method name (Figure 7-10).
The upward-pointing arrow tells you that ImageMorph>>drawOn: overrides

an inherited method (i.e., Morph>>drawOn:), and the downward-pointing ar-
row tells you that it is overridden by subclasses. (You can also click on the
icons to navigate to these methods.) Now right-click on it in the method

pane, and select Inheritance. The inheritance browser shows you the hi-
erarchy of overridden methods (see Figure 7-10).

Hierarchy view

By default, the browser presents a list of packages in the leftmost pane. How-
ever it is possible to switch to a class hierarchy view. Simply select a partic-
ular class of interest, such as ImageMorph and then click on the Hierarchy
button (Hier.). You will then see in the second pane a class hierarchy dis-
playing all superclasses and subclasses of the selected class.

Notice that the package pane is disabled, and the packages are greyed out.
When you are in Hierarchy view, you cannot change packages. To be able
to change them again, toggle out of the Hierarchy view by clicking on the
Hierarchy button again.

125

Some of the key tools of the Pharo environment

x -0 ImageMorph=>#drawOn: -
Scoped Variables History Navigato Van
W 3 AlignmentMerph — —all- o basicExtent: =
MU piIL-Dase 4 {1 cubic accessing + borderStyle:
Basic = EllipseMorph caching + borderWidth:
Borders 3 CircleMorph drawing changeOpacity
Events —_ -
Kemnel = FadingMorph geometry ~ color:
Layouts = ImageMorph @ initialization v defaultimage
Menus & AlphalmageMorph menu + drawOn:
ProgressBar 3 ImagePreviewMorph menu commands 3 dr
x - 0O Inheritance of drawOn: [5]
Morph (drawing) drawOn: [Morphic-Core]
ImageMorph (drawing) drawOn: [Morphic-Base]
AlphalmageMorph (drawing) drawOn: [Morphic-Base] dbirection (TAbleToRotate)
ThreePhaseButtonMorph (drawing) drawOn: [Morphic-Widgets-Basic] PP

CheckboxButtonMorph (drawing) drawOn: [Merphic-Widgets-Basic]

Browse Users Senders Implementors Version Source v

drawOn: aCanvas rmatasyouread W +L

aCanvas fillRectangle: self bounds fillStyle: self fillStyle borderStyle: self
borderStyle

Figure 7-10 ImageMorph>>drawOn: and the hierarchy of classes overriding it.

In Figure 7-11, the hierarchy view reveals that the direct superclass of Im-
ageMorph is Morph.

Finding variable references

By right-clicking on a class in the class pane, and selecting Analyze > Inst
var references... or Analyze > Class var refs...,youcan find out
where an instance variable or a class variable is used. You can also have ac-
cess to those views by clicking on the Variables button, above the package
list. Once you click on the button or select the menu item, you will be pre-
sented with a dialog that invites you to choose a variable from all of the vari-
ables defined in the current class, and all of the variables that it inherits. The
list is in inheritance order; it can often be useful to bring up this list just to
remind yourself of the name of an instance variable. If you click outside the
list, it will go away and no variable browser will be created. If you click on a
variable, bounds for example, a Message Browser will be created (Figure 7-12).

You can use a similar method to look at direct variable assignments (that is,

126

7.2 The main code browser

x -0 ImageMorph>>#drawOn: =
Scoped Variables History Navigato van
¥ © oObject - —all-- - basicExtent: =
A 0 Morph accessing + borderStyle:
= ImageMorph caching + borderWidth:
= AlphalmageMorp! drawing changeOpacity
= GLMPag ePreviewMorph geometry ~ color:
= 4 initialization + defaultimage
= menu + drawOn:
=} menu commands + dr AthensCanvas
u i} menus + extent:
= other form
£ v t-rotating form:
G T T e | G | e | ST i o,

drawon: aCanvas
"Draw the border after the image."
| style |
self isOpaque
ifTrue: [aCanvas drawImage: image at: self innerBounds origin]

ifFalse: [aCanvas translucentImage: image at: self innerBounds origin].
(style := self borderStyle) ifNotNil: [style frameRectangle: bounds on: aCanvas]

1/8[1] Formatasyouread W +L

Figure 7-11 A hierarchy view of ImageMorph.

places that modify the variable without using accessor methods). Right-click
on the class and select Analyze > Inst var assignments.

Bytecode source

You have the possibility of browsing the bytecode of a method. To do that,
right-click on your method and select Toggle Bytecodes, or use the short-
cut CMD-b CMD-b (see Figure 7-13). Reselect the method again to get back to
the normal view.

Refactorings

The contextual menus offer a large number of standard refactorings. Simply
right-click in any of the four panes to see the currently available refactoring
operations. See Figure 7-14.

Refactoring was formerly available only in a special browser called the refac-
toring browser, but it can now be accessed from any browser.

127

Some of the key tools of the Pharo environment

x -0 ImageMorph -
Scoped Variables Hists Ve
W = AlignmentMorph —all-- 4+ addCustemMenultems:hand: =
U P Base a 11 Cubic accessing + adoptPaneColor:
i = EllipseMorph caching » areasRemainingToFill:
Borders = CircleMorph drawing basicExtent:
Events — N
Kemel = FadingMorph geometry + borderStyle:
Layouts 1 ImageMorph < initialization + borderwidth:

x — 0O

Accesses to bounds [48]

Morph (submorphs-add/remove) addMorphCentered:

[Morphic-Core]

- hangeOpacity
olor:

A
lefaultimage

Morph (geometry) bottom [Morphic-Core]

Morph (geometry) bottom: [Morphic-Core] Irawon:

Morph (geometry) bottomCenter [Morphic-Core] IrawOnAthensCanvas

Morph (geometry) bottomLeft [Morphic-Core] wtent:

Morph (geometry) bottomRight [Morphic-Core] = A
Morph (geometry) bottomRight: [Morphic-Core]

Morph (drawing)
Morph (geometry)
Morph (geometry)

boundingBoxOfSubmorphs
bounds
center

[Morphic-Core]
[Morphic-Core]
[Morphic-Core]

Morph (layout) computeBounds [Morphic-Core]

Morph (layout) computeFullBounds [Morphic-Core]

Morph (drawing) drawErrorOn: [Morphic-Core]

Morph (geometry) extent [Morphic-Core] -

§o e - PO .
Browse Users Senders. Implementors Version Source v

addMorphCentered: aMorph

aMorph position: bounds center - (aMorph extent // 2).
self addMorphFront: aMorph.

Formatasyouread W +L

Figure 7-12 A Message Browser for accesses to bounds variable of Morph.

Browser menus

Many additional functions are available by right-clicking in the browser
panes. Even if the labels on the menu items are the same, their meaning may
be context dependent. For example, the package pane, the class pane, the
protocol pane and the method pane all have a File out menu item. How-
ever, they do different things: the package pane’s File out menu item files
out the whole package, the class pane’s item files out the whole class, the
protocol pane’s item files out the whole protocol, and the method pane’s
item files out just the displayed method.

Although this may seem obvious, it can be a source of confusion for begin-

ners.

Possibly the most useful menu item is Find class... (f,c) inthe package
or class panes. Most of us do not know the package contents of the whole
system, and it is much faster to type CMD-f CMD-c followed by the first few
characters of the name of a class than to guess which package it might be in.

The History Navigator pulldown, found above the protocol and method
panes, can also help you quickly go back to a class or method that you have
browsed recently, even if you have forgotten its name.

128

x -0 ImageMorph>>#drawOn: =
Scoped Variables History Navigator Ve
% = AlignmentMorph —all-- 4 4 addCustomMenultems:hand: =
¥ LS MUIpIIC-Dase {} Cubic accessing + adoptPaneColor:
Basldc = EllipseMorph «caching + areasRemainingToFill:
Barders _— = :
= CircleMorph drawin basicExtent:
Events — ~ P e
Kernel ™ FadingMorph geometry + borderStyle:
Layouts = ImageMorph < initialization + borderWidth:
Menus = AlphalmageMorph menu changeOpacity
ProgressBar = ImagePreviewMorph menu commands ~ color:
Le_;tsu;ppurt PolygonMorph menus v defaultimage
idgets .
. LineMorph other + drawOn:
» [3 Morphic-Core — Morp . hd
» [Morphic-Examples =1 SelectionMorph t-rotating + drawOnathensCanvas:
i v = il =
g Tserhe T | A e | @ | oom | B¢ et .
A
49 <70> self
50 <D®> send: isOpague
51 <9F> jumpFalse: 6@
52 <18> pushTemp: ©
53 <06> pushRcvr: 6
54 <78> self
55 <D1> send: innerBounds
56 <D2> send: origin
57 <F3> send: drawImage:at:
58 <87> pop
59 <96> jumpTo: 67
£A £10% miimbhTame. A v
1/30[1] [Formatasyouread W 4L
Figure 7-13 Bytecode of the ImageMorph»#DrawOn: compiled method.
x -0 ImageMorph>>#drawOn: -
Scoped Variables History Navigator Y a5
=5 W I AlignmentMorph A —all- als Add a parameter
a [} Cubic accessing Rename method (all) Cirl + -+ M | Deprecate
3 EllipseMorph caching Add breakpoint Inline parameter
CircleMorph drawing Add break once Inline target sends
FadingMorph geometry Add break condition... Move
ImageMorph & initialization Find Method... Ctrl+ £+ | Move toclass side
AlphalmageMorph menu Browse full Ctrl+B+F :“S: :P
Progressgar ImagePreviewMorph menu commands Generatetestandjump Ctrl+H~+J stmw‘e’"‘“
Text Support 5 FolygonMorph menus Generate test Col+shift+ 1+ Jf FEMOME —
Widgets LineMorph other St 4B N amemethod(all) Ctrl £R+M
> [1 Morphic-Core . Implementors of.. Ctl+B+M
» EJ Morphic-Examples 5 SelectionMorph vy trotating Inheritance Ctri+ B+ 1|Undo
N EambicTert 7 Adien | ©Cas | 7 com et v Versions ct+ M +v|Redo
drawon: aCanvas Categorize method Ctri+M+M
. he border after the image." TR
Draw the h ge- T Remove... Ctrl+X+M
| style | Compare twe methods
self isOpaque Inspect Method
ifTrue: [acanvas drawImage: image at: self innerBounds origin] JoEREE e (Eii R
Y iy . - File Out
iffalse: [aCanvas translucentlnage: image at: self innerBounds originl. | J5 8
(style := self borderstyle) ifNotNil: [style frameRectangle: bounds on: ac LIS
18[1] [Formatasyouread W +L

Figure 7-14 Refactoring operations.

7-3

Some of the key tools of the Pharo environment

Another useful method in the class pane is Find method (CMD-f CMD-m),
which brings up a menu of all the methods in the class and gives you a search
box.

Alternatively, if you are searching for a particular method of the selected
class, it is often quicker to browse the --all-- protocol, place the mouse in
the method pane, and type the first letter of the name of the method that
you are looking for. This will usually scroll the pane so that the sought-for
method name is visible.

I Todo Trybothways of navigating to OrderedCollection>>removeAt:

There are many other options available in the menus. It pays to spend a few
minutes working with the browser and seeing what is there.

Browsing programmatically

The class SystemNavigation provides a number of utility methods that are
useful for navigating around the system. Many of the functions offered by
the system browser are implemented by SystemNavigation.

Open a playground and evaluate the following code to browse the senders of
drawOn::

[SystemNavigation default browseAllSendersOf: #drawOn:

To restrict the search for senders to the methods of a specific class:

SystemNavigation default browseAllSendersOf: #drawOn: localTo:
ImageMorph

Because the development tools are objects, they are completely accessible
from programs and you can develop your own tools or adapt the existing
tools to your needs.

The programmatic equivalent to the Implementors of... menu item is:
[SystemNavigation default browseAllImplementorsOf: #drawOn:

I Todo To learn more about what is available, explore the class System-
Navigation with the browser.

The inspector
One of the things that makes Pharo so different from many other program-
ming environments is that it provides you with a window onto a world of live

objects, not a world of static code. Any of those objects can be examined by
the programmer, and even modified (although some care is necessary when

130

7.3 Theinspector

x — O Inspectoron aDateAndTime (2016-12-29T14:14:04.876383+01:00) O ? -

a DateAndTime (2016-12-29T14:14:04.876383+01:00) &

Raw Details Meta

Variable Value
E self 2016-12-29T14:14:04.876383+01:00
» I julianDayNumber 2457752
» I nanos BT6383000
» I offset 0:01:00:00
» I seconds 47644

"2016-12-29T14:14:04.876383+01: 00"
self

Figure 7-15 Inspecting DateAndTime now.

changing the basic objects that support the system). By all means experi-
ment, but save your image first!

As an illustration of what you can do with an inspector, type DateAndTime
now in a playground, and then right-click and choose Inspect it (CMD-i)or
Do it and go (CMD-g) (the latter opens an inspector inside the playground
window).

Note that it’s often not necessary to select the text before using the menu;
if no text is selected, the menu operations work on the whole of the current
line.

A window like that shown in Figure 7-15 will appear. This is an inspector,
and can be thought of as a window onto the internals of a particular object -
in this case, the particular instance of DateAndTime that was created when
you evaluated the expression DateAndTime now. The title bar of the window
shows the printable representation of the object that is being inspected.

In the default view (the Raw tab), instance variables can be explored by se-
lecting them in the variable list in the Variable column. As you select a vari-
able, its printable representation is shown in the Value column. More impor-
tantly, a separate Inspector view for the selected variable opens in the right
hand pane.

For variables that are simple types (booleans, integers, etc), the nested in-
spector view is not much different from the printable representation in the

131

74

Some of the key tools of the Pharo environment

Value column (although it is a full-fledged Inspector). But for most instance
variables, the nested Inspector view on the right has its own Raw tab, with its
own list of instance variables. (You can also see that list in the left pane, by
expanding the triangle next to a variable’s name.)

You can keep drilling down into the hierarchy of instance variables, with
more nested Inspector panes opening to the right of the parent. However,
to prevent the multiple panes from being impractical, the panes "scroll” to
the right, within the overall inspector window. You can keep track of which
"page” you're on, and also back-track to the original instance that you were
inspecting, by using the pagination dots at the bottom of the inspector win-
dow.

There are special variants of the inspector for Dictionaries, OrderedCollec-
tions, CompiledMethods and a few other classes. These variants have other
tabs, in addition to the Raw view, that make it easier to examine the contents
of these special objects. For example, an inspector on a Dictionary instance,
has an additional Items tab that shows that dictionary’s keys and values in
an intuitive fashion.

The horizontal pane at the bottom of the inspector is a small playground
window. It is useful because in this window, the pseudo-variable self is
bound to the object that you have selected in the left pane. That means you
can write and evaluate arbitrary code expressions that use the selected vari-
able’s self, in that bottom pane.

For example, take the inspector on DateAndTime now that you opened ear-
lier in this section. You can select its bottom playground pane, and evaluate
the expression self - DateAndTime today. The result will be a Duration
object that represents the time interval between midnight today and the in-
stant at which you evaluated DateAndTime now and created the DateAnd-
Time instance that you are inspecting. You can also try evaluating DateAnd-
Time now - self; this will tell you how long you have spent reading this
section of this book!

The bottom pane is especially useful if you wanted to change the instance
variables of the object being inspected. Provided that you have accessor
methods defined for those variables, you can send messages to the root self
and change its variables via those accessor methods.

The debugger

The debugger is arguably the most powerful tool in the Pharo tool suite. It is
used not just for debugging, but also for writing new code. To demonstrate
the debugger, let’s start by creating a bug!

Using the browser, add the following method to the class String:

132

7.4 The debugger

Listing 7-16 A buggy method

[suffix
"assumes that I'm a file name, and answers my suffix, the part
after the last dot"

| dot dotPosition |

dot := ".'.
dotPosition := (self size to: 1 by: -1) detect: [:i | (self at:
i) = dot].

A

self copyFrom: dotPosition to: self size

x — 0O Playground D ?~
Page > = =
'readme.txt' suffix
x — 0O NotFound: [:i | (self at: i) = dot] not found in Interval -
Proceed Abandon Debug Report
Interval(Collection) errorNotFound: A
Interval(Collection) detect: [self errorNotFound: aBlock]

Interval(Collection) detect:ifFound:ifNone:

Interval({Collection) detectifNone:

Interval(Collection) detect:

ByteString(String) suffix

UndefinedObject Dolt

OpalCompiler evaluate v

Figure 7-17 A PreDebugWindow notifies us of a bug.

Of course, we are sure that such a trivial method will work, so instead of
writing an SUnit test, we just type 'readme.txt' suffix ina playground
and Print it (p). What a surprise! Instead of getting the expected answer
"txt', a PreDebugWindow pops up, as shown in Figure 7-17.

The PreDebugWindow has a title bar that tells us what error occurred, and
shows us a stack trace of the messages that led up to the error. Starting from
the bottom of the trace, UndefinedObject>>DoIt represents the code that
was compiled and run when we selected 'readme.txt' suffix in the play-
ground and asked Pharo to Print it. This code, of course, sent the message
suffix toaByteString object (' readme.txt"). This caused the inherited
suffix method in class String to execute; all this information is encoded
in the next line of the stack trace, ByteString(String)>>suffix. Work-
ing up the stack, we can see that suffix sent detect:... and eventually de-
tect:ifNone sent errorNotFound:.

To find out why the dot was not found, we need the debugger itself, so click

133

Some of the key tools of the Pharo environment

x -0 NotFound: [:i| (self at: i) = dot] not found in Interval Bytecode ~
Stack »Proceed (% Restart 3 Into & Over * Through -=
Interval(Collection) errorNotFound:

Interval(Collection) detect: [self errorNotFound: aBlock]

Interval(Collection) detectifFound:ifNone:

Interval(Collection) detectifNone:

Interval(Collection) detect:

Source @, Whereis? & Browse

do: [:each |
(aBlock value: each)
ifTrue: [# foundBlock cull: each]].
A exceptionBlock value

Variables

Type Variable Value
self (10 to: 1 by: -1)
aBlock [:i | (self at: i) = dot]
exceptionBlock [self errorMotFound: aBlock |
foundBlock [:element | element]

Figure 7-18 The debugger showing the execution stack and the state of various
objects.

on Debug. You can also open the debugger by clicking on any of the lines on
the stack trace. If you do this, the debugger will open already focused on the
corresponding method.

The debugger is shown in Figure 7-18; it looks intimidating at first, but it is
quite easy to use. The title bar and the top pane are very similar to those that
we saw in the PreDebugWindow. However, the debugger combines the stack
trace with a method browser, so when you select a line in the stack trace,
the corresponding method is shown in the pane below. It’s important to re-
alize that the execution that caused the error is still in your image, but in a
suspended state. Each line of the stack trace represents a frame on the ex-
ecution stack that contains all of the information necessary to continue the
execution. This includes all of the objects involved in the computation, with
their instance variables, and all of the temporary variables of the executing
methods.

In Figure 7-18 we have selected the detect:ifFound:IfNone: method in
the top pane. The method body is displayed in the center pane; the blue
highlight around the message value shows that the current method has sent
the message value and is waiting for an answer.

The Variables pane at the bottom of the debugger is actually like a inspec-

134

7.4 The debugger

tor (without playground pane). You can select one variable and open another
inspector pane with the well-known inspector panes (Raw, ...), and an Eval-
uator acting as a Playground for evaluating code within the context of the
selected variable. The variables list has up to four types variables it shows.

+ parameter any parameter passed to this method.
+ temp any temporaries used in this method.

» attribute any instance variable accessible from the context of the cur-
rent receiver.

implicit pseudo variables (self, thisContext, stackTop) used in the
current context.

As you select different stack frames, the identity of self may change, and so
will the contents of the Variables list. If you click on self in the bottom-
left pane, you will see that self is the interval (16 to: 1 by -1), whichis
what we expect. You can always select self and select the Evaluator pane
to evaluate some code in the content of the current receiver. But because all
of the variables are also in scope in the method pane; you should feel free to
type or select expressions directly in the method pane and evaluate them.
You can always Cancel (1) your changes using the menu or CMD-1.

Selecting thisContext from the list of (implicit) variables, shows the cur-
rent context object.

As we can see one method lower in the stack trace, the exceptionBlock is
[self errorNotFound: ...J,so, itis not surprising that we see the corre-
sponding error message.

Incidentally, if you want to open a full inspector on one of the variables shown
in the mini-inspectors, just double-click on the name of the variable, or se-
lect the name of the variable and right-click to choose Inspect (i). This

can be useful if you want to watch how a variable changes while you execute
other code.

Looking back at the method window, we see that we expected the penulti-
mate line of the method to find ' . ' in the string 'readme.txt', and that
execution should never have reached the final line. Pharo does not let us run
an execution backwards, but it does let us start a method again, which works
very well in code that does not mutate objects, but instead creates new ones.

Click Restart, and you will see that the focus of execution returns to the
first statement of the current method. The blue highlight shows that the
next message to be sent will be do: (see Figure 7-19).

The Into and Over buttons give us two different ways to step through the
execution. If you click Over, Pharo executes the current message-send (in
this case the do:) in one step, unless there is an error. So Over will take us
to the next message-send in the current method, which is value - this is ex-

135

Some of the key tools of the Pharo environment

x — 0O NotFound: [:i | (self at: i) = dot] not found in Interval Bytecode ~
Stack bProceed (% Restart ™ Into # Over = Through -=
Interval{Collection) detectifFound:ifNone:

Interval{Collection) detect:ifNone:

Interval(Collection) detect:

ByteString(String) suffix

UndefinedObject Dolt

OpalCompiler evaluate

RubSmalltalkEditor evaluate:andDo:

), Whereis? & Browse

A

self
do: [[| reach |
(aBlock value: each)
ifTrue: [* foundBlock cull: each] J.
A exceptionBlock value

Variables Evaluator Raw Source Meta x
Type Variable Value "Interval(Collection)>>detect:ifFound:ifNone:"

self (10 to: L by:-1) self
aBlock [:i]{self at:i) = dot]
exceptionBlock [self errorNotFound: aBlocl
foundBlock [:element | element]
start 10
step -1
stop 1

implicit thisContext Interval(Collection)>>detec
stack top [:element | element |

Figure 7-19 The debugger after restarting the detect:ifFound:IfNone:
method.

actly where we started, and not much help. What we need to do is to find out
why the do: is not finding the character that we are looking for.

After clicking Over, click Restart to get back to the situation shown in Fig-
ure 7-19.

Click Into two times; Pharo will go into the method corresponding to the
highlighted message-send, in this case, Interval>>do:.

However, it turns out that this is not much help either; we can be fairly con-
fident that Interval>>do: is not broken. The bug is much more likely to
be in what we asked Pharo to do. Through is the appropriate button to use
in this case: we want to ignore the details of the do: itself and focus on the
execution of the argument block.

Select the detect:ifFound:IfNone: method again and Restart to get back
to the state shown in Figure 7-19. Now click on Through a few times. Select

136

7.4 The debugger

x -0 NotFound: [:i] (self at: i) = dot] not found in Interval Bytecode ~
Stack »Proceed (hRestart 3 Into & Over %% Through -=
Interval(Collection) detect:ifFound:ifNone: [:each | (aBlock value: each) ifTrue: [# foundBlock cull
Interval do:

Interval(Collection) detect:ifFound:ifNone:

Interval(Collection) detect:ifNone:

Interval(Collection) detect:

ByteString(String) suffix

UndefinedObject Dolt

@), whereis? # Browse

A

If some
foundBl
If none

self
do: [:each |
(aBlock value: each)
ifTrue: [* foundBlock cull: each]].
* exceptionBlock value

Variables Evaluator Raw Integer Meta X
Type Variable Value ngn

self (10to: 1 by:-1) self
aBlock [:i](self at: i) =dot]

temp each T
exceptionBlock [self errarNotFound: aBlocl
foundBlock [:element | element]
start 10
step -1
stop 1
thisContext [:each| (aBlock value..>de
stack top 7

Figure 7-20 The debugger after stepping Through the do: method several
times.

each in the context window as you do so. You should see each count down
from 10 as the do: method executes.

When each is 7 we expect the ifTrue: block to be executed, but it isn’t. To
see what is going wrong, go Into the execution of value: as illustrated in
Figure 7-20.

After clicking Into, we find ourselves in the position shown in Figure 7-21.
It looks at first that we have gone back to the suffix method, but this is be-
cause we are now executing the block that suffix provided as argument to
detect:.

If you select dot in the context inspector, you will see that its value is ' . .
And now you see why they are not equal: the seventh character of 'readme. txt'
is of course a Character, while dot isa String.

Now that we see the bug, the fix is obvious: we have to convert dot to a char-
acter before starting to search for it.

137

Some of the key tools of the Pharo environment

x -0 NotFound: [:i | (self at: i) = dot] not found in Interval Bytecode ~
Stack »Proceed (hRestart M Into # Over * Through -=
ByteString(String) suffix [:i] (self at: i) =dot |
Interval(Collection) detectifFound:ifNone: [:each | (aBlock value: each) ifTrue: [* foundBlock cull
Interval do:
Interval(Collection) detectifFound:ifNone:
Interval(Collection) detectifNone:
Interval(Collection) detect:
ByteString(String) suffix
Source @), Whereis? # Browse
suffix
" s that I'm my suffix, the part after
the
| dot dotPosition |
dot := '.'.
dotPosition := (self size to: 1 by: -1) detect: [:i | (self at: i) = dot 1.
A self copyFrom: dotPosition to: self size
Variables String Items Evaluator Raw Meta X
Type Variable Value readme.txt
implicit self 'readme. txt'
dot "
dotPosition nil
i T
thisContext [:i](self at:i) = do...eString(
stack top 7

Figure 7-21 The debugger showing why 'readme.txt' at: 7 isnotequalto
dot.

Change the code right in the debugger so that the assignment reads dot :=
$. and accept the change.

Because we are executing code inside a block that is inside a detect :, sev-
eral stack frames will have to be abandoned in order to make this change.
Pharo asks us if this is what we want (see Figure 7-22), and, assuming that we
click yes, will save (and compile) the new method.

The evaluation of the expression 'readme.txt' suffix will complete, and
print the answer ' . txt"'.

Is the answer correct? Unfortunately, we can’t say for sure. Should the suffix
be . txt or txt? The method comment in suffix is not very precise. The
way to avoid this sort of problem is to write an SUnit test that defines the
answer.

The effort required to do that was little more than to run the same test in the
playground, but using SUnit saves the test as executable documentation, and

138

7.4 The debugger

x -0

Stack
ByteString(String)
Interval(Collection)
Interval
Interval(Collection)
Interval(Collection)

Source

suffix

hat I'm a file

| dot dotPosition |

dot := §..

dotPosition := (self size to:
A self copyFrom: dotPosition

Variables

Type Variable
self
dot

dotPosition

temp

name,

NotFound: [:i | (self at: i) = dot] not found in Interval

suffix
detectifFound:ifNone:
do:
detectifFound:ifNone:
detectifNone:

and answers my

Question

|

, the p

Bytecode
»Proceed (5 Restart M Into & Over =¥ Through -=

[:i] (self at: i) =dot]
[:each | (aBlock value: each) ifTrue: [# foundBlock cull:

©, Whereis? # Browse

art after

1 will have to revert to the method from
which this block eriginated. Is that OK?

i) = dot].
Yes | No

String Items Evaluator Raw Meta x

Value

‘readme. tt'

Figure 7-22 Changing the suffix method in the debugger: asking for confirma-
tion of the exit from an inner block.

Listing 7-23 A simple test for the suf fix method

[testSuffixFound
self assert:

Listing 7-25

[testSuffixFound
self assert:
self assert:

'readme.txt'

'readme. txt'
'read.me.txt’

suffix =

suffix =

suffix =

"txt'

A better test for the suffix method

txt'.

"txt!

makes it easy for others to run. Moreover, if you add testSuffix to the class
StringTest and run that test suite with SUnit, you can very quickly get back
to debugging the error. SUnit opens the debugger on the failing assertion,
but you need only go back down the stack one frame, Restart the test and
go Into the suffix method, and you can correct the error, as we are doing
in Figure 7-24. It is then only a second of work to click on the Run Failures
button in the SUnit Test Runner, and confirm that the test now passes.

Here is a better test:

Why is this test better? Because it tells the reader what the method should
do if there is more than one dot in the target String.

There are a few other ways to get into the debugger in addition to catching

139

Some of the key tools of the Pharo environment

x - 0 TestFailure: Assertion failed Bytecode GT ~
Stack »Proceed (hRestart M Into & Over = Through -=
ByteString(String) suffix
StringTest testSuffixFound
StringTest(TestCase) performTest
StringTest(TestCase) runCase [self setUp. self performTest]
BlockClosure ensure:
Source | SetUp @, Whereis? # Browse
suffix
" that m a file name nd y suffix, the part after
the
| dot dotPosition |
dot := 35..
dotPosition := (self size to: 1 by: -1) detect: [:1 | (self at: i) = dot].

A self copyFrom: dotPosition + 1 to: self size

Variables

Type Variable Value
self ‘readme.txt’
dot nil
dotPosition nil
thisContext ByteString(String)>>suffix

Figure 7-24 Changing the suffix method in the debugger: fixing the off-by-one
error after an SUnit assertion failure.

Listing 7-26 Inserting a ha'lt into the suffix method.

[suffix
"assumes that I'm a file name, and answers my suffix, the part
after the last dot"

| dot dotPosition |

dot := FileDirectory dot first.

dotPosition := (self size to: 1 by: -1) detect: [:i | (self at:
i) = dot 1.

Halt now.

~ self copyFrom: dotPosition to: self size

errors and assertion failures. If you execute code that goes into an infinite
loop, you can interrupt it and open a debugger on the computation by typing
CMD-. (that’s a full stop or a period, depending on where you learned En-
glish). (1t is also useful to know that you can bring up an emergency debug-
ger at any time by typing CMD-SHIFT-.) You can also just edit the suspect
code to insert Halt now.. So, for example, we might edit the suffix method
to read as follows:

When we run this method, the execution of the Halt now will bring up the
pre-debugger, from where we can either proceed, or go into the debugger

140

7-5

7.5 The process browser

Listing 7-27 A second test for the suf fix method: the target has no suffix

testSuffixNotFound
self assert: 'readme' suffix =

(and from there look at variables, step through the computation, and edit the
code).

That’s all there is to the debugger, but it’s not all there is to the suffix method.
The initial bug should have made you realize that if there is no dot in the tar-
get string, the suffix method will raise an error. This isn’t the behaviour

that we want, so let’s add a second test to specify what should happen in this
case.

Lastly, add testNoSuffix to the test suite in class StringTest, and watch
the test raise an error. Enter the debugger by selecting the erroneous test in
SUnit, and edit the code so that the test passes. The easiest and clearest way
to do this is to replace the detect: message by detect:ifNone:, where the
second argument is a block that simply returns the string size.

We will learn more about SUnit in Chapter : SUnit.

The process browser

Pharo is a multi-threaded system, and there are many lightweight processes
(also known as threads) running concurrently in your image. In the future
the Pharo virtual machine may take advantage of multiple processors when
they are available, but at present, concurrency is implemented by time-
slicing.

The Process Browser is a cousin of the debugger that lets you look at the var-
ious processes running inside Pharo. You can open it using the World Menu,
by selecting Tools > Process Browser (figure 7-28 shows a screenshot).
The top-left pane lists all of the processes in Pharo, in priority order, from
the timer interrupt watcher at priority 80 to the idle process at priority 10.
Of course, on a uniprocessor, the only process that can be running when you
look is the UI process; all others will be waiting for some kind of event.

By default, the display of processes is static; it can be updated by right-clicking
and selecting Turn on auto-update (a).

If you select a process in the top-left pane, its stack trace is displayed in the
top-right pane, just as with the debugger. If you select a stack frame, the cor-
responding method is displayed in the bottom pane. The process browser

is not equipped with mini-inspectors for self and thisContext, but right-
clicking on the stack frames provide equivalent functionality.

141

7.6

7-7

Some of the key tools of the Pharo environment

x — 0O Process Browser -

(80) Delay Scheduling Process: DelayMicrosecondScheduler>>run InputEventFetcher=>waitForinput

(60) Input Event Fetcher Process: InputEventFetcher=>waitForinp InputEventFetcher=>eventLoop

(60) Low Space Watcher: Smalltalkimage>=lowSpaceWatcher [self eventLoop] in InputEventFetcher>>installEventLoop

(50) WeakArray Finalization Process: WeakArray class>=finalizatio [self value. Processor terminateActive] in BlockClosure=>newPr
(40s) Morphic Ul Process: nil

(30) GTSpotterEventRecorder regular delivery process: [delaySen

(10] Idle Process: ProcessorScheduler class==idleProcess

4 >

waitForInput
inputSemaphore wait.

Figure 7-28 The Process Browser showing all the active thread by priority.

Finding methods

The Finder is one of several code search tools in Pharo to help you find meth-
ods by name (or even functionality). We've discussed it in some length in
Chapter : A Quick Tour of Pharo.

Chapter summary

In order to develop effectively with Pharo, it is important to invest some ef-
fort into learning the tools available in the environment.

+ The standard browser is your main interface for browsing existing
packages, classes, method protocols and methods, and for defining new
ones.

+ The browser offers several useful shortcuts to directly jump to senders
or implementors of a message, versions of a method, and so on.

+ From any of the tools, you can highlight the name of a class or a method
and immediately jump to a browser by using the keyboard shortcut
CMD-b.

* You can also browse the Pharo system programmatically by sending
messages to SystemNavigation default.

142

7.7 Chapter summary

+ The Inspector is a tool that is useful for exploring and interacting with
live objects in your image.

* You can even inspect tools by meta-clicking to bring up their morphic
halo and selecting the debug handle.

+ The Debugger is a tool that not only lets you inspect the run-time stack
of your program when an error is raised, but it also enables you to in-
teract with all of the objects of your application, including the source
code. In many cases you can modify your source code from the debug-
ger and continue executing. The debugger is especially effective as a
tool to support test-first development in tandem with SUnit (Chapter :
SUnit).

« The Process Browser lets you monitor, query and interact with the pro-
cesses current running in your image.

+ The Finder is a tool for locating methods.

143

8.1

CHAPTER

Sharing code and source control

The consequence of programming in a world of live objects rather than with
files and a text editor is that you have to do something explicit to export
your program from your Pharo image. The old way of doing this is by cre-
ating a fileout or a change set, which are essentially encoded text files that
can be imported into another system. The preferred way of sharing code in
Pharo is to save packages and share them using a versioned repository on a
server. Up to Pharo 5.0, this is done using a tool called Monticello, and is a
much more powerful and effective way to work, especially when working in
a team. In the future Pharo will officially offer support for Git and hosting on
servers such as GitHub, BitBucket and more.

We gave you a quick overview of Monticello, Pharo’s packaging tool, in Chap-
ter : A First Application. However, Monticello has many more features than
were discussed there. Because Monticello manages packages, before telling
you more about Monticello, it’s important that we first explain exactly what
a package is.

Packages: groups of classes and methods

We have pointed out earlier (in Chapter : A First Application) packages are
more or less a group of classes and methods. Now we will see exactly what
the relationship is. The package system is a simple, lightweight way of orga-
nizing Pharo source code that exploits a simple naming convention.

Let’s explain this using an example. Suppose that you are developing a frame-
work to facilitate the use of relational databases from Pharo. You have de-
cided to call your framework PharoLink, and have created a couple of classes
such as OracleConnection, MySQLConnection, PostgresConnection but

145

Sharing code and source control

also DBTable, DBRow, DBQuery, and so on. These classes are placed inside a
package called PharoLink. However, not all of your code will reside in these
classes. For example, you may also have a series of methods to convert ob-
jects into an SQL-friendly format: Object>>#asSQL, String>>#asSQL, or
Date>>#asSqQL.

These methods belong in the same package as the classes. But clearly the
whole of class Object does not belong in your package! So you need a way of
putting certain methods in a package, even though the rest of the class is in
another package.

The way that you do this is by placing those methods in a protocol (of 0b-
ject, String, Date, and so on) named *PharoLink (note the initial asterisk).
The *PharoLink protocols added to the package named PharoLink. To be
precise, the rules for what goes in a package are as follows.

A package named Foo contains: 1. All class definitions of classes in the pack-
age Foo.

2. All methods in any class in protocols named *Foo or *foo (When perform-
ing this comparison, the case of the letters in the names is ignored.), or whose
name starts with *Foo- or =foo-.

3. All methods in classes in the package Foo except for those methods in pro-
tocols whose names start with *: Because classes of package Foo can be also
extended by other packages.

A consequence of these rules is that each class definition and each method
belongs to exactly one package.

Accessing packages

The class RPackage represents packages. The class RPackageOrganizer im-
plements a singleton that holds all the Pharo packages. The following ex-
pressions are examples of the queries that you can perform.

(RPackageOrganizer default packageNamed: 'AST-Core')
definedClassNames

(RPackageOrganizer default packageNamed: 'AST-Core') extendedClasses

Basic Monticello

When you open the Monticello browser, you will see two list panes and a row
of buttons, as shown in Figure 8-1. The left-hand pane lists all of the pack-
ages that have been loaded into the image that you are running; the particu-
lar version of the package is shown in parentheses after the name.

The right-hand pane lists all of the source code repositories that Monticello
knows about, usually because it has loaded code from them. If you select a

146

8.1 Packages: groups of classes and methods

x -0 Monticello Browser -
+Package +Config +5lice Browse Changes +Repository Save Open
v ¥ | Package |¥
AST-Core (Thelntegrator.393) - (Users/ducasse/Workspace/FirstCircle/ActiveResearch/i*
AST-FFI-Pharo50Compatibility (EstebanLorenzano.1) http://smalltalkhub.com/mc/Pharo/Athens/main/
AST-Tests-Core (Thelntegrator.89) http://smalltalkhub.com/mc/PharoExtras,/CatalogBrow:

Alien (eem.28)

Announcements-Core (EstebanLorenzano.63)
Announcements-Help (Thelntegrator.12)
Announcements-Tests-Core (Thelntegrator.27)

http://smalltalkhub.com/mc/Pharo/Codelmporter/mair
http://smalltalkhub.com/mc/PharoExtras/Tool-Depend
http://smalltalkhub.com/mc/estebanim/FastTable/mail

AsmJit-Core (Thelntegrator.10) http://smalltalkhub.com/mc/Moose/GToolkit/main/
Asm.Jit-Extension (Thelntegrator.10) http://smalltalkhub.com/mc/Moose/Glamour/main/
A lit Incérirtinne (Thalntamratar 181 v httne [funana canaabcnnrra fnmPharn

<4 > 4 >

Figure 8-1 The Monticello browser.

package in the left pane, the right pane is filtered to show only those reposi-
tories that contain versions of the selected package.

The package-cache

One of the repositories is a directory named package-cache, which is a sub-
directory of the directory in which your image is running. When you load
code from or write code to a remote repository, a copy is also saved in the
package cache. This can be useful if the network is not available and you
need to access a package. Also, if you are given a Monticello (.mcz) file di-
rectly, for example as an email attachment, the most convenient way to ac-
cess it is to place it in the package-cache directory.

Adding repositories

To add a new repository to the list, click the +Repository, and choose the
kind of repository from the pop-up menu. Let’s add an HTTP repository.

Todo Open Monticello, click on +Repository, and select HTTP. Edit the
dialog to read:

MCHttpRepository
location: 'http://squeaksource.com/PharoByExample'
user: ''
password: "'

Click on Open to open a repository browser on this repository. You should
see something like Figure 8-2. On the left is a list of all of the packages in the
repository; if you select one, then the pane on the right will show all of the
versions of the selected package in this repository.

147

Sharing code and source control

x — 0 Repository: http://squeaksource.com/PharoByExample -
Refresh Save Browse History Changes load Merge Adopt = Copy Diff
v v
MySmalltalkTest 4 | PBE-LightsOut-oscar_nierstrasz.3.mcz
PBE PBE-LightsOut-oscar_nierstrasz.2.mez
PBE-All PBE-LightsOut-onierstrasz.1.mcz

PBE-Collections

PBE-Environment

PBE-Exceptions

PBE-LightsOut

PBE-Morphic

PBE-OmniBrowser

PBE-QuickTour

PBE-Reflection v

Name: PBE-LightsOut-onierstrasz.l

Author: onierstrasz

Time: 13 May 2609, 12:38:52 pm

UUID: 4254454f-2e72-4b44-8b30-166dbbcaleTs
Ancestors:

import from SBE-Quinto

rename to LightsOut
fixed Sense —> TnnutSensor new

Figure 8-2 A Repository browser.

Browsing versions

If you select one of the versions, you can Browse it (without loading it into
your image), Load it, or look at the Changes that will be made to your image
by loading the selected version. You can also make a Copy of a version of a
package, which you can then write to another repository.

As you can see, the names of versions contain the name of the package, the
name of the author of the version, and a version number. The version name
is also the name of the file in the repository. Never change these names; cor-
rect operation of Monticello depends on them! Monticello version files are
just zip archives, and if you are curious you can unpack them with a zip tool,
but the best way to look at their contents is using Monticello itself.

Creating a package

To create a package with Monticello, you have to do two things: write some
code, and tell Monticello about it.

Todo Create a package called PBE, and put a couple of classes in it, as
shown in Figure 8-3. Also, create a method in an existing class, such as
Object, and put it in the same package as your classes - see Figure 8-4.

Committing a package

When you add a package via the class browser, Monticello automatically add
the package to its list. PBE is now in list of packages; the package entry will
be marked with an asterisk to show that the version in the image has not yet
been written to any repository (It is said to be dirty).

148

Scoped Variables History Navigator

PBE —all-
22) Last Modified Methods ! PBEGood legs + twolegs
» -+ Configurations © Object
£ Work
| Daeee

.A"iﬂ-l.dﬂsl?mn.

fourLegs
A true

1201] [Formatasyouread W +L

Figure 8-3 Two classes and one extension in the PBE package.

Hsoynaigto W,
PaE © ProtoObject 4 (&) *opalCompiler-Core A
(22) Last Modified Methods
» £ Configurations ® AsTTransformExamplePluginActi | [&) *Polymorph-Taskbarlcons
£ Work @© AbstractAcceptor (&) *Polymorph-Widgets
@ ClassDefinitionAcceptor (&) *Polymorph-Widgets Them
© ClassOrMeth iti pt | B "quality ording
©® codeRewritingAcceptor (&) *Reflectivity
© CodeSearchingAcceptor [&3) *renraku
@ MethodDefinitionAcceptor (&) *Ring-Core-Kemel
@ AbstractCache (&) *rubric
® LRUCache o) *Shout-Parsing
*Spec-C
: pec-Core -
twolegs
A false
1/2[1] [Formatasyouread W +L

Figure 8-4 An extension method that is also be in the PBE package.

Sharing code and source control

x -0 Monticello Browser =
+Package +Config +Slice Browse Changes +Repository Save Open
v ¥ Package ¥

*PBE() 4| £7 fusers/ducasse/Library/Application Support/Pharofim
AST-Core (Thelntegrator.418)
AST-FFI-Pharo50Compatibility (Thelntegrator.2)
AST-Tests-Care (Thelntegrator.85)
Alien (eem.32)
Announcements-Core (Thelntegrator.68)
Announcements-Help (Thelntegrator.12)
Announcements-Tests-Core (Thelntegrator.31)
Athens-Balloon (MarcusDenker.20)
Athens-Cairo NicolaiHess. 123)
Athens-CairoPools (NicolaiHess. 14)
Athens-Core (AliakseiSyrel 57)
Athens-Bxamples (TudorGirba.43)
Athens-Morphic (EstebanLorenzano.63)
Athens-Text (NicolaiHess. 16)
Balloon (Thelntegrator.132)
Balloon-Tests (Thelntegrator.2)
BaselineOfFileTree (ThierryGoubier.15)

«" " v - » « »

Figure 8-5 The as-yet-unsaved PBE package in Monticello.

Initially, the only repository associated with this package will be your pack-
age cache, as shown in Figure 8-5. That’s OK: you can still save the code,
which will cause it to be written to the package cache. Just click Save and
you will be invited to provide a log message for the version of the package
that you are about to save, as shown in Figure 8-6; when you accept the mes-
sage, Monticello will save your package. To indicate this, the asterisk deco-
rating the name in Monticello’s package pane will be removed, and the ver-
sion number added.

Introducing a change

If you then make a change to the package - say by adding a method to one
of the classes - the asterisk will re-appear, showing that you have unsaved
changes. If you open a repository browser on the package cache, you can
select the saved version, and use Changes and the other buttons. You can
of course save the new version to the repository too; once you Refresh the
repository view, it should look like Figure 8-7.

To save the new package to a repository other than the package cache, you
need to first make sure that Monticello knows about the repository, adding
it if necessary. Then you can use the Copy in the package-cache repository
browser, and select the repository to which the package should be copied.
You can also associate the desired repository with the package by right-
clicking on the repository and selecting add to package. .. and select the
corresponding package. Once the package knows about a repository, you can
save a new version by selecting the repository and the package in the Mon-
ticello Browser, and clicking Save. Of course, you must have permission to
write to a repository. The PharoByExample repository on SqueakSource is
world readable but not world writable, so if you try and save there, you will
see an error message.

However, you can create your own repository and save your code there.

150

x — 0O Edit Version Name and Log Message: -

PBE-StephaneDucasse.l

A dummy package to demonstrate Monticello

Accept Cancel 0ld log messages...

Figure 8-6 Providing a log message for a new version of a package.

x — O Repository: /Users/ducasse/Library/Application Support/Pharo/images/50citezer

[J PBE-LightsOut

Refresh Save Browse History Changes Load Merge Adopt Copy Diff
H t ept W | Hit return to accept v
[E] Citezen-Herve PBE-StephaneDucasse.2.mcz
7 Citezen-Model PBE-StephaneDucasse.l.mcz
[Citezen-Stef
[ConfigurationOfCitezen
EaPBE

Mame: PBE-StephaneDucasse.2

Author: StephaneDucasse

Time: 8 November 2816, 109:34:81.713554 pm
UUID: B8438f930-47d6-4434-8cf8-do42cffdlele
Ancestors: PBE-StephaneDucasse.l

Added missing method to PBEGood.

Figure 8-7 Two versions of our package are now in the package cache.

8.2

Sharing code and source control

x - O Recent versions of ObjTest>>#testlVOffset [2] v

StephaneDucasse 12/5/2016 19:22 ObjTest testlVOffset {step4-tests-iv management}
ObjTest testlVOffset {step4-tests-iv management}

Browse Users Senders Implementors Revert Side By Sid ¥
Pretty print
testlVOffset testlVOffset .
"(self selector: #testlVOffset) run” "(self selector: #testlVOffset) run”
self assert: ((pointClass offsetFromClas self assert: ((pointClass offsetFrom
self assert: ((pointClass offsetFromClas self assert: ((pointClass offsetFrom
L | » 4 >y

Figure 8-8 The versions browser showing two versions of the ObjTest>>tes-
tIVOffset method.

Nowadays the favorite code repositories are http://www.smalltalkhub.org and
http://ss3.gemstone.com. This is especially useful as a mechanism to share
your code with others and to make sure that you can use automated build
systems such as Jenkins or Travis.

If you do try and save to a repository where you don’t have write permission,
a version will nevertheless be written to the package-cache. So you can re-
cover by editing the repository information (right-click in the Monticello
Browser) or choosing a different repository, and then using Copy from the
package-cache browser.

Source control

Versions of a method

When you save a new version of a method, the old one is not lost. Pharo
keeps all of the old versions (assuming that you are using the same image
and that you saved it), and allows you to compare different versions and to
go back (revert) to an old version.

The browse > versions (v) menu item gives access to the successive mod-

152

http://www.smalltalkhub.org
http://ss3.gemstone.com

8.2 Source control

ifications made to the selected method. In Figure 8-8 we can see two versions
of a method.

The top pane displays one line for each version of the method, listing the
name of the programmer who wrote it, the date and time at which it was
saved, the names of the class and the method, and the protocol in which it
was defined. The current (active) version is at the top of the list.

The existence of the versions browser means that you never have to worry
about preserving code that you think might no longer be needed. If you

find that you do need it, you can always revert to the old version, or copy

the needed code fragment out of the old version and paste it into a another
method. Get into the habit of using versions; commenting out code that is no
longer needed is a bad practice because it makes the current code harder to
read. Pharoers rate code readability extremely highly.

Hint: What if you delete a method entirely, and then decide that you want
it back? You can find the deletion in a change set, where you can ask to see
versions by right-clicking. The change set browser is described in section 8.2.

Change sets and the changesorter

Whenever you are working in Pharo, any changes that you make to methods
and classes are recorded in a change set. This includes creating new classes,
re-naming classes, changing categories, adding methods to existing classes
- just about everything of significance. However, arbitrary Do its are not in-
cluded.

At any time, many change sets exist, but only one of them - ChangeSet cur-
rent - is collecting the changes that are being made to the image. You can
see which change set is current and can examine all of the change sets us-
ing the change sorter, available by selecting World > Tools... > Change
Sorter.

Figure 8-9 shows the dual change sorter browser. The title bar shows which
change set is current, and this change set is selected when the change sorter
opens.

Other change sets can be selected in the top-left pane; the right-click menu
allows you to make a different change set current, or to create a new change
set. The next pane lists all of the classes affected by the selected change set
(with their categories). Selecting one of the classes displays the names of its
methods that are also in the change set (not all of the methods in the class)
in the left central pane, and selecting a method name displays the method
definition in the bottom pane.

The change sorter also lets you delete classes and methods from the change
set using the right-click menu on the corresponding items.

153

Sharing code and source control

x - 0O Dual Change Sorter on: ObjVLispSkeleton-StephaneDucasse.3 -
ObjVLispSkeleton-Stepha* Obj * ObjVLispSkeleton-Stepha*
ConfigurationOfCitezen-S = Obj class ConfigurationOfCitezen-¢
Citezen-Tests-StephaneDi = ObjClassinspector Citezen-Tests-StephaneD
Citezen-Herve-HerveVerji = ObjExampleTest Citezen-Herve-HerveVerj
Citezen-Stef-StephaneDur = ObjExampleTest class Citezen-Stef-StephaneDu
Citezen-Checking-Stephar ~ ObjTest Citezen-Checking-Stepha
Citezen-Reborn-Stephane = ObjTestBootstrap v Citezen-Reborn-Stephane
Citezen-Oiierv-Stenhanel’ ¥ < > Citezen-Oiierv-Stenhanel ¥
testinstanceVariablelnh Message list
testinstanceVariablelnh Delete method from changeSet %D
testinstanceVariablelnh Remove method from system 28X
testinstanceVariablelnh Browse full 328
testinstanceVariablelnh Fjjeout
testKeywords Senders of... ®N
Jorttinthadnafinitian - Implementors of... %M

Versions £

testinstanceVariat

(self Move method to the other change set

tinstar

ariablelnheritanceFromA(

alncrementalColoredPoint objClass objlVs:
(alncrementalColoredPoint computeNewl|VFrom: -

Figure 8-9 The Change Sorter showing all the changes of one changeset and
offering actions to move changes to other changesets.

The change sorter allows you to simultaneously view two change sets, one
on the left hand side and the other on the right. This layout supports the
change sorter’s main feature, which is the ability to move or copy changes
from one change set to another, as shown by the right-click menu in Figure
8-9. It is also possible to copy individual methods from one side to the other.

You may be wondering why you should care about the composition of a change
set. the answer is that change sets provide a simple mechanism for exporting
code from Pharo to the file system, from where it can be imported into an-
other Pharo image. Change set export is known as Filing-out, and can be
accomplished using the right-click menu on any change set, class or method

in either browser. Repeated file outs create new versions of the file, but
change sets are not a versioning tool like Monticello: they do not keep track

of dependencies.

Before the advent of Monticello, change sets were the main means for ex-
changing code between Pharoers. They have the advantage of simplicity (the
file out is just a text file, although we don’t recommend that you try to edit
them with a text editor), and a degree of portability.

The main drawback of change sets, compared to Monticello packages, is that
they do not support the notion of dependencies. In spite of these shortcom-
ings, change sets still have their uses. In particular, you may find change sets
on the Internet that you want to look at and perhaps use. So, having filed out
a change set using the change sorter, we will now tell you how to file one in.
This requires the use of another tool, the file list browser. Note that drop-

154

8.3

8.3 The File List Browser

» 350695 4
v 350citezen
» I github-c
Cipackage
Bplay-cac
Ciplay-sta
» Cactalk
» O Artefact ¢
» O Artefact2
» O Artefact5
o Citezen-A
£ Common
» CILauncher
» COLauraSok
» CLvivPuzzle
» COMetaBorg
» CIMobidyc
» CIMobidycT
CIMoose Jel
» CINew Seas
» C10bjVlisp
» C10bjVLisp¢
» 1 0Id-Bricks

LauraSokoban -

v Install Code Changes Filein
File name Size Last mo*
DS _Store 6.15 kB 2016-06
AJConstants.st 6.20 kB 2016-04
LauraSokoban.changes 95312 kB 2016-04
LauraSokoban.image 24.48 MB 2016-04

PharoDebug.log 797.08 kB 2016-04
4 >
‘From Pharo4.0 of 18 March 2013 [Latest update: #40618] -
on 5 April 2016 at 12:02:19.480678 pm"
SharedPool subclass: #A)Constants

instanceVariableNames: "

classVariableNames: 'CcA CcABOVE CcABOVEEQUAL
CcAE CcB CcBE CcBELOW CcBELOWEQUAL CcC CcE
CcEQUAL CcFPNOTUNORDERED CcFPUNORDERED CcG CcGE
CcGREATER CcGREATEREQUAL CclL CcLE CcLESS
CcLESSEQUAL CcNA CcNAE CcNB CcNBE CcNC CcNE
CcNEGATIVE CcNG CcNGE CcNL CcNLE CcNO
CcNOCONDITION CcNOOVERFLOW CcNOTEQUAL

. P ODAY v CcNOTSIGN CcNOTZERO CcNP CcNS CeNZ CcO
4 » CeOVFRFILOW CeP CePARITYFVEN CcPARITYNND CePE CPN Y

Figure 8-10 A file list browser.

ping a changeset on Pharo itself works brings a pop up to ask you whether
you want to load or browse the code contained in a changeset.

The File List Browser

The file list browser is in fact a general-purpose tool for browsing the file
system (as well as FTP servers) from Pharo. You can open it from the Wor1ld

> Tools... > File Browser menu. What you see of course depends on the
contents of your local file system, but a typical view is shown in Figure 8-10.

When you first open a file list browser it will be focused on the current direc-
tory, that is, the one from which you started Pharo. The title bar shows the
directory name. The larger pane on the left-hand side can be used to navi-
gate the file system in the conventional way. When a directory is selected,
the files that it contains (but not the directories) are displayed on the right.
This list of files can be filtered by entering a Unix-style pattern in the small
box at the top-left of the window. Initially, this pattern is =, which matches
all file names, but you can type a different string there and accept it, chang-
ing the pattern. (Note that a « is implicitly prepended and appended to the
pattern that you type.) The sort order of the files can be changed using the
name, date and size buttons. The rest of the buttons depend on the name of
the file selected in the browser. In Figure 8-10, the file name has the suffix

155

8.4

Sharing code and source control

x - O Snapshot of ObjVLispSkeleton-StephaneDucasse.4.mc: v
ObjVLispSkeleton Obj -all - 4 | testPrimitiveStructy
ObjVLispSkeleton-A ObjTest setup testPrimitiveStructu
ObjVLispSkeleton-Ir RawObjTest stepl-tests-structi

step2-tests-structi
step3-tests-class ¢
step4-tests-iv mar

step5-tests-alloca'»
4 >

< » Instance ? dass q »

testPrimitiveStructureObjClassldForSimpleObject
"self run: #testPrimitiveStructureObjClassldForSimpleObject”

self assert: (aPoint objClassld = #0bjPoint).

Figure 8-11 A File Contents Browser opened on a package .

.st, so the browser assumes that it is pharo code, and provides the possible
actions as buttons.

Because the choice of buttons to display depends on the file’s name, and
not on its contents, sometimes the button that you want won’t be on the
screen. However, the full set of options is always available from the right-
click more. .. menu, so you can easily work around this problem.

The code button is perhaps the most useful for working with change sets; it
opens a browser on the contents of the change set file or even an MC pack-
age; an example is shown in Figure 8-11. The file contents browser is similar
to the browser except that the code is not loaded in memory.

In Pharo, you can't lose code

It is quite possible to crash Pharo: as an experimental system, Pharo lets you
change anything, including things that are vital to make Pharo work!

The good news is that you will never lose any work, even if you crash and

go back to the last saved version of your image, which might be hours old.
This is because all of the code that you executed is saved in the .changes file.
This excludes Playground snippets, those are stored inside /pharo-local/play-
cache and they can be searched using Spotter (the results are displayed under
Playground-cached pages section).

So here are the instructions on how to get your code back. There is no need

156

8.5

8.5 Chapter summary

to read this until you need it. However, when you do need it, you’ll find it
here waiting for you.

In the worst case, you can use a text editor on the .changes file, but since it
is many megabytes in size, this can be slow and is not recommended. Pharo
offers you better ways.

How to get your code back

Restart Pharo from the most recent snapshot, and select World > Tools...
> Recover lost changes.

Smalltalk recover: 10000.
ChangelList browseRecentLog.
ChangelList browseRecent: 2000.

This will give you the opportunity to decide how far back in history you
wish to browse. Normally, it’s sufficient to browse changes as far back as
the last snapshot. (You can get much the same effect by editing ChangeList
browseRecent: 2000 so that the number 2000 becomes something else, us-
ing trial and error.)

Once you have a recent changes browser, showing, say, changes back as far as
your last snapshot, you will have a list of everything that you have done to
Pharo during that time. You can delete items from this list using the right-
click menu. When you are satisfied, you can file-in what is left, thus incor-
porating the changes into your new image. It’s a good idea to start a new
change set, using the ordinary change set browser, before you do the file in,
so that all of your recovered code will be in a new change set. You can then
file out this change set.

One useful thing to do in the recent changes browser is to remove doIts. Usu-
ally, you won’t want to file in (and thus re-execute) dolts. However, there is
an exception. Creating a class shows up as a doIt.

Before you can file in the methods for a class, the class must exist. So, if you have
created any new classes, first file-in the class creation dolts, then remove
doIts and file in the methods.

When I am finished with the recovery, I like to file out my new change set,
quit Pharo without saving the image, restart, and make sure that the new
change set files back in cleanly.

Chapter summary

* Monticello is a tool for exporting, importing, versioning and sharing
packages of classes and methods.

157

158

Sharing code and source control

A Monticello package consists of classes, and related methods in other
packages.

Change sets are automatically generated logs of all changes to the source
code of your image. They have largely been superseded by Monticello
as a means to store and exchange versions of your source code, but are
still useful, especially for recovering from catastrophic failures, how-
ever rare these may be.

The file list browser is a tool for browsing the file system. It also allows
you to File in source code from the file system.

In case your image crashes before you could save it or backup your
source code with Monticello, you can always recover your most recent
changes using a change list browser. You can then select the changes you
want to replay and file them into the most recent copy of your image.

9.1

CHAPTER

SUnit

SUnit is a minimal yet powerful framework that supports the creation and
deployment of tests. As might be guessed from its name, the design of SUnit
focussed on Unit Tests, but in fact it can be used for integration tests and
functional tests as well. SUnit was originally developed by Kent Beck and
subsequently extended by Joseph Pelrine and others to incorporate the no-
tion of a resource (discussed below).

In this chapter we start by discussing why we test, and what makes a good
test. We then present a series of small examples showing how to use SUnit.
Finally, we look at the implementation of SUnit, so that you can understand
how Pharo uses the power of reflection in supporting its tools. Note that the
version documented in this chapter and used in Pharo is a modified version
of SUnit3.3.

Introduction

The interest in testing and Test Driven Development is not limited to Pharo.
Automated testing has become a hallmark of the Agile software development
movement, and any software developer concerned with improving software
quality would do well to adopt it. Indeed, developers in many languages have
come to appreciate the power of unit testing, and versions of xUnit now exist
for every programming language.

Neither testing, nor the building of test suites, is new. By now, everybody
knows that tests are a good way to catch errors. eXtreme Programming,

by making testing a core practice and by emphasizing automated tests, has
helped to make testing productive and fun, rather than a chore that pro-
grammers dislike. The Pharo community has a long tradition of testing be-
cause of the incremental style of development supported by its programming

159

9.2

SUnit

environment. In traditional Pharo development, the programmer would
write tests in a playground as soon as a method was finished. Sometimes

a test would be incorporated as a comment at the head of the method that

it exercised, or tests that needed some set up would be included as exam-
ple methods in the class. The problem with these practices is that tests in a
playground are not available to other programmers who modify the code.
Comments and example methods are better in this respect, but there is still
no easy way to keep track of them and to run them automatically. Tests that
are not run do not help you to find bugs! Moreover, an example method does
not inform the reader of the expected result: you can run the example and
see the (perhaps surprising) result, but you will not know if the observed be-
haviour is correct.

SUnit is valuable because it allows us to write tests that are self-checking:
the test itself defines what the correct result should be. It also helps us to or-
ganize tests into groups, to describe the context in which the tests must run,
and to run a group of tests automatically. In less than two minutes you can
write tests using SUnit, so instead of writing small code snippets in a play-
gound, we encourage you to use SUnit and get all the advantages of stored
and automatically executable tests.

Why testing is important

Unfortunately, many developers believe that tests are a waste of their time.
After all, they do not write bugs, only other programmers do that. Most of us
have said, at some time or other: I would write tests if had more time. If you
never write a bug, and if your code will never be changed in the future, then
indeed tests are a waste of your time. However, this most likely also means
that your application is trivial, or that it is not used by you or anyone else.
Think of tests as an investment for the future: having a suite of tests is quite
useful now, but it will be extremely useful when your application, or the envi-
ronment in which it runs, changes in the future.

Tests play several roles. First, they provide documentation of the function-
ality that they cover. This documentation is active: watching the tests pass
tells you that the documentation is up to date. Second, tests help devel-
opers to confirm that some changes that they have just made to a package
have not broken anything else in the system, and to find the parts that break
when that confidence turns out to be misplaced. Finally, writing tests dur-
ing, or even before, programming forces you to think about the functionality
that you want to design, and how it should appear to the client code, rather than
about how to implement it.

By writing the tests first, i.e., before the code, you are compelled to state the
context in which your functionality will run, the way it will interact with the
client code, and the expected results. Your code will improve. Try it.

160

9.3

9.3 What makes a good test?

We cannot test all aspects of any realistic application. Covering a complete
application is simply impossible and should not be the goal of testing. Even
with a good test suite some bugs will still creep into the application, where
they can lay dormant waiting for an opportunity to damage your system. If
you find that this has happened, take advantage of it! As soon as you uncover
the bug, write a test that exposes it, run the test, and watch it fail. Now you
can start to fix the bug: the test will tell you when you are done.

What makes a good test?

Writing good tests is a skill that can be learned by practicing. Let us look at
the properties that tests should have to get the maximum benefit.

Tests should be repeatable. You should be able to run a test as often as you
want, and always get the same answer.

Tests should run without human intervention. You should be able to run them
unattended.

Tests should tell a story. Each test should cover one aspect of a piece of code. A
test should act as a scenario that you or someone else can read to understand
a piece of functionality.

Tests should have a change frequency lower than that of the functionality they cover.
You do not want to have to change all your tests every time you modify your
application. One way to achieve this is to write tests based on the public in-
terfaces of the class that you are testing. It is OK to write a test for a private
helper method if you feel that the method is complicated enough to need the
test, but you should be aware that such a test may have to be changed, or
thrown away entirely, when you think of a better implementation.

One consequence of such properties is that the number of tests should be
somewhat proportional to the number of functions to be tested: changing
one aspect of the system should not break all the tests but only a limited
number. This is important because having 100 tests fail should send a much
stronger message than having 10 tests fail. However, it is not always possible
to achieve this ideal: in particular, if a change breaks the initialization of an
object, or the set-up of a test, it is likely to cause all of the tests to fail.

Several software development methodologies such as eXtreme Programming
and Test-Driven Development (TDD) advocate writing tests before writing
code. This may seem to go against our deep instincts as software developers.
All we can say is: go ahead and try it. We have found that writing the tests
before the code helps us to know what we want to code, helps us know when
we are done, and helps us conceptualize the functionality of a class and to
design its interface. Moreover, test-first development gives us the courage to
go fast, because we are not afraid that we will forget something important.

161

SUnit

Listing 9-1 An Example Set Test class

TestCase subclass: #MyExampleSetTest
instanceVariableNames: 'full empty'
classVariableNames: ''
package: 'MySetTest'

Writing tests is not difficult in itself. Choosing what to test is much more
difficult. The pragmatic programmers offer the "right-BICEP” principle. It
stands for:

* Right: Are the results right?

* B: Are all the boundary conditions correct?

+ I: Can you check inverse relationships?

+ C: Can you cross-check results using other means?
» E: Can you force error conditions to happen?

+ P: Are performance characteristics within bounds?

Now let’s write our first test, and show you the benefits of using SUnit.

SUnit by example

Before going into the details of SUnit, we will show a step by step example.
We use an example that tests the class Set. Try entering the code as we go
along.

Step 1: Create the test class

First you should create a new subclass of TestCase called MyExampleSetTest.
Add two instance variables so that your new class looks like this:

We will use the class MyExampleSetTest to group all the tests related to the

class Set. It defines the context in which the tests will run. Here the context
is described by the two instance variables full and empty that we will use to
represent a full and an empty set.

The name of the class is not critical, but by convention it should end in Test.
If you define a class called Pattern and call the corresponding test class
PatternTest, the two classes will be alphabetized together in the browser
(assuming that they are in the same package). It is critical that your class is a
subclass of TestCase.

Step 2: Initialize the test context

The message TestCase >> setUp defines the context in which the tests will
run, a bit like an initialize method. setUp is invoked before the execution of

162

9.4 SUnit by example

Listing 9-2 Setting up a fixture
EMyExampleSetTest >> setUp
empty := Set new.
full := Set with: 5 with: 6

Listing 9-3 Testing set membership

EMyExampleSetTest >> testIncludes
self assert: (full includes: 5).
self assert: (full includes: 6)

Listing 9-4 Testing occurrences

EMyExampleSetTest >> testOccurrences
self assert: (empty occurrencesOf: 0) = 0.
self assert: (full occurrencesOf: 5) = 1.
full add: 5.
self assert: (full occurrencesOf: 5) =1

each test method defined in the test class.

Define the setUp method as follows, to initialize the empty variable to refer
to an empty set and the full variable to refer to a set containing two ele-
ments.

In testing jargon the context is called the fixture for the test.

Step 3: write some test methods

Let’s create some tests by defining some methods in the class MyExample-
SetTest. Each method represents one test. The names of the methods should
start with the string 'test' so that SUnit will collect them into test suites.
Test methods take no arguments.

Define the following test methods. The first test, named testIncludes, tests
the includes: method of Set. The test says that sending the message in-
cludes: 5 to a set containing 5 should return true. Clearly, this test relies
on the fact that the setUp method has already run.

The second test, named testOccurrences, verifies that the number of oc-
currences of 5 in full set is equal to one, even if we add another element 5
to the set.

Finally, we test that the set no longer contains the element 5 after we have
removed it.

Note the use of the method TestCase >> deny: to assert something that
should not be true. aTest deny: anExpression is equivalent to aTest as-
sert: anExpression not, butis much more readable.

163

SUnit

Listing 9-5 Testing removal
MyExampleSetTest >> testRemove
full remove: 5.
self assert: (full includes: 6).
self deny: (full includes: 5)

x -0 MyExampleSetTest>>#testRemove =
Scoped Variables Hist avigat Y e

v MyExampleSetTest —all-- testincludes
setup testOccurrences

4 MySetTest
tests testRemove

> NECompletion
NECompletion-Tests
> NativeBoost-Core
NativeBoost-Example
NativeBoost-Mac
NativeBoost-Pools
> NativeBoost-Tests
< R A Hier. © Class
testRemove
full remove: 5.
self assert: (full includes: 6).
self deny: full includes: 5)

4/4[32] Formatasyouread W +L

Figure 9-6 Running SUnit tests from the System Browser.

Step 4: Run the tests

The easiest way to run the tests is directly from the browser. Simply click
on the icon of the class name, or on an individual test method, and select
Run tests (t) or press the icon. The test methods will be flagged green or red,
depending on whether they pass or not (as shown in 9-6).

You can also select sets of test suites to run, and obtain a more detailed log
of the results using the SUnit Test Runner, which you can open by selecting
World > Test Runner.

The Test Runner, shown in Figure 9-7, is designed to make it easy to execute
groups of tests.

The left-most pane lists all of the packages that contain test classes (i.e., sub-
classes of TestCase). When some of these packages are selected, the test
classes that they contain appear in the pane to the right. Abstract classes
are italicized, and the test class hierarchy is shown by indentation, so sub-
classes of ClassTestCase are indented more than subclasses of TestCase.
ClassTestCase is a class offering utilities methods to compute test cover-
age.

Open a Test Runner, select the package MySetTest, and click the Run Se-
lected button.

164

9.4 SUnit by example

x -0 Test Runner 57
v w5491 run, 5431 passes, 0 skipped, 0 expected failures, 0 failures,
AsmlJit-Tests 4 ByteArrayTest P =T DT 2R S
Athens-Cairo-Tests CharacterSetTest
BalloonTests-Collections AssociationTest
CollectionsTests-Abstract CharacterTest
CollectionsTests-Arrayed CollectionRootTest
CollectionsTests-Atomic ArrayTest
CollectionsTests-Sequenceab BagTest
CollectionsTests-SplitJoin IdentityBagTest
CollectionsTests-Stack DictionaryTest
CollectionsTests-Streams IdentityDictionaryTest
CollectionsTests-Strings LiteralDictionaryTest
CollectionsTests-Support PluggableDictionaryTest
CollectionsTests-Unordered SmallDictionaryTest
CollectionsTests-Weak SmallidentityDictionaryTe
CompressionTests-Archive WeakKeyDictionaryTest
CompressionTests-Streams WeakldentityKeyDictional
ConfigurationCommandLinek WeakKeyToCollectionDic
Nehupger-Tests ¥ WeakValueDictionaryTest ¥
4 > 4 »
Run Selected Run Profiled Run Failures Run Errors File out results

Figure 9-7 Running SUnit tests using the TestRunner.

Listing 9-8 Executable comments in test methods

EMyExampleSetTest >> testRemove
"self run: #testRemove"

full remove: 5.

self assert: (full includes: 6).
self deny: (full includes: 5)

Listing 9-9 Introducing a bug in a test
EMyExampleSetTest >> testRemove
full remove: 5.

self assert: (full includes: 7).

self deny: (full includes: 5)

You can also run a single test (and print the usual pass/fail result summary)
by executing a Print it on the following code: MyExampleSetTest run: #testRemove.

Some people include an executable comment in their test methods that al-
lows running a test method with a Do it from the browser, as shown below.

Introduce a bug in MyExampleSetTest >> testRemove and run the tests
again. For example, change 6 to 7, as in:

The tests that did not pass (if any) are listed in the right-hand panes of the
Test Runner. If you want to debug one, to see why it failed, just click on the
name. Alternatively, you can execute one of the following expressions:

(MyExampleSetTest selector: #testRemove) debug

MyExampleSetTest debug: #testRemove

165

9.5

SUnit

Step 5: Interpret the results

The method assert: is defined in the class TestAsserter. This is a super-
class of TestCase and therefore all other TestCase subclasses and is respon-
sible for all kind of test result assertions. The assert: method expects a
boolean argument, usually the value of a tested expression. When the ar-
gument is true, the test passes; when the argument is false, the test fails.

There are actually three possible outcomes of a test: passing, failing, and rais-
ing an error.

+ Passing. The outcome that we hope for is that all of the assertions
in the test are true, in which case the test passes. In the test runner,
when all of the tests pass, the bar at the top turns green. However,
there are two other ways that running a test can go wrong.

Failing. The obvious way is that one of the assertions can be false,
causing the test to fail.

+ Error. The other possibility is that some kind of error occurs during
the execution of the test, such as a message not understood error or an
index out of bounds error. If an error occurs, the assertions in the test
method may not have been executed at all, so we can’t say that the test
has failed; nevertheless, something is clearly wrong!

In the test runner, failing tests cause the bar at the top to turn yellow, and are
listed in the middle pane on the right, whereas tests with errors cause the
bar to turn red, and are listed in the bottom pane on the right.

Modify your tests to provoke both errors and failures.

The SUnit cookbook

This section will give you more details on how to use SUnit. If you have used

another testing framework such as JUnit, much of this will be familiar, since

all these frameworks have their roots in SUnit. Normally you will use SUnit’s
GUI to run tests, but there are situations where you may not want to use it.

Other assertions

In addition to assert: and deny:, there are several other methods that can
be used to make assertions.

First, TestAsserter >> assert:description: and TestAsserter >>
deny:description: take a second argument which is a message string that
describes the reason for the failure, if it is not obvious from the test itself.
These methods are described in Section 9.7.

166

9.6 The SUnit framework

Listing 9-10 Testing error raising

MyExampleSetTest >> testIllegal
self should: [empty at: 5] raise: Error.
self should: [empty at: 5 put: #zork] raise: Error

Next, SUnit provides two additional methods, TestAsserter >> should:raise:
and TestAsserter >> shouldnt:raise: for testing exception propaga-
tion.

For example, you would use self should: aBlock raise: anException
to test that a particular exception is raised during the execution of aBlock.
The method below illustrates the use of should:raise:.

Try running this test. Note that the first argument of the should: and shouldnt:
methods is a block that contains the expression to be executed.

Running a single test

Normally, you will run your tests using the Test Runner or using your code
browser. If you don’t want to launch the Test Runner from the World menu,
you can execute TestRunner open. You can also run a single test as follows:

MyExampleSetTest run: #testRemove
>>> 1 run, 1 passed, 0 failed, 0 errors

Running all the tests in a test class

Any subclass of TestCase responds to the message suite, which will build a
test suite that contains all the methods in the class whose names start with
the string test.

To run the tests in the suite, send it the message run. For example:

MyExampleSetTest suite run
>>> 5 run, 5 passed, 0 failed, 0 errors

Must | subclass TestCase?

In JUnit you can build a TestSuite from an arbitrary class containing test=
methods. In SUnit you can do the same but you will then have to create a
suite by hand and your class will have to implement all the essential Test-
Case methods like assert:. We recommend, however, that you not try to do
this. The framework is there: use it.

The SUnit framework

SUnit consists of four main classes: TestCase, TestSuite, TestResult, and
TestResource, as shown in Figure 9-11. The notion of a test resource repre-

167

SUnit

TestResource
TestCase !sAvaiIat_J]e
isUnavailable
setUp setUp
tearDown
TestSuite assert: /////////tearDown
run deny:
resources tests | should:raise: TestResult
addTest: shouldntraise: [~~~ ' -cccqcount
selector: failuresCount
un errorCount
resources runCount
tests

Figure 9-11 The four classes representing the core of SUnit.

sents a resource that is expensive to set-up but which can be used by a whole
series of tests. A TestResource specifies a setUp method that is executed
just once before a suite of tests; this is in distinction to the TestCase >>
setUp method, which is executed before each test.

TestCase

TestCase is an abstract class that is designed to be subclassed. Each of its
subclasses represents a group of tests that share a common context (that
is, a test suite). Each test is run by creating a new instance of a subclass of
TestCase, running setUp, running the test method itself, and then sending
the tearDown.

The context is specified by instance variables of the subclass and by the spe-
cialization of the method setUp, which initializes those instance variables.
Subclasses of TestCase can also override method tearDown, which is in-
voked after the execution of each test, and can be used to release any objects
allocated during setUp.

TestSuite

Instances of the class TestSuite contain a collection of test cases. An in-
stance of TestSuite contains tests, and other test suites. That is, a test suite
contains sub-instances of TestCase and TestSuite.

Both individual test cases and test suites understand the same protocol, so
they can be treated in the same way (for example, both can be run). This is
in fact an application of the Composite pattern in which TestSuite is the
composite and the test cases are the leaves.

168

9.6 The SUnit framework

TestResult

The class TestResult represents the results of a TestSuite execution. It
records the number of tests passed, the number of tests failed, and the num-
ber of errors signalled.

TestResource

One of the important features of a suite of tests is that they should be inde-
pendent of each other. The failure of one test should not cause an avalanche
of failures of other tests that depend upon it, nor should the order in which
the tests are run matter. Performing setUp before each test and tearDown
afterwards helps to reinforce this independence.

However, there are occasions where setting up the necessary context is just
too time-consuming for it to be done before the execution of each test. More-
over, if it is known that the test cases do not disrupt the resources used by
the tests, then it is wasteful to set them up afresh for each test. It is sufficient
to set them up once for each suite of tests. Suppose, for example, that a suite
of tests needs to query a database, or do analysis on some compiled code. In
such cases, it may make sense to set up the database and open a connection
to it, or to compile some source code, before any of the tests start to run.

Where should we cache these resources, so that they can be shared by a suite
of tests? The instance variables of a particular TestCase subclass won't do,
because a TestCase instance persists only for the duration of a single test (as
mentioned before, the instance is created anew for each test method). A global
variable would work, but using too many global variables pollutes the name
space, and the binding between the global and the tests that depend on it will
not be explicit. A better solution is to put the necessary resources in a sin-
gleton object of some class. The class TestResource exists to be subclassed
by such resource classes. Each subclass of TestResource understands the
message current, which will answer a singleton instance of that subclass.
Methods setUp and tearDown should be overridden in the subclass to ensure
that the resource is initialized and finalized.

One thing remains: somehow, SUnit has to be told which resources are asso-
ciated with which test suite. A resource is associated with a particular sub-
class of TestCase by overriding the class method resources.

By default, the resources of a TestSuite are the union of the resources of
the TestCases that it contains.

Here is an example. We define a subclass of TestResource called MyTestRe-
source. Then we associate it with MyTestCase by overriding the class method
MyTestCase class >> resources to return an array of the test resource
classes that MyTestCase will use.

169

SUnit

Listing 9-12 An example of a TestResource subclass

[TestResource subclass: #MyTestResource
instanceVariableNames: "'

MyTestCase class >> resources
"Associate the resource with this class of test cases"

~ { MyTestResource }

Exercise

The following trace (written to the Transcript) illustrates that a global set
up is run before and after each test in a sequence. Let’s see if you can obtain
this trace yourself.

>MyTestResource >> setUp has run.
MyTestCase >> setUp has run.
MyTestCase >> testOne has run.
MyTestCase >> tearDown has run.
MyTestCase >> setUp has run.
MyTestCase >> testTwo has run.
MyTestCase >> tearDown has run.
MyTestResource >> tearDown has run.

Create new classes MyTestResource and MyTestCase which are subclasses
of TestResource and TestCase respectively. Add the appropriate methods
so that the following messages are written to the Transcript when you run
your tests.

Solution. You will need to write the following six methods.

>MyTestCase >> setUp
Transcript show: 'MyTestCase>>setUp has run.'; cr

MyTestCase >> tearDown
Transcript show: 'MyTestCase>>tearDown has run.'; cr

MyTestCase >> testOne
Transcript show: 'MyTestCase>>testOne has run.'; cr

MyTestCase >> testTwo
Transcript show: 'MyTestCase>>testTwo has run.'; cr

MyTestCase class >> resources
~ Array with: MyTestResource

MyTestResource >> setUp
Transcript show: 'MyTestResource>>setUp has run'; cr

170

9.7 Advanced features of SUnit

MyTestResource >> tearDown
Transcript show: 'MyTestResource>>tearDown has run.'; cr

9.7 Advanced features of SUnit

In addition to TestResource, SUnit contains assertion description strings,
logging support, the ability to skip tests, and resumable test failures.

Assertion description strings

The TestAsserter assertion protocol includes a number of methods that
allow the programmer to supply a description of the assertion. The descrip-
tion is a String; if the test case fails, this string will be displayed by the test
runner. Of course, this string can be constructed dynamically.

e := 42.
self assert: e = 23 description: 'expected 23, got

, e printString

The relevant methods in TestAsserter are:

Eassert:description:

deny:description:

should:description:
shouldnt:description:

Using assert:equals:

In addition to assert:, there is also assert:equals: that offers a better re-
port in case of error (incidentally, assert:equals: uses assert:descrip-
tion:).

For example, the two following tests are equivalent. However, the second
one will report the value that the test is expecting: this makes easier to un-
derstand the failure. In this example, we suppose that aDateAndTime is an
instance variable of the test class.

[testAsDate
self assert: aDateAndTime asDate = ('February 29, 2004' asDate
translateTo: 2 hours).

testAsDate
self
assert: aDateAndTime asDate
equals: ('February 29, 2004' asDate translateTo: 2 hours).

171

9.8

SUnit

Logging support

The description strings mentioned above may also be logged to a Stream,
such as the Transcript or a file stream. You can choose whether to log by
overriding isLogging in your test class; you must also choose where to log
by overriding failurelog to answer an appropriate stream. By default, the
Transcript is used to log.

Skipping tests

Sometimes in the middle of a development, you may want to skip a test in-
stead of removing it or renaming it to prevent it from running. You can sim-
ply invoke the TestAsserter message skip on your test case instance. For
example, the following test uses it to define a conditional test.

OCCompiledMethodIntegrityTest >> testPragmas

| newCompiledMethod originalCompiledMethod |
(Smalltalk globals hasClassNamed: #Compiler) ifFalse: [" self
skip 1.

Continuing after a failure

SUnit also allows us to specify whether or not a test should continue after a
failure. This is a really powerful feature that uses Pharo’s exception mech-

anisms. To see what this can be used for, let’s look at an example. Consider
the following test expression:

[aCollection do: [:each | self assert: each even]

In this case, as soon as the test finds the first element of the collection that
isn’t even, the test stops. However, we would usually like to continue, and
see both how many elements, and which elements, aren’t even (and maybe
also log this information). You can do this as follows:

aCollection do: [:each |
self
assert: each even
description: each printString,
resumable: true]

is not even'

This will print out a message on your logging stream for each element that
fails. It doesn’t accumulate failures, i.e, if the assertion fails 10 times in your
test method, you’ll still only see one failure. All the other assertion methods
that we have seen are not resumable by default; assert: p description:
s is equivalent to assert: p description: s resumable: false.

172

9.9 SUnitimplementation

X

:TestCase

run

L
1

.
|
run: (
— >

runCase:

:TestResult

setUp
performTest

tearDown

Figure 9-13 Running one test.

runCase

Listing 9-14 Passing the test case to the test result

TestCase >>

run: aResult

aResult runCase:

self

9.9 SUnit implementation

The implementation of SUnit makes an interesting case study of a Pharo

framework. Let’s look at some key aspects of the implementation by follow-
ing the execution of a test.

Running one test

To execute one test, we execute the expression (aTestClass selector:

aSymbol) run.

The method TestCase >> run creates an instance of TestResult that will
accumulate the results of the test, then it sends itself the message TestCase
>> run: (See Figure 9-13).

| result |
result :=

ensure:

TestCase >> run

self classForTestResult new.
[self run: result]

[self classForTestResource resetResources: self

resources].

N

result

The method TestCase >> run: sends the message runCase: to the test

result:

173

SUnit

Listing 9-15 Catching test case errors and failures

[TestResult >> runCase: aTestCase
[
aTestCase announce: TestCaseStarted withResult: self.
aTestCase runCase.
aTestCase announce: TestCaseEnded withResult: self.
self addPass: aTestCase]
on: self class failure, self class skip, self class warning,
self class error
do: [:ex | ex sunitAnnounce: aTestCase toResult: self 1]

Listing 9-16 Auto-building the test suite

[TestCase class >> testSelectors
* (self selectors select: [:each | (each beginsWith: 'test') and:
[each numArgs isZero 11)

The method TestResult >> runCase: sends the message TestCase >>
runCase to an individual test, to execute the test. TestResult >> runCase
deals with any exceptions that may be raised during the execution of a test,
runs a TestCase by sending it the runCase, and counts the errors, failures,
and passes.

The method TestCase >> runCase sends the messages TestCase >> setUp
and TestCase >> tearDown as shown below.

TestCase >> runCase
self resources do: [:each | each availableFor: self].
[self setUp.
self performTest] ensure: [
self tearDown.
self cleanUpInstanceVariables]

Running a TestSuite

To run more than one test, we send the message run to a TestSuite that
contains the relevant tests. TestCase class provides some functionality
to build a test suite from its methods. The expression MyTestCase build-
SuiteFromSelectors returns a suite containing all the tests defined in the
MyTestCase class. The core of this process is:

The method TestSuite >> run creates an instance of TestResult, verifies
that all the resources are available, and then sends itself the message Test-
Suite >> run:, which runs all the tests in the suite. All the resources are
then released.
TestSuite >> run: aResult

self setUp.

[self tests

do: [:each |

174

9.10

9.10 A piece of advices on testing

Listing 9-17 Test resource availability

[TestResource class >> isAvailable
"This is (and must be) a lazy method. If my current has a value,
an attempt to make me available has already been made: trust its
result. If not, try to make me available."

current ifNil: [self makeAvailable].
" self isAlreadyAvailable

each run: aResult.

self announceTest: each.

self changed: each]]
ensure: [self tearDown]

TestSuite >> setUp
self resources do: [:each |
each isAvailable ifFalse: [each signalInitializationError]

TestSuite >> tearDown
self resourceClass resetResources: self resources

The class TestResource and its subclasses keep track of their currently cre-
ated singleton instances that can be accessed and created using the class
method TestResource class >> current. This instance is cleared when
the tests have finished running and the resources are reset.

The resource availability check makes it possible for the resource to be re-
created if needed, as shown in the class method TestResource class >>
isAvailable. During the TestResource instance creation, it is initialized
and the message setUp is sent to a test resource.

A piece of advices on testing

While the mechanics of testing are easy, writing good tests is not. Here is
some advice on how to design tests.

Self-contained tests

You do not want to have to change your tests each time you change your
code, so try to write the tests so that they are self-contained. This can be dif-
ficult, but pays off in the long term. Writing tests against stable interfaces
supports this effort.

175

SUnit

Listing 9-18 Test resource creation

[TestResource class >> current

"This is a lazy accessor: the assert of self isAvailable does no
work unless current isNil. However this method should normally
be sent only to a resource that should already have been made
available, e.g. in a test whose test case class has the resource
class in its #resources, so should never be able to fail the
assert.

If the intent is indeed to access a possibly-unprepared or
reset-in-earlier-test resource lazily, then preface the call of
'MyResource current' with 'MyResource availableFor: self'."

self
assert: self isAvailable
description:

'Sent #current to unavailable resource ', self name,
'. Add it to test case'' class-side #resources (recommended)
or send #availableFor: beforehand'.
~ current

Do not over-test

Try to build your tests so that they do not overlap. It is annoying to have
many tests covering the same functionality, because one bug in the code will
then break many tests at the same time. This is covered by Black’s rule, be-
low.

Feathers’ Rules for Unit tests
Michael Feathers, an agile process consultant and author, writes:

A test is not a unit test if: it talks to the database, it communicates across the net-
work, it touches the file system, it can’t run at the same time as any of your other
unit tests, or you have to do special things to your environment (such as editing con-
fig files) to run it. Tests that do these things aren’t bad. Often they are worth writing,
and they can be written in a unit test harness. However, it is important to be able to
separate them from true unit tests so that we can keep a set of tests that we can run
fast whenever we make our changes. Never get yourself into a situation where you
don’t want to run your unit test suite because it takes too long.

Unit Tests vs. Acceptance Tests

Unit tests capture one piece of functionality, and as such make it easier to
identify bugs in that functionality. As far as possible try to have unit tests
for each method that could possibly fail, and group them per class. However,
for certain deeply recursive or complex setup situations, it is easier to write

176

9.11

9.1 Chapter summary

tests that represent a scenario in the larger application. These are called ac-
ceptance tests (or integration tests, or functional tests).

Tests that break Feathers’ rules may make good acceptance tests. Group ac-
ceptance tests according to the functionality that they test. For example,

if you are writing a compiler, you might write acceptance tests that make
assertions about the code generated for each possible source language state-
ment. Such tests might exercise many classes, and might take a long time

to run because they touch the file system. You can write them using SUnit,
but you won’t want to run them each time you make a small change, so they
should be separated from the true unit tests.

Black’s Rule of Testing

For every test in the system, you should be able to identify some property

for which the test increases your confidence. It’s obvious that there should
be no important property that you are not testing. This rule states the less
obvious fact that there should be no test that does not add value to the sys-
tem by increasing your confidence that a useful property holds. For example,
several tests of the same property do no good. In fact, they do harm in two
ways. First, they make it harder to infer the behaviour of the class by reading
the tests. Second, because one bug in the code might then break many tests,
they make it harder to estimate how many bugs remain in the code. So, have
a property in mind when you write a test.

Chapter summary

This chapter explained why tests are an important investment in the future
of your code. We explained in a step-by-step fashion how to define a few
tests for the class Set. Then we gave an overview of the core of the SUnit
framework by presenting the classes TestCase, TestResult, TestSuite and
TestResources. Finally we looked deep inside SUnit by following the execu-
tion of a test and a test suite.

+ To maximize their potential, unit tests should be fast, repeatable, in-
dependent of any direct human interaction and cover a single unit of
functionality.

» Tests for a class called MyClass belong in a class named MyClassTest,
which should be introduced as a subclass of TestCase.

Initialize your test data in a setUp method.
+ Each test method should start with the word test.

+ Use the TestCase methods assert:, deny: and others to make asser-
tions.

* Run tests!

177

CHAPTER I 0 .

Basic classes

Pharo is a really simple language but powerful language. Part of its power

is not in the language but in its class libraries. To program effectively in it,
you will need to learn how the class libraries support the language and envi-
ronment. The class libraries are entirely written in Pharo, and can easily be
extended. (Recall that a package may add new functionality to a class even if
it does not define this class.)

Our goal here is not to present in tedious detail the whole of the Pharo class
library, but rather to point out the key classes and methods that you will
need to use (or subclass/override) to program effectively. In this chapter,
we will cover the basic classes that you will need for nearly every applica-
tion: Object, Number and its subclasses, Character, String, Symbol, and
Boolean.

10.1 Object

For all intents and purposes, Object is the root of the inheritance hierarchy.
Actually, in Pharo the true root of the hierarchy is ProtoObject, which is
used to define minimal entities that masquerade as objects, but we can ig-
nore this point for the time being.

Object defines almost 400 methods (in other words, every class that you de-
fine will automatically provide all those methods). Note: You can count the
number of methods in a class like so:

Object selectors size "Count the instance methods in Object"
Object class selectors size "Count the class methods"

Class Object provides default behaviour common to all normal objects, such
as access, copying, comparison, error handling, message sending, and re-

179

Basic classes

flection. Also utility messages that all objects should respond to are defined
here. Object has no instance variables, nor should any be added. This is due
to several classes of objects that inherit from Object that have special imple-
mentations (SmallInteger and UndefinedObject for example) that the VM
knows about and depends on the structure and layout of certain standard
classes.

If we begin to browse the method protocols on the instance side of Object
we will start to see some of the key behaviour it provides.

Printing

Every object can return a printed form of itself. You can select any expres-
sion in a textpane and select the Print it menu item: this executes the ex-
pression and asks the returned object to print itself. In fact this sends the
message printString to the returned object. The method printString,
which is a template method, at its core sends the message printOn: to its
receiver. The message printOn: is a hook that can be specialized.

Method Object>>printon: is very likely one of the methods that you will

most frequently override. This method takes as its argument a Stream on

which a String representation of the object will be written. The default im-
plementation simply writes the class name preceded by a or an. Object>>printString
returns the String that is written.

For example, the class OpalCompiler does not redefine the method printoOn:
and sending the message printString to an instance executes the methods
defined in Object.

OpalCompiler new printString
>>> 'an OpalCompiler'

The class Color shows an example of printOn: specialization. It prints the
name of the class followed by the name of the class method used to generate
that color.

Note that the message printOn: is not the same as storeoOn:. The message
storeOn: writes to its argument stream an expression that can be used to
recreate the receiver. This expression is executed when the stream is read
using the message readFrom:. On the other hand, the message printon:
just returns a textual version of the receiver. Of course, it may happen that
this textual representation may represent the receiver as a self-evaluating
expression.

A word about representation and self-evaluating representation. In func-
tional programming, expressions return values when executed. In Pharo,
messages (expressions) return objects (values). Some objects have the nice
property that their value is themselves. For example, the value of the object
true is itself i.e., the object true. We call such objects self-evaluating objects.

180

10.1 Object

Listing 10-1 printOn: redefinition.

[color >> printOn: aStream
| name |
(name := self name).
name = #unnamed
ifFalse: [
" aStream
nextPutAll: 'Color ';
nextPutAll: name].
self storeOn: aStream]]]

[[[testcase=true
Color red printString
>>> 'Color red'

You can see a printed version of an object value when you print the object in
a playground. Here are some examples of such self-evaluating expressions.

[true
>>> true

304
| >>> (304)

$a

>>> $a

[#(1 2 3)
| >>> #(1 2 3)

[color red
| >>> Color red

Note that some objects such as arrays are self-evaluating or not depend-

ing on the objects they contain. For example, an array of booleans is self-
evaluating, whereas an array of persons is not. The following example shows
that a dynamic array is self-evaluating only if its elements are:

{10910. 1009100}
>>> {(10910). (1009100)}

{Nautilus new . 1009100}
>>> an Array(a Nautilus (100@100))

Remember that literal arrays can only contain literals. Hence the following
array does not contain two points but rather six literal elements.

#(10910 1009100)
>>> #(10 #@ 10 100 #@ 100)

Lots of printOn: method specializations implement self-evaluating behav-
ior. The implementations of Point>>printOn: and Interval>>printOn:

181

Basic classes

Listing 10-2 Self-evaluation of Point

[Point >> printOn: aStream
"The receiver prints on aStream in terms of infix notation."

aStream nextPut: $(.

X printOn: aStream.

aStream nextPut: $@.

(y notNil and: [y negativel)

ifTrue: [

"Avoid ambiguous @- construct"
aStream space].

y printOn: aStream.

aStream nextPut: $).

Listing 10-3 Self-evaluation of Interval

[Interval >> printOn: aStream
aStream nextPut: $(;
print: start;
nextPutAll: ' to: ';
print: stop.
step ~= 1 ifTrue: [aStream nextPutAll: ' by: '; print: stepl].
aStream nextPut: $)

Listing 10-4 Object equality

EObject >> = anObject

"Answer whether the receiver and the argument represent the same
object.

If = is redefined in any subclass, consider also redefining the
message hash."

" self == anObject

are self-evaluating.

1 to: 10
>>> (1 to: 10) "intervals are self-evaluating"

Identity and equality

In Pharo, the message = tests object equality (i.e., whether two objects rep-
resent the same value) whereas == tests object identity (whether two expres-
sions represent the same object).

The default implementation of object equality is to test for object identity:

This is a method that you will frequently want to override. Consider the case
of Complex numbers as defined in the SciSmalltalk/PolyMath packages (Poly-
Math is a set of packages that offer support for numerical methods):

182

10.1 Object

Listing 10-5 Equality for complex numbers

[complex >> = anObject
~ anObject isComplex
ifTrue: [(real = anObject real) & (imaginary = anObject
imaginary)]
ifFalse: [anObject adaptToComplex: self andSend: #=]

Listing 10-6 Hash must be reimplemented for complex numbers

[complex >> hash
"Hash is reimplemented because = is implemented."
* real hash bitXor: imaginary hash.

[(1+21) =(1+21)
| >>> true "same value"

[(1+214) == (1 +2 1)
| >>> false "but different objects"

This works because Complex overrides = as follows:

The default implementation of Object>>~= (a test for inequality) simply
negates Object>>=, and should not normally need to be changed.

(1 +21) ~= (1 + 4 1)

>>> true

If you override =, you should consider overriding hash. If instances of your
class are ever used as keys in a Dictionary, then you should make sure that
instances that are considered to be equal have the same hash value:

Although you should override = and hash together, you should never over-
ride ==. The semantics of object identity is the same for all classes. Message
== is a primitive method of ProtoObject.

Note that Pharo has some strange equality behaviour compared to other
Smalltalks. For example a symbol and a string can be equal. (We consider
this to be a bug, not a feature.)

#'lulu' = "lulu’
>>> true

"lulu’ = #'lulu’
>>> true

Class membership

Several methods allow you to query the class of an object.

class. You can ask any object about its class using the message class.

183

Basic classes

1 class
>>> Smalllnteger

isMemberOf:. Conversely, you can ask if an object is an instance of a spe-
cific class:

[1 isMemberof: SmalllInteger
| >>> true "must be precisely this class"

[1 isMemberOf: Integer
| >>> false

[1 isMemberOf: Number
| >>> false

[1 isMemberof: Object
>>> false

Since Pharo is written in itself, you can really navigate through its structure
using the right combination of superclass and class messages (see Chapter :
Classes and Metaclasses).

isKindOf:. Object>>isKindOf: answers whether the receiver’s class is
either the same as, or a subclass of the argument class.

[1 iskindOf: SmallInteger
| >>> true

[1 isKindOf: Integer
| >>> true

[1 iskindOf: Number
| >>> true

[1 isKindof: Object
| >>> true

[1 isKindOf: String
>>> false

1/3 isKindOf: Number
>>> true

1/3 isKindOf: Integer
>>> false

1/3 which is a Fraction is a kind of Number, since the class Number is a su-
perclass of the class Fraction, but 1/3 is not an Integer.

respondsTo:. Object>>respondsTo: answers whether the receiver un-
derstands the message selector given as an argument.

184

10.1 Object

1 respondsTo: #,
>>> false

A note on the usage of respondsTo:. Normally it is a bad idea to query an
object for its class, or to ask it which messages it understands. Instead of
making decisions based on the class of object, you should simply send a mes-
sage to the object and let it decide (on the basis of its class) how it should
behave. (This concept is sometimes referred to as duck typing).

Copying

Copying objects introduces some subtle issues. Since instance variables are
accessed by reference, a shallow copy of an object would share its references
to instance variables with the original object:

[a1 := { { "harry' } }.
al
>>> #(#('harry'))

a2 := al shallowCopy.
a2
>>> #(#('harry'))

[(a1l at: 1) at: 1 put: 'sally’.

>>> #(#('sally'))

>>> #(#('sally')) "the subarray is shared!"

Object>>shallowCopy is a primitive method that creates a shallow copy of
an object. Since a2 is only a shallow copy of a1, the two arrays share a refer-
ence to the nested Array that they contain.

Object>>deepCopy makes an arbitrarily deep copy of an object.

al := { {{ 'harry' } } } .

a2 := al deepCopy.

(a1l at: 1) at: 1 put: 'sally'.
al

>>> #(#('sally'))

a2
| >>> #(#(#("harry')))

The problem with deepCopy is that it will not terminate when applied to a
mutually recursive structure:

al := { 'harry' }.

a2 := { a1 }.

al at: 1 put: a2.

al deepCopy

>>> 1'' ., does not terminate!''!

185

Basic classes

Listing 10-7 Copying objects as a template method

Object >> copy
"Answer another instance just like the receiver.
Subclasses typically override postCopy;
they typically do not override shallowCopy."

A

self shallowCopy postCopy

An alternate solution is to use message copy. It is implemented on Object as
follows:

Object >> postCopy
~ self

By default postCopy returns self. It means that by default copy is doing the
same as shallowCopy but each subclass can decide to customise the post-
Copy method which acts as a hook. You should override postCopy to copy
any instance variables that should not be shared. In addition there is a good
chance that postCopy should always do a super postCopy to ensure that
state of the superclass is also copied.

Debugging

halt. The most important method here is halt. To set a breakpoint in a
method, simply insert the expression send self halt at some point in the
body of the method. (Note that since halt is defined on Object you can also
write 1 halt). When this message is sent, execution will be interrupted and
a debugger will open to this point in your program (see Chapter : The Pharo
Environment for more details about the debugger).

You can also use Halt once or Halt if: aCondition. Have alook at the
class Halt which is an special exception.

assert:. The next most important message is assert:, which expects a
block as its argument. If the block evaluates to true, execution continues.
Otherwise an AssertionFailure exception will be raised. If this exception is
not otherwise caught, the debugger will open to this point in the execution.
assert: is especially useful to support design by contract. The most typical
usage is to check non-trivial pre-conditions to public methods of objects.
Stack>>pop could easily have been implemented as follows (note that this
definition is anhypothetical example and not in the Pharo 5.0 system):

Do not confuse Object>>assert: with TestCase>>assert:, which occurs
in the SUnit testing framework (see Chapter : SUnit). While the former ex-
pects a block as its argument (actually, it will take any argument that under-
stands value, including a Boolean), the latter expects a Boolean. Although
both are useful for debugging, they each serve a very different purpose.

186

10.1 Object

Listing 10-8 Checking a pre-condition

[stack >> pop
"Return the first element and remove it from the stack."

self assert: [self isNotEmpty 1].
* self linkedList removeFirst element

Listing 10-9 Signaling that a method is abstract

EObject >> subclassResponsibility
"This message sets up a framework for the behavior of the class'
subclasses.
Announce that the subclass should have implemented this message."
self error: 'My subclass should have overridden ', thisContext
sender selector printString

Error handling

This protocol contains several methods useful for signaling run-time errors.

deprecated:. Sending self deprecated: signals that the current method
should no longer be used, if deprecation has been turned on. You can turn

it on/off in the Debugging section using the Settings browser. The argu-
ment should describe an alternative. Look for senders of the message dep-
recated: to get anidea.

doesNotUnderstand:. doesNotUnderstand: (commonly abbreviated in
discussions as DNU or MNU) is sent whenever message lookup fails. The de-
fault implementation, i.e., Object>>doesNotUnderstand: will trigger the
debugger at this point. It may be useful to override doesNotUnderstand: to
provide some other behaviour.

error. Object>>error and Object>>error: are generic methods that can
be used to raise exceptions. (Generally it is better to raise your own custom
exceptions, so you can distinguish errors arising from your code from those
coming from kernel classes.)

subclassResponsibility. Abstract methods are implemented by con-
vention with the body self subclassResponsibility. Should an abstract
class be instantiated by accident, then calls to abstract methods will result in
Object>>subclassResponsibility being executed.

Magnitude, Number, and Boolean are classical examples of abstract classes
that we shall see shortly in this chapter.

Number new + 1
>>> !''Error: My subclass should have overridden #+'"!

187

Basic classes

Listing 10-10 initialize as an empty hook method

[ProtooObject >> initialize
"Subclasses should redefine this method to perform
initializations on instance creation"

Listing 10-11 new as a class-side template method

[Behavior >> new
"Answer a new initialized instance of the receiver (which is a
class) with no indexable
variables. Fail if the class is indexable."
" self basicNew initialize

shouldNotImplement. self shouldNotImplement is sent by convention
to signal that an inherited method is not appropriate for this subclass. This is
generally a sign that something is not quite right with the design of the class
hierarchy. Due to the limitations of single inheritance, however, sometimes
it is very hard to avoid such workarounds.

A typical example is Collection>>remove: which is inherited by Dictio-
nary but flagged as not implemented. (A Dictionary provides removeKey:
instead.)

Testing

The testing methods have nothing to do with SUnit testing! A testing method
is one that lets you ask a question about the state of the receiver and returns
aBoolean.

Numerous testing methods are provided by Object. There are isArray, is-
Boolean, isBlock, isCollection and so on. Generally such methods are to
be avoided since querying an object for its class is a form of violation of en-
capsulation. Instead of testing an object for its class, one should simply send
arequest and let the object decide how to handle it.

Nevertheless some of these testing methods are undeniably useful. The most
useful are probably ProtoObject>>1sNil and Object>>notNil (though the
Null Object design pattern can obviate the need for even these methods).

Initialize
A final key method that occurs not in Object but in ProtoObject is ini-

tialize.

The reason this is important is that in Pharo, the default new method de-
fined for every class in the system will send initialize to newly created
instances.

This means that simply by overriding the initialize hook method, new
instances of your class will automatically be initialized. The initialize

188

10.2

10.2 Numbers

AN
A

V4 \A

|Float| [Fraction] | Integer

I BoxedFloat64 I |Sca|edDECima| | | LargePositive'nteger |
| SmallFloat64 | | Smalllnteger

| LargeNegativelnteger

Figure 10-12 The number hierarchy.

method should normally perform a super initialize to establish the class
invariant for any inherited instance variables.

Numbers

Numbers in Pharo are not primitive data values but true objects. Of course
numbers are implemented efficiently in the virtual machine, but the Number
hierarchy is as perfectly accessible and extensible as any other portion of the
class hierarchy.

The abstract root of this hierarchy is Magnitude, which represents all kinds
of classes supporting comparison operators. Number adds various arithmetic
and other operators as mostly abstract methods. Float and Fraction rep-
resent, respectively, floating point numbers and fractional values. Float
subclasses (BoxedFloat64 and SmallFloat64) represent Float on certain ar-
chitectures. For example BoxedFloat64 is only available for 64 bit systems.
Integer is also abstract, thus distinguishing between subclasses SmallInte-
ger, LargePositiveInteger and LargeNegativeInteger. For the most
part, users do not need to be aware of the difference between the three In-
teger classes, as values are automatically converted as needed.

Magnitude

Magnitude is the parent not only of the Number classes, but also of other
classes supporting comparison operations, such as Character, Duration
and Timespan.

189

Basic classes

Listing 10-13 Abstract comparison methods

EMagnitude >> < aMagnitude
"Answer whether the receiver is less than the argument."

A

self subclassResponsibility

Magnitude >> > aMagnitude
"Answer whether the receiver is greater than the argument."

A

aMagnitude < self

Methods < and = are abstract. The remaining operators are generically de-
fined. For example:

Number

Similarly, Number defines +, -, » and / to be abstract, but all other arithmetic
operators are generically defined.

All Number objects support various converting operators, such as asFloat
and asInteger. There are also numerous shortcut constructor methods which
generate Durations, such as hour, day and week.

Numbers directly support common math functions such as sin, log, raiseTo:,
squared, sqrt and so on.

The method Number>>printOn: is implemented in terms of the abstract
method Number>>printOn:base:. (The default base is 10.)

Testing methods include even, odd, positive and negative. Unsurprisingly
Number overrides isNumber. More interestingly, isInfinite is defined to
return false.

Truncation methods include floor, ceiling, integerPart, fractionPart
and so on.

[1+ 2.5

| >>> 3.5 "Addition of two numbers"

[3.4 5

| >>> 17.0 "Multiplication of two numbers"
(8 /2

| >>> 4 "Division of two numbers"
[10 - 8.3

| >>> 1.7 "Subtraction of two numbers"
[12 = 11

| >>> false "Equality between two numbers"
[12 ~= 11

| >>> true "Test if two numbers are different"

190

10.2 Numbers

(12 > 9

| >>> true "Greater than"

[12 >= 10

| >>> true "Greater or equal than"
[12 < 10

| >>> false "Smaller than"

[100310

| >>> 100910 "Point creation"

The following example works surprisingly well in Pharo:
[1000 factorial / 999 factorial

| >>> 1000

Note that 1000 factorial is really calculated, which in many other lan-
guages can be quite difficult to compute. This is an excellent example of au-
tomatic coercion and exact handling of a number.

Todo Try to display the result of 1000 factorial. It takes more time
to display it than to calculate it!

Float
Float implements the abstract Number methods for floating point numbers.

More interestingly, Float class (i.e., the class-side of Float) provides meth-
ods to return the following constants: e, infinity, nan and p1i.

[Float pi
| >>> 3.141592653589793

[Float infinity
| >>> Infinity

[Float infinity isInfinite
>>> true

Fraction

Fractions are represented by instance variables for the numerator and de-
nominator, which should be Integers. Fractions are normally created by
Integer division (rather than using the constructor method Fraction>>nu-
merator:denominator:):

6/8
>>> (3/4)

(6/8) class
>>> Fraction

191

Basic classes

Multiplying a Fraction by an Integer or another Fraction may yield an
Integer:

6/8 * 4
>>> 3

Integer

Integer is the abstract parent of three concrete integer implementations.
In addition to providing concrete implementations of many abstract Number
methods, it also adds a few methods specific to integers, such as factorial,
atRandom, isPrime, gcd: and many others.

SmallInteger is special in that its instances are represented compactly —
instead of being stored as a reference, a SmallInteger is represented di-
rectly using the bits that would otherwise be used to hold a reference. The
first bit of an object reference indicates whether the object is a SmallInte-
ger or not. Now the virtual machine abstracts that from you, therefore you
cannot see this directly when inspecting the object.

The class methods minval and maxVal tell us the range of a SmallInteger:

SmallInteger maxVal = ((2 raisedTo: 30) - 1)
>>> true

SmallInteger minval = (2 raisedTo: 30) negated
>>> true

When a SmallInteger goes out of this range, it is automatically converted to
alargePositivelInteger ora LargeNegativeInteger, as needed:

(SmallInteger maxVal + 1) class
>>> LargePositiveInteger

(SmallInteger minvVal - 1) class
>>> LargeNegativelnteger

Large integers are similarly converted back to small integers when appropri-
ate.

As in most programming languages, integers can be useful for specifying it-
erative behaviour. There is a dedicated method timesRepeat: for evaluat-
ing a block repeatedly. We have already seen a similar example in Chapter :
Syntax in a Nutshell.

[n|

n := 2.

3 timesRepeat: [n :=n * n].
n

>>> 256

192

10.3

10.3 Characters

Characters

Character is defined a subclass of Magnitude. Printable characters are rep-
resented in Pharo as $<char>. For example:

$a < $b

>>> true

Non-printing characters can be generated by various class methods. Charac-
ter class>>value: takes the Unicode (or ASCII) integer value as argument
and returns the corresponding character. The protocol accessing unty-
peable characters contains a number of convenience constructor methods
such as backspace, cr, escape, euro, space, tab, and so on.

Character space = (Character value: Character space asciivValue)

>>> true

The printOn: method is clever enough to know which of the three ways to
generate characters offers the most appropriate representation:

[Character value: 1
| >>> Character home

[Character value: 2
>>> Character value: 2

[character value: 32
>>> Character space

[Character value: 97
>>> $a

Various convenient testing methods are built in: isAlphaNumeric, isChar-
acter, isDigit, isLowercase, isVowel, and so on.

To convert a Character to the string containing just that character, send
asString. In this case asString and printString yield different results:

[$a asString

>>> 'a'
[$a
>>> $a

[$a printString
>>> '$a’

Like SmallInteger, a Character is a immediate value not a object reference.
Most of the time you won’t see any difference and can use objects of class
Character like any other too. But this means, equal value characters are
always identical:

(Character value: 97) == $a
>>> true

193

Basic classes
A\
Collection

| SequenceableCollection |

| ArrayedCollection |

|Array | |String] |Text]

ByteString Symbol

Figure 10-14 The String Hierarchy.

10.4 Strings

A String is an indexed Collection that holds only Characters.

In fact, String is abstract and Pharo strings are actually instances of the
concrete class ByteString.

"hello world' class
>>> ByteString

The other important subclass of String is Symbol. The key difference is

that there is only ever a single instance of Symbol with a given value. (This

is sometimes called the unique instance property). In contrast, two separately
constructed Strings that happen to contain the same sequence of characters
will often be different objects.

'hel','lo' == 'hello’
>>> false

('hel','lo") asSymbol == #hello
>>> true

Another important difference is that a String is mutable, whereas a Symbol
is immutable.

'hello' at: 2 put: $u; yourself
>>> 'hullo'

#hello at: 2 put: $u
>>> error!

194

10.5 Booleans

Boolean

ifTrue:lfFalse:
not
&

True False
ifTrue:lfFalse: ifTrue:lfFalse:
not not
& &

Figure 10-15 The Boolean Hierarchy.

It is easy to forget that since strings are collections, they understand the
same messages that other collections do:

#hello indexOf: $o
>>> 5

Although String does not inherit from Magnitude, it does support the usual
comparing methods, <, = and so on. In addition, String>>match: is useful
for some basic glob-style pattern-matching:

's*or*' match: 'zorro'
>>> true

—

Regular expressions will be discussed in more detail in Chapter : Regular Ex-
pressions in Pharo.

Strings support a rather large number of conversion methods. Many of these
are shortcut constructor methods for other classes, such as asDate, asInte-
ger and so on. There are also a number of useful methods for converting a
string to another string, such as capitalized and translateTolLowercase.

For more on strings and collections, see Chapter : Collections.

10.5 Booleans

The class Boolean offers a fascinating insight into how much of the Pharo
language has been pushed into the class library. Boolean is the abstract su-
perclass of the singleton classes True and False.

Most of the behaviour of Booleans can be understood by considering the
method ifTrue:ifFalse:, which takes two Blocks as arguments.
4 factorial > 20
ifTrue: ['bigger' 1]
ifFalse: ['smaller']
>>> 'bigger'

195

Basic classes

Listing 10-16 Implementations of i1fTrue:ifFalse:

[True >> ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock
" trueAlternativeBlock value

False >> ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock
" falseAlternativeBlock value

Listing 10-17 Implementing negation
[True >> not

"Negation--answer false since the receiver is true."
~ false

False >> not
"Negation--answer true since the receiver is false."
A
true

The method ifTrue:ifFalse: is abstract in class Boolean. The implemen-
tations in its concrete subclasses are both trivial:

Each of them execute the correct block depending on the receiver of the
message. In fact, this is the essence of OOP: when a message is sent to an
object, the object itself determines which method will be used to respond.
In this case an instance of True simply executes the true alternative, while
an instance of False executes the false alternative. All the abstract Boolean
methods are implemented in this way for True and False. For example the
implementation of negation (message not) is defined the same way:

Booleans offer several useful convenience methods, such as ifTrue:, if-
False:,and ifFalse:ifTrue. You also have the choice between eager and
lazy conjunctions and disjunctions.

[(1>2)8(3<4)
| >>> false "Eager, must evaluate both sides"

[(1>2)and: [3 <4]
| >>> false "Lazy, only evaluate receiver"

[C1>2)and: [(1/0)>0]
| >>> false "argument block is never executed, so no exception"

In the first example, both Boolean subexpressions are executed, since &
takes a Boolean argument. In the second and third examples, only the first is
executed, since and: expects a Block as its argument. The Block is executed
only if the first argument is true.

Todo Try toimagine how and: and or: are implemented. Check the
implementations in Boolean, True and False.

196

10.6

10.7

10.8

10.9

10.6 Chapter summary

Chapter summary

« If you override = then you should override hash as well.

« Override postCopy to correctly implement copying for your objects.
¢« Use self halt. to seta breakpoint.

+ Return self subclassResponsibility to make a method abstract.
» To give an object a String representation you should override printon:.
« Override the hook method initialize to properly initialize instances.

+ Number methods automatically convert between Floats, Fractions
and Integers.

* Fractions truly represent rational numbers rather than floats.
« All Characters are like unique instances.

» Strings are mutable; Symbols are not. Take care not to mutate string
literals, however!

* Symbols are unique; Strings are not.

+ Strings and Symbols are Collections and therefore support the
usual Collection methods.

Collections

Introduction

The collection classes form a loosely-defined group of general-purpose sub-
classes of Collection and Stream. Many of these (like Bitmap, FileStream
and CompiledMethod) are special-purpose classes crafted for use in other
parts of the system or in applications, and hence not categorized as Collec-
tions by the system organization. For the purposes of this chapter, we use the
term Collection Hierarchy to mean Collection and its subclasses that are also
in the packages labelled Collections-*. We use the term Stream Hierarchy
to mean Stream and its subclasses that are also in the Collections-Streams
packages.

In this chapter we focus mainly on the subset of collection classes shown in
Figure 10-18. Streams will be discussed separately in Chapter : Streams.

The varieties of collections
To make good use of the collection classes, the reader needs at least a super-

ficial knowledge of the wide variety of collections that they implement, and
their commonalities and differences.

197

Collection

[SequenceableCollection)|
WY,

LinkedList

Interval

[ArrayedCollection] [OrderedCollection |

[Array] [String] [Text] [SortedCollection |

Basic classes

[HashedCollection] | Bag |
N

NA

[IdentityDictionary | [KeyedTree |

[PluggableDictionary |

I

IdentitySet |

[ByteString] [Symbol |

PluggableSet

Figure 10-18 Some of the key collection classes in Pharo.

Programming with collections using high-order functions rather than indi-
vidual elements is an important way to raise the level of abstraction of a pro-
gram. The Lisp function map, which applies an argument function to every
element of a list and returns a new list containing the results is an early ex-

ample of this style. Following its Smalltalk

root, Pharo adopts this collection-

based high-order programming as a central tenet. Modern functional pro-
gramming languages such as ML and Haskell have followed Smalltalk’s lead.

Why is this a good idea? Suppose you have

a data structure containing a col-

lection of student records, and wish to perform some action on all of the stu-
dents that meet some criterion. Programmers raised to use an imperative

language will immediately reach for a loop
write:

students

. But the Pharo programmer will

select: [:each | each gpa < threshold]

This expression returns a new collection containing precisely those elements
of students for which the block (the bracketed function) returns true. The
block can be thought of as a lambda-expression defining an anonymous func-
tion x. x gpa < threshold. This code has the simplicity and elegance of a

domain-specific query language.

The message select: is understood by all
need to find out if the student data structu

collections in Pharo. There is no
re is an array or a linked list: the

select: message is understood by both. Note that this is quite different
from using a loop, where one must know whether students is an array or

a linked list before the loop can be set up.

198

10.9 The varieties of collections

In Pharo, when one speaks of a collection without being more specific about
the kind of collection, one means an object that supports well-defined pro-
tocols for testing membership and enumerating the elements. All collections
understand the testing messages includes:, isEmpty and occurrence-
sOf :. All collections understand the enumeration messages do:, select:,
reject: (which is the opposite of select:), collect: (which is like Lisp’s
map), detect:ifNone:, inject:into: (which performs a left fold) and many
more. It is the ubiquity of this protocol, as well as its variety, that makes it so
powerful.

The table below summarizes the standard protocols supported by most of the
classes in the collection hierarchy. These methods are defined, redefined,
optimized or occasionally even forbidden by subclasses of Collection.

Protocol Methods

accessing size, capacity,at:,at:put:

testing isEmpty, includes:, contains:, occurrencesOf:
adding add:, addAll:

removing remove:, remove:ifAbsent:, removeAll:

enumerating do:,collect:,select:, reject:
detect:,detect:ifNone:, inject:into:

converting asBag, asSet, asOrderedCollection, asSortedCollection,
asArray, asSortedCollection:

creation with:,with:with:,with:with:with:,
with:with:with:with:,withAll:

Beyond this basic uniformity, there are many different kinds of collection
either supporting different protocols, or providing different behaviour for
the same requests. Let us briefly survey some of the key differences:

Sequenceable: Instances of all subclasses of SequenceableCollection
start from a first element and proceed in a well-defined order to
a last element. Instances of Set, Bag and Dictionary, on the other
hand, are not sequenceable.

Sortable: A SortedCollection maintains its elements in sort order.

Indexable: Most sequenceable collections are also indexable, that is, ele-
ments can be retrieved with message at: anIndex. Array is the famil-
iar indexable data structure with a fixed size; anArray at: nretrieves
the nt" element of anArray, and anArray at: n put: v changes the
nt element to v. LinkedLists and SkipLists are sequenceable but
not indexable, that is, they understand first and last, but not the
message at:.

Keyed: Instances of Dictionary and its subclasses are accessed by keys in-
stead of indices.

199

10.10

Basic classes

Arrayed
Implementation

Ordered
Implementation

Hashed
Implementation

Linked
Implementation

Interval
Implementation

Array OrderedCollection Set LinkedList Interval
String SortedCollection IdentitySet SkipList
Symbol Text PluggableSet
Heap Bag
IdentityBag
Dictionary

IdentityDictionary
PluggableDictionary

Figure 10-19 Some collection classes categorized by implementation technique.

Mutable: Most collections are mutable, but Intervals and Symbols are

not. An Interval is an immutable collection representing a range of
Integers. For example, 5 to: 16 by: 2 isan interval that contains
the elements 5, 7, 9, 11, 13 and 15. It is indexable with message at:
anIndex, but cannot be changed with message at: anIndex put:
avalue.

Growable: Instances of Interval and Array are always of a fixed size.

Other kinds of collections (sorted collections, ordered collections, and
linked lists) can grow after creation. The class OrderedCollection is
more general than Array; the size of an OrderedCollection grows on
demand, and it defines messages addFirst: anElement and addLast:
anElement as well as messages at: anIndex and at: anIndex put:
aValue.

Accepts duplicates: A Set filters out duplicates, but a Bag does not.

Classes Dictionary, Set and Bag use the = method provided by the
elements; the Identity variants of these classes use the == method,
which tests whether the arguments are the same object, and the Plug-
gable variants use an arbitrary equivalence relation supplied by the
creator of the collection.

Heterogeneous: Most collections will hold any kind of element. A String,

CharacterArray or Symbol, however, only holds Characters. An Ar-
ray will hold any mix of objects, but a ByteArray only holds Bytes. A

LinkedList is constrained to hold elements that conform to the Link
accessing protocol.

Collection implementations

These categorizations by functionality are not our only concern; we must
also consider how the collection classes are implemented. As shown in Figure
10-19, five main implementation techniques are employed.

200

10.11

10.11 Examples of key classes

Arrays store their elements in the (indexable) instance variables of the
collection object itself; as a consequence, arrays must be of a fixed size,
but can be created with a single memory allocation.

OrderedCollections and SortedCollections store their elements in
an array that is referenced by one of the instance variables of the col-
lection. Consequently, the internal array can be replaced with a larger
one if the collection grows beyond its storage capacity.

The various kinds of set and dictionary also reference a subsidiary ar-
ray for storage, but use the array as a hash table. Bags use a subsidiary
Dictionary, with the elements of the bag as keys and the number of
occurrences as values.

LinkedLists use a standard singly-linked representation.

Intervals are represented by three integers that record the two end-
points and the step size.

In addition to these classes, there are also weak variants of Array, Set and of
the various kinds of dictionary. These collections hold onto their elements
weakly, i.e., in a way that does not prevent the elements from being garbage
collected. The Pharo virtual machine is aware of these classes and handles
them specially.

Examples of key classes

We present now the most common or important collection classes using sim-
ple code examples. The main protocols of collections are:

+ messages at:,at:put: — to access an element,
» messages add:, remove: — to add or remove an element,

* messages size, isEmpty, include: — to get some information about
the collection,

 messages do:, collect:, select: — to iterate over the collection.

Each collection may implement (or not) such protocols, and when they do,
they interpret them to fit with their semantics. We suggest you browse the
classes themselves to identify specific and more advanced protocols.

We will focus on the most common collection classes: OrderedCollection,
Set, SortedCollection, Dictionary, Interval, and Array.

Common creation protocol. There are several ways to create instances of
collections. The most generic ones use the message new: aSize andwith:
anElement.

201

Basic classes

* new: anInteger creates a collection of size anInteger whose ele-
ments will all be nil.

« with: anObject creates a collection and adds anObject to the created

collection.

Different collections will realize this behaviour differently.

You can create collections with initial elements using the methods with:,
with:with: etc. for up to six elements.

EArray with: 1
| >>> #(1)

| >>> #(1 2)
| >>> #(1 2 3)
>>> #(1 2 3 4)

| >>> #(1 2 3 4 5)

|>>> #(1 23 4 56)

[Array with: 1 with:
[Array with: 1 with:
EArray with: 1 with:
[Array with: 1 with:

>Array with: 1 with:

with:

with:

with:

with:

3
3 with: 4
3 with: 4 with: 5

3 with: 4 with: 5 with: 6

You can also use message addAll: aCollection to add all elements of one
kind of collection to another kind:

(1 to: 5) asOrderedCollection addAll: '678'; yourself
>>> an OrderedCollection(1 2 3 4 56 7 8)

Take care that addA11: returns its argument, and not the receiver!

You can also create many collections with withAll: aCollection.

| >>> #(7 3 1 3)

| >>> a Set(7 1 3)

| >>> a Bag(7 1 3 3)

202

>Array withAll: #(7 3 1 3)

[Set withAll: #(7 3 1 3)

[Bag withAll: #(7 3 1 3)

[orderedCollection withAll: #(7 3 1 3)
| >>> an OrderedCollection(7 3 1 3)

[SortedCollection withAll: #(7 3 1 3)
| >>> a SortedCollection(1 3 3 7)

|

|

10.11 Examples of key classes

Array

An Array is a fixed-sized collection of elements accessed by integer indices.
Contrary to the C convention in Pharo, the first element of an array is at po-
sition 1 and not 0. The main protocol to access array elements is the method
at: and at:put:. at: anInteger returns the element at index anInteger.
at: anInteger put: anObject puts anObject atindex anInteger. Arrays
are fixed-size collections therefore we cannot add or remove elements at the
end of an array. The following code creates an array of size 5, puts values in
the first 3 locations and returns the first element.

| anArray |

anArray := Array new: 5.
anArray at: 1 put: 4.
anArray at: 2 put: 3/2.
anArray at: 3 put: 'ssss'.
anArray at: 1

>>> 4

There are several ways to create instances of the class Array. We can use
new:,with:, and the constructs #() (literal arrays) and { . } (dynamic
compact syntax).

Creation with new: The message new: anInteger creates an array of size
anInteger. Array new: 5 creates an array of size 5. (Note: the value of
each element is initialized to nil).

Creation usingwith: The with:* messages allow one to specify the value
of the elements. The following code creates an array of three elements con-
sisting of the number 4, the fraction 3/2 and the string 'lulu"'.

Array with: 4 with: 3/2 with: 'lulu’
>>> {4. (3/2). 'Wwlu'}

Literal creation with #() The expression #() creates literal arrays with
constants or literal elements that have to be known when the expression is
compiled, and not when it is executed. The following code creates an array
of size 2 where the first element is the (literal) number 1 and the second the
(literal) string 'here".

#(1 'here') size

>>> 2

Now, if you execute the expression #(1+2), you do not get an array with a
single element 3 but instead you get the array #(1 #+ 2) i.e., with three ele-
ments: 1, the symbol #+ and the number 2.

#(1+2)
>>> #(1 #+ 2)

203

Basic classes

This occurs because the construct #() does not execute the expressions it
contains. The elements are only objects that are created when parsing the
expression (called literal objects). The expression is scanned and the result-
ing elements are fed to a new array. Literal arrays contain numbers, nil,
true, false, symbols, strings and other literal arrays. During the execution
of #() expressions, there are no messages sent.

Dynamic creation with { . } Finally, you can create a dynamic array us-
ing the construct { . }. The expression{ a . b } is totally equivalent to
Array with: a with: b. This means in particular that the expressions en-
closed by { and } are executed (contrary to the case of #()).

[{1+21}
| >>> #(3)

[{(1/2) asFloat} at: 1
| >>> 0.5

[{10 atRandom. 1/3} at: 2
| >>> (1/3)

Element Access Elements of all sequenceable collections can be accessed
with messages at: anIndex and at: anIndex put: anObject.

| anArray |

anArray := #(1 2 3 4 5 6) copy.
anArray at: 3 >>> 3

anArray at: 3 put: 33.

anArray at: 3

>>> 33

Be careful: as a general principle do not modify literal arrays! Literal arrays
are kept in compiled method literal frames (a space where literals appearing
in a method are stored), therefore unless you copy the array, the second time
you execute the code your literal array may not have the value you expect. In
the example, without copying the array, the second time around, the literal
#(1 2 3 4 5 6) will actuallybe #(1 2 33 4 5 6)! Dynamic arrays do not
have this problem because they are not stored in literal frames.

OrderedCollection

OrderedCollection is one of the collections that can grow, and to which
elements can be added sequentially. It offers a variety of messages such as
add:, addFirst:, addLast:, and addAll:.

| ordCol |

ordCol := OrderedCollection new.

ordCol add: 'Seaside'; add: 'SmalltalkHub'; addFirst: 'Monticello'.
;ordCol

204

10.11 Examples of key classes

L>>> an OrderedCollection('Monticello' 'Seaside' 'SmalltalkHub')

Removing Elements The message remove: anObject removes the first oc-
currence of an object from the collection. If the collection does not include
such an object, it raises an error.

ordCol add: 'Monticello'.

ordCol remove: 'Monticello'.

ordCol

>>> an OrderedCollection('Seaside' 'SmalltalkHub' 'Monticello')

There is a variant of remove: named remove:ifAbsent: that allows one to
specify as second argument a block that is executed in case the element to be
removed is not in the collection.

result := ordCol remove: 'zork' ifAbsent: [33].

result
>>> 33

Conversion It is possible to get an OrderedCollection from an Array (or
any other collection) by sending the message asOrderedCollection:

#(1 2 3) asOrderedCollection
>>> an OrderedCollection(1 2 3)

'"hello' asOrderedCollection
>>> an OrderedCollection($h $e $1 $1 $0)

—

Interval
The class Interval represents ranges of numbers. For example, the interval
of numbers from 1 to 100 is defined as follows:

Interval from: 1 to: 100
>>> (1 to: 100)

—

The result of printString reveals that the class Number provides us with a
convenience method called to: to generate intervals:

(Interval from: 1 to: 100) = (1 to: 100)
>>> true

We can use Interval class>>from:to:by: or Number>>to:by: to specify
the step between two numbers as follow:

(Interval from: 1 to: 100 by: 0.5) size
>>> 199

(1 to: 100 by: 0.5) at: 198
>>> 99.5

205

Basic classes

(1/2 to: 54/7 by: 1/3) last
>>> (15/2)

Dictionary

Dictionaries are important collections whose elements are accessed using
keys. Among the most commonly used messages of dictionary you will find
at: aKey,at: aKey put: aValue,at: aKey ifAbsent: aBlock, keys,
and values.

[colors |

colors := Dictionary new.

colors at: #yellow put: Color yellow.
colors at: #blue put: Color blue.
colors at: #tred put: Color red.
colors at: #yellow

>>> Color yellow

[[[testcase=true

colors keys

>>> #(#tred #blue #yellow)

[colors values
| >>> {Color blue . Color yellow . Color red}

Dictionaries compare keys by equality. Two keys are considered to be the
same if they return true when compared using =. A common and difficult to
spot bug is to use as key an object whose = method has been redefined but
not its hash method. Both methods are used in the implementation of dictio-
nary and when comparing objects.

In its implementation, a Dictionary can be seen as consisting of a set of (key
value) associations created using the message ->. We can create a Dictio-
nary from a collection of associations, or we may convert a dictionary to an
array of associations.

| colors |

colors := Dictionary newFrom: { #blue->Color blue . #red->Color red
. #yellow->Color yellow }.

colors removeKey: #blue.

colors associations

>>> {#yellow->Color yellow. #red->Color red}

IdentityDictionary While a dictionary uses the result of the messages

= and hash to determine if two keys are the same, the class IdentityDic-
tionary uses the identity (message ==) of the key instead of its values, i.e., it
considers two keys to be equal only if they are the same object.

Often Symbols are used as keys, in which case it is natural to use an Identi-
tyDictionary, since a Symbol is guaranteed to be globally unique. If, on the

206

10.11 Examples of key classes

other hand, your keys are Strings, it is better to use a plain Dictionary, or
you may get into trouble:

a := 'foobar'.
b := a copy.
trouble := IdentityDictionary new.

trouble at: a put:
trouble at: a

>>> 'a'
[[[testcase=true
trouble at: b

>>> 'b!

a'; at: b put: 'b'.

[trouble at: 'foobar'
>>> 'a'

Since a and b are different objects, they are treated as different objects. In-
terestingly, the literal ' foobar' is allocated just once, so is really the same
object as a. You don’t want your code to depend on behaviour like this! A
plain Dictionary would give the same value for any key equal to ' foobar'.

Use only globally unique objects (like Symbols or SmallIntegers) as keys for
an IdentityDictionary, and Strings (or other objects) as keys for a plain
Dictionary.

Note that the expression Smalltalk globals returns an instance of Sys-
temDictionary, a subclass of IdentityDictionary, hence all its keys are
Symbols (actually, ByteSymbols, which contain only 8-bit characters).

Smalltalk globals keys collect: [:each | each class] as:Set
>>> a Set(ByteSymbol)

Here we are using collect:as: to specify the result collection to be of class
Set, that way we collect each kind of class used as a key only once.

Set

The class Set is a collection which behaves as a mathematical set, i.e., as a
collection with no duplicate elements and without any order. In a Set, ele-
ments are added using the message add: and they cannot be accessed using
the message at:. Objects put in a set should implement the methods hash
and -=.

s := Set new.

s add: 4/2; add: 4; add:2.

s size

>>> 2

You can also create sets using Set class>>newFrom: or the conversion mes-
sage Collection>>asSet:

207

Basic classes

[(set newFrom: #(12 3 1 4)) = #(1 2 3 4 3 2 1) asSet
| >>> true

asSet offers us a convenient way to eliminate duplicates from a collection:

[{ Color black. Color white. (Color red + Color blue + Color green) }
asSet size
| >>> 2

Note that red + blue + green = white.
A Bag is much like a Set except that it does allow duplicates:

{ Color black. Color white. (Color red + Color blue + Color green) }
asBag size
>>> 3

The set operations union, intersection and membership test are implemented
by the Collection messages union:, intersection:, and includes:. The
receiver is first converted to a Set, so these operations work for all kinds of
collections!

[(1 to: 6) union: (4 to: 10)

|>>> aset(123456789 10)

["hello' intersection: 'there’
>>> 'he'

[#Smalltalk includes: $k
>>> true

As we explain below, elements of a set are accessed using iterators (see Sec-
tion 10.12).

SortedCollection

In contrast to an OrderedCollection, a SortedCollection maintains its
elements in sort order. By default, a sorted collection uses the message <=
to establish sort order, so it can sort instances of subclasses of the abstract
class Magnitude, which defines the protocol of comparable objects (<, =, >,
>=, between:and:...). (See Chapter : Basic Classes).

You can create a SortedCollection by creating a new instance and adding
elements to it:

SortedCollection new add: 5; add: 2; add: 50; add: -10; yourself.
>>> a SortedCollection(-10 2 5 50)

More usually, though, one will send the conversion message asSortedCol-
lection to an existing collection:

#(5 2 50 -10) asSortedCollection
>>> a SortedCollection(-10 2 5 50)

208

10.11 Examples of key classes

'hello' asSortedCollection
>>> a SortedCollection($e $h $1 $1 $o0)

How do you get a String back from this result? asString unfortunately re-
turns the printString representation, which is not what we want:

"hello' asSortedCollection asString
>>> 'a SortedCollection($e $h $1 $1 $o)°

The correct answer is to either use String class>>newFrom:,String class>>with-
All: or Object>>as::

["hello' asSortedCollection as: String
>>> 'ehllo’

EString newFrom: 'hello' asSortedCollection
>>> 'ehllo’

[string withAll: 'hello' asSortedCollection
>>> 'ehllo’

It is possible to have different kinds of elements in a SortedCollection as
long as they are all comparable. For example, we can mix different kinds of
numbers such as integers, floats and fractions:

{5 .2/ -3 .5.21 } asSortedCollection
>>> a SortedCollection((-2/3) 5 5.21)

Imagine that you want to sort objects that do not define the method <= or
that you would like to have a different sorting criterion. You can do this by
supplying a two argument block, called a sortblock, to the sorted collection.
For example, the class Color is not a Magnitude and it does not implement
the method <=, but we can specify a block stating that the colors should be
sorted according to their luminance (a measure of brightness).

col := SortedCollection
sortBlock: [:cl :c2 | cl1 luminance <= c2 luminance].
col addAll: { Color red . Color yellow . Color white . Color black }.
col
>>> a SortedCollection(Color black Color red Color yellow Color
white)

String

In Pharo, a String is a collection of Characters. It is sequenceable, index-
able, mutable and homogeneous, containing only Character instances. Like
Arrays, Strings have a dedicated syntax, and are normally created by di-
rectly specifying a String literal within single quotes, but the usual collec-
tion creation methods will work as well.

'"Hello'

>>> 'Hello'

209

Basic classes

[string with: $A

| >>> A’

[String with: $h with: $i with: $!
>>> 'hit!'!

String newFrom: #($h $e $1 $1 $o)
>>> 'hello’

In actual fact, String is abstract. When we instantiate a String we actually
get either an 8-bit ByteString or a 32-bit WideString. To keep things sim-
ple, we usually ignore the difference and just talk about instances of String.

While strings are delimited by single quotes, a string can contain a single
quote: to define a string with a single quote we should type it twice. Note
that the string will contain only one element and not two as shown below:
'1''idiot"' at: 2

>>> $!

'1''idiot" at: 3

>>> $i

Two instances of String can be concatenated with a comma.

s := 'no', , 'worries'.
>>> 'no worries'

Since a string is a mutable collection we can also change it using the message
at:put:.

s at: 4 put: $h; at: 5 put: $u.
s
>>> 'no hurries'

Note that the comma method is defined by Collection, so it will work for
any kind of collection!

(1 to: 3), '45'
>>> #(1 2 3 $4 $5)

We can also modify an existing string using replaceAll:with: or replace-
From:to:with: as shown below. Note that the number of characters and the
interval should have the same size.

['s replaceAll: $n with: $N.
s
>>> 'No hurries'

[s replaceFrom: 4 to: 5 with: 'wo'.
s

>>> 'No worries'

210

10.11 Examples of key classes

In contrast to the methods described above, the method copyReplaceAll:
creates a new string. (Curiously, here the arguments are substrings rather
than individual characters, and their sizes do not have to match.)

s copyReplaceAll: 'rries' with: 'mbats'
>>> 'No wombats'

A quick look at the implementation of these methods reveals that they are
defined not only for Strings, but for any kind of SequenceableCollection,
so the following also works:

(1 to: 6) copyReplaceAll: (3 to: 5) with: { 'three' . 'etc.' }
>>> #(1 2 'three' 'etc.' 6)

String matching It is possible to ask whether a pattern matches a string by
sending the match: message. The pattern can use * to match an arbitrary
series of characters and # to match a single character. Note that match: is
sent to the pattern and not the string to be matched.

"Linux *' match: 'Linux mag'
>>> true

'"GNU#Linux #ag' match: 'GNU/Linux tag'
>>> true

More advanced pattern matching facilities are also available in the Regex
package.

Substrings For substring manipulation we can use messages like first,
first:,allButFirst:, copyFrom:to: and others, defined in Sequence-
ableCollection.

>'a1phabet' at: 6
>>> $b

["alphabet' first
| >>> $a

["alphabet’ first: 5
>>> 'alpha’

[*alphabet' allButFirst: 3
>>> 'habet’

E'alphabet' copyFrom: 5 to: 7
>>> 'abe’

E'alphabet' copyFrom: 3 to: 3
|>>> 'p' (not $p)

Be aware that result type can be different, depending on the method used.
Most of the substring-related methods return String instances. But the

211

Basic classes

messages that always return one element of the String collection, return a
Character instance (for example, 'alphabet' at: 6 returns the character
$b). For a complete list of substring-related messages, browse the Sequence-
ableCollection class (especially the accessing protocol).

Some tests on strings The following examples illustrate the use of isEmpty,
includes: and anySatisfy: which are also messages defined not only on
Strings but more generally on collections.

["Hello® isEmpty
| >>> false

["Hello' includes: $a
| >>> false

[*JoE" anySatisfy: [:c | c isLowercase]
| >>> false

["Joe' anySatisfy: [:c | ¢ isLowercase]
>>> true

String templating There are three messages that are useful to manage string
templating: format:, expandMacros and expandMacrosWith:.

"{1} is {2}' format: {'Pharo' . 'cool'}
>>> 'Pharo is cool'

The messages of the expandMacros family offer variable substitution, using
<n> for carriage return, <t> for tabulation, <1s>, <2s>, <3s> for arguments
(<1p>, <2p>, surrounds the string with single quotes), and <1?valuel:value2>
for conditional.

["look-<t>-here" expandMacros
>>> 'look- -here’

['<1s> is <2s>' expandMacrosWith: 'Pharo' with: 'cool'
>>> 'Pharo is cool'’

['<2s> is <1s>' expandMacrosWith: 'Pharo’' with: 'cool'
>>> 'cool is Pharo'

["<1p> or <1s>' expandMacrosWith: 'Pharo’ with: 'cool'
>>> '''Pharo'' or Pharo'

["<1?Quentin:Thibaut> plays' expandMacrosWith: true
>>> 'Quentin plays'

["<1?Quentin:Thibaut> plays' expandMacrosWith: false
>>> 'Thibaut plays'

Some other utility methods The class String offers numerous other utili-
ties including the messages asLowercase, asUppercase and capitalized.

212

10.12

10.12 Collection iterators

['XYZ' asLowercase

1

>>> 'xyz

'xyz' asUppercase
>>> 'XYZ'

["hilaire' capitalized

>>> 'Hilaire'

["Hilaire’ uncapitalized

>>> 'hilaire’

["1.54' asNumber

|
|

>>> 1.54

"this sentence is without a doubt far too long' contractTo: 20
>>> 'this sent...too long'

Note that there is generally a difference between asking an object its string
representation by sending the message printString and converting it to a
string by sending the message asString. Here is an example of the differ-
ence.

#ASymbol printString
>>> "#ASymbol'

#ASymbol asString
>>> 'ASymbol’

A symbol is similar to a string but is guaranteed to be globally unique. For
this reason symbols are preferred to strings as keys for dictionaries, in par-
ticular for instances of IdentityDictionary. See also Chapter : Basic Classes
for more about String and Symbol.

Collection iterators

In Pharo loops and conditionals are simply messages sent to collections or
other objects such as integers or blocks (see also Chapter : Syntax in a Nut-
shell). In addition to low-level messages such as to:do: which evaluates a
block with an argument ranging from an initial to a final number, the collec-
tion hierarchy offers various high-level iterators. Using such iterators will
make your code more robust and compact.

Iterating (do:)

The method do: is the basic collection iterator. It applies its argument (a
block taking a single argument) to each element of the receiver. The follow-
ing example prints all the strings contained in the receiver to the transcript.

[#('bob' 'joe' 'toto') do: [:each | Transcript show: each; cr].

213

Basic classes

Variants. There are a lot of variants of do:, such as do:without:, dowithIn-
dex: and reverseDo:.

For the indexed collections (Array, OrderedCollection, SortedCollec-
tion) the message dowithIndex: also gives access to the current index. This
message is related to to:do: which is defined in class Number.
#('bob' 'joe' 'toto')

dowWithIndex: [:each :i | (each = 'joe') ifTrue: [*~ i]]
>>> 2

For ordered collections, the message reverseDo: walks the collection in the
reverse order.

The following code shows an interesting message: do:separatedBy: which
executes the second block only in between two elements.

[res |

res := "'
#('bob' 'joe' 'toto')
do: [:e | res := res, e]
separatedBy: [res := res, '.'].
res

| >>> 'bob.joe.toto’

Note that this code is not especially efficient since it creates intermediate
strings and it would be better to use a write stream to buffer the result (see
Chapter : Streams):

String streamContents: [:stream |
#('bob' 'joe' 'toto') asStringOn: stream delimiter: '.' 1]
>>> 'bob.joe.toto’

Dictionaries

When the message do: is sent to a dictionary, the elements taken into ac-
count are the values, not the associations. The proper messages to use are
keysDo:, valuesDo:, and associationsDo:, which iterate respectively on
keys, values or associations.

colors := Dictionary newFrom: { #yellow -> Color yellow. #blue ->
Color blue. #red -> Color red }.

colors keysDo: [:key | Transcript show: key; cr 1].

colors valuesDo: [:value | Transcript show: value; cr 1].

colors associationsDo: [:value | Transcript show: value; crl].

Collecting results (collect:)

If you want to apply a function to the elements of a collection and get a new
collection with the results, rather than using do:, you are probably better off

214

10.12 Collection iterators

using collect:, or one of the other iterator methods. Most of these can be
found in the enumerating protocol of Collection and its subclasses.

Imagine that we want a collection containing the doubles of the elements in
another collection. Using the method do: we must write the following:

| double |

double := OrderedCollection new.

#(1 2 3 4 5 6) do: [:e | double add: 2 * e].
double

>>> an OrderedCollection(2 4 6 8 10 12)

The message collect: executes its argument block for each element and
returns a new collection containing the results. Using collect: instead, the
code is much simpler:

#(1 2 3 4 5 6) collect: [:e | 2 » e]
>>> #(2 4 6 8 10 12)

The advantages of collect: over do: are even more important in the fol-
lowing example, where we take a collection of integers and generate as a
result a collection of absolute values of these integers:

[aCol := #(2 -3 4 -35 4 -11).

result := aCol species new: aCol size.

1 to: aCol size do: [:each | result at: each put: (aCol at: each)
abs].

result

| >>> #(2 3 4 35 4 11)

Contrast the above with the much simpler following expression:

[#(2 -3 4 -35 4 -11) collect: [:each | each abs]
»>>> #(2 3 4 35 4 11)

A further advantage of the second solution is that it will also work for sets
and bags. Generally you should avoid using do:, unless you want to send
messages to each of the elements of a collection.

Note that sending the message collect: returns the same kind of collection
as the receiver. For this reason the following code fails. (A String cannot
hold integer values.)

'abc' collect: [:ea | ea asciivalue]
>>> "error!"
Instead we must first convert the string to an Array or an OrderedCollec-
tion:

'abc' asArray collect: [:ea | ea asciivalue]
>>> #(97 98 99)

215

Basic classes

Actually collect: is not guaranteed to return a collection of exactly the
same class as the receiver, but only the same species. In the case of an Inter-
val, the species is an Array!

(1 to: 5) collect: [:ea | ea * 2]
>>> #(2 4 6 8 10)

Selecting and rejecting elements

The message select: returns the elements of the receiver that satisfy a par-
ticular condition:

(2 to: 20) select: [:each | each isPrime]
>>> #(2 3 57 11 13 17 19)

The message reject: does the opposite:

(2 to: 20) reject: [:each | each isPrime]
>>> #(4 6 8 9 10 12 14 15 16 18 20)

Identifying an element with detect:

The message detect: returns the first element of the receiver that matches
block argument.

"through' detect: [:each | each isVowel]

>>> $0

The message detect:ifNone: is a variant of the method detect:. Its sec-
ond block is evaluated when there is no element matching the block.

Smalltalk globals allClasses

detect: [:each | 'xcobolx' match: each asString]
ifNone: [nil]
>>> nil

Accumulating results with inject:into:

Functional programming languages often provide a higher-order function
called fold or reduce to accumulate a result by applying some binary operator
iteratively over all elements of a collection. In Pharo this is done by Collec-
tion>>inject:into:.

The first argument is an initial value, and the second argument is a two-
argument block which is applied to the result this far, and each element in
turn.

A trivial application of inject:into: is to produce the sum of a collection of
numbers. In Pharo we could write this expression to sum the first 100 inte-
gers:

216

10.13 Some hints for using collections

(1 to: 100) inject: O into: [:sum :each | sum + each 1]
>>> 5050

Another example is the following one-argument block which computes facto-

rials:

factorial := [:n | (1 to: n) inject: 1 into: [:product :each |
product * each]].

factorial value: 10

>>> 3628800

Other messages

There are many other iterator messages. Just check the Collection class.

count: The message count: returns the number of elements satisfying a
condition. The condition is represented as a boolean block.

Smalltalk globals allClasses
count: [:each | 'Collection*' match: each asString]
>>> 6

includes: The message includes: checks whether the argument is con-
tained in the collection.

| colors |

colors := {Color white . Color yellow . Color blue . Color orange}.
colors includes: Color blue.

>>> true

anySatisfy: The message anySatisfy: answers true if at least one ele-
ment of the collection satisfies the condition represented by the argument.

colors anySatisfy: [:c | ¢ red > 0.5]
>>> true

10.13 Some hints for using collections

A common mistake with add: The following error is one of the most fre-
quent Smalltalk mistakes.

| collection |

collection := OrderedCollection new add: 1; add: 2.
collection

>>> 2

Here the variable collection does not hold the newly created collection but
rather the last number added. This is because the method add: returns the
element added and not the receiver.

217

Basic classes

The following code yields the expected result:

| collection |

collection := OrderedCollection new.
collection add: 1; add: 2.
collection

>>> an OrderedCollection(1 2)

You can also use the message yourself to return the receiver of a cascade of
messages:

| collection |
collection := OrderedCollection new add: 1; add: 2; yourself
>>> an OrderedCollection(1 2)

Removing an element of the collection you are iterating on Another mistake
you may make is to remove an element from a collection you are currently
iterating over.

| range |
range := (2 to: 20) asOrderedCollection.
range do: [:aNumber | aNumber isPrime
ifFalse: [range remove: aNumber]].
range
>>> an OrderedCollection(2 3 5 7 9 11 13 15 17 19)

This result is clearly incorrect since 9 and 15 should have been filtered out!
The solution is to copy the collection before going over it.

| range |
range := (2 to: 20) asOrderedCollection.
range copy do: [:aNumber | aNumber isPrime
ifFalse: [range remove: aNumber] 1.
range
>>> an OrderedCollection(2 3 5 7 11 13 17 19)

Redefining = but not hash A difficult error to spot is when you redefine =
but not hash. The symptoms are that you will lose elements that you put in
sets or other strange behaviour. One solution proposed by Kent Beck is to
use bitXor: to redefine hash. Suppose that we want two books to be consid-
ered equal if their titles and authors are the same. Then we would redefine
not only = but also hash as follows:

Another nasty problem arises if you use a mutable object, i.e., an object that
can change its hash value over time, as an element of a Set or as a key to a
Dictionary. Don’t do this unless you love debugging!

218

10.14

10.14 Chapter summary

Listing 10-20 Redefining = and hash.
Book >> = aBook

self class = aBook class ifFalse: [" false].
~ title = aBook title and: [authors = aBook authors]

Book >> hash
~ title hash bitXor: authors hash

Chapter summary

The collection hierarchy provides a common vocabulary for uniformly ma-
nipulating a variety of different kinds of collections.

+ A key distinction is between SequenceableCollections, which main-
tain their elements in a given order, Dictionary and its subclasses,
which maintain key-to-value associations, and Sets and Bags, which
are unordered.

* You can convert most collections to another kind of collection by send-
ing them the messages asArray, asOrderedCollection etc..

« To sort a collection, send it the message asSortedCollection.

« #(...) creates arrays containing only literal objects (i.e., objects
created without sending messages). { ... } creates dynamic arrays
using a compact form.

+ ADictionary compares keys by equality. It is most useful when keys
are instances of String. An IdentityDictionary instead uses object
identity to compare keys. It is more suitable when Symbols are used as
keys, or when mapping object references to values.

+ Strings also understand the usual collection messages. In addition,
a String supports a simple form of pattern-matching. For more ad-
vanced application, look instead at the RegEx package.

+ The basic iteration message is do:. It is useful for imperative code,
such as modifying each element of a collection, or sending each ele-
ment a message.

» Instead of using do:, it is more common to use collect:, select:,
reject:,includes:, inject:into: and other higher-level messages
to process collections in a uniform way.

* Never remove an element from a collection you are iterating over. If
you must modify it, iterate over a copy instead.

» If you override =, remember to override hash as well!

219

CHAPTER I I

Streams

Streams are used to iterate over sequences of elements such as sequenced
collections, files, and network streams. Streams may be either readable, or
writeable, or both. Reading or writing is always relative to the current posi-
tion in the stream. Streams can easily be converted to collections, and vice
versa.

Two sequences of elements

A good metaphor to understand a stream is the following. A stream can be
represented as two sequences of elements: a past element sequence and a fu-
ture element sequence. The stream is positioned between the two sequences.
Understanding this model is important, since all stream operations in Pharo
rely on it. For this reason, most of the Stream classes are subclasses of Po-
sitionableStream. Figure 11-1 presents a stream which contains five char-
acters. This stream is in its original position, i.e., there is no element in the
past. You can go back to this position using the message reset defined in
PositionableStream.

Reading an element conceptually means removing the first element of the
future element sequence and putting it after the last element in the past ele-

BN R RN EDED

past element f future element
sequence sequence

Figure 11-1 A stream positioned at its beginning.

221

Streams

ENIERERED D

past element f future element
sequence sequence

Figure 11-2 The same stream after the execution of the method next: the char-
acter a is in the past whereas b, c, d and e are in the future.

ENIEREREDED

past element future element
sequence sequence

Figure 11-3 The same stream after having written an x.

ment sequence. After having read one element using the message next, the
state of your stream is that shown in Figure 11-2.

Writing an element means replacing the first element of the future sequence
by the new one and moving it to the past. Figure 11-3 shows the state of the
same stream after having written an x using the message nextPut: anEle-
ment defined in Stream.

11.2 Streams vs. collections

The collection protocol supports the storage, removal and enumeration of
the elements of a collection, but does not allow these operations to be inter-
mingled. For example, if the elements of an OrderedCollection are pro-
cessed by a do: method, it is not possible to add or remove elements from
inside the do: block. Nor does the collection protocol offer ways to iterate
over two collections at the same time, choosing which collection goes for-
ward and which does not. Procedures like these require that a traversal in-
dex or position reference is maintained outside of the collection itself: this is
exactly the role of ReadStream, WriteStream and ReadWriteStream.

These three classes are defined to stream over some collection. For example,
the following snippet creates a stream on an interval, then it reads two ele-
ments.

[1r
r := ReadStream on: (1 to: 1000).
r next.
>>> 1

[r next.
>>> 2

222

11.3 Streaming over collections

[r atEnd.
| >>> false

WriteStreams can write data to the collection:

[w |

w := WriteStream on: (String new: 5).
w nextPut: $a.

w nextPut: $b.

w contents.

>>> ‘'ab'

It is also possible to create ReadWriteStreams that support both the reading
and writing protocols.

Streams are not only meant for collections, they can be used for files or sock-
ets too. The following example creates a file named test. txt, writes two
strings to it, separated by a carriage return, and closes the file.

StandardFileStream
fileNamed: 'test.txt'
do: [:str | str
nextPutAll: '123"';
cr;
nextPutAll: 'abcd' 1.

The following sections present the protocols in more depth.

1.3 Streaming over collections

Streams are really useful when dealing with collections of elements, and can
be used for reading and writing those elements. We will now explore the
stream features for collections.

Reading collections

Using a stream to read a collection essentially provides you a pointer into the
collection. That pointer will move forward on reading, and you can place it
wherever you want. The class ReadStream should be used to read elements
from collections.

Messages next and next: defined in ReadStream are used to retrieve one or
more elements from the collection.

[] stream |

stream := ReadStream on: #(1 (a b c) false).
stream next.

>>> 1

[stream next.
| >>> #(#a #b #c)

223

Streams

stream next.
>>> false

[stream |

stream := ReadStream on: 'abcdef'.
stream next: 0.

>>> v

stream next: 1.
>>> 'a'

[stream next: 3.
>>> "bed’

stream next: 2.
>>> ‘ef!

The message peek defined in PositionableStream is used when you want to
know what is the next element in the stream without going forward.

[stream := ReadStream on: '-143"'.
"look at the first element without consuming it."
negative := (stream peek = $-).
negative.

>>> true

["ignores the minus character”
negative ifTrue: [stream next].
number := stream upToEnd.
number.
>>> '143"

This code sets the boolean variable negative according to the sign of the
number in the stream, and number to its absolute value. The message up-
ToEnd defined in ReadStream returns everything from the current position
to the end of the stream and sets the stream to its end. This code can be sim-
plified using the message peekFor: defined in PositionableStream, which
moves forward if the following element equals the parameter and doesn’t
move otherwise.

| stream |

stream := '-143' readStream.
(stream peekFor: $-)

>>> true

[stream upToEnd
>>> "143"

peekFor: also returns a boolean indicating if the parameter equals the ele-
ment.

You might have noticed a new way of constructing a stream in the above ex-
ample: one can simply send the message readStream to a sequenceable col-

224

11.3 Streaming over collections

EN R ERERED

past element f future element
sequence sequence

Figure 11-4 A stream at position 2.

lection (such as a String) to get a reading stream on that particular collec-
tion.

Positioning

There are messages to position the stream pointer. If you have the index,
you can go directly to it using position: defined in PositionableStream.
You can request the current position using position. Please remember that
a stream is not positioned on an element, but between two elements. The
index corresponding to the beginning of the stream is 0.

You can obtain the state of the stream depicted in 11-4 with the following
code:

| stream |

stream := 'abcde' readStream.
stream position: 2.

stream peek

>>> $c

To position the stream at the beginning or the end, you can use the message
reset or setToEnd. The messages skip: and skipTo: are used to go for-
ward to a location relative to the current position: skip: accepts a number
as argument and skips that number of elements whereas skipTo: skips all
elements in the stream until it finds an element equal to its parameter. Note
that it positions the stream after the matched element.

[] stream |

stream := 'abcdef' readStream.

stream next.

>>> $a "stream is now positioned just after the a"

[stream skip: 3. "stream is now after the d"
stream position.
>>> 4

[stream skip: -2. "stream is after the b"
stream position.
>>> 2

stream reset.
stream position.
>>> 0

225

Streams

[| streaml stream2 result |
streaml := #(1 4 9 11 12 13) readStream.
stream2 := #(1 2 3 4 5 10 13 14 15) readStream.

"The variable result will contain the sorted collection."
result := OrderedCollection new.
[streaml atEnd not & stream2 atEnd not]
whileTrue: [
streaml peek < stream2 peek
"Remove the smallest element from either stream and add it
to the result.”
ifTrue: [result add: streaml next]
ifFalse: [result add: stream2 next] 1.

"One of the two streams might not be at its end. Copy whatever
remains."
result
addAll: streaml upToEnd;
addAll: stream2 upToEnd.

result.
>>> an OrderedCollection(1 1 2 3 4 4 59 10 11 12 13 13 14 15)

[stream skipTo: $e. "stream is just after the e
now"
stream next.
>>> $f

[stream contents.
>>> 'abcdef'

As you can see, the letter e has been skipped.

The message contents always returns a copy of the entire stream.

Testing

Some messages allow you to test the state of the current stream: atEnd re-
turns true if and only if no more elements can be read, whereas isEmpty
returns true if and only if there are no elements at all in the collection.

Here is a possible implementation of an algorithm using atEnd that takes
two sorted collections as parameters and merges those collections into an-
other sorted collection:

Writing to collections

We have already seen how to read a collection by iterating over its elements
using a ReadStream. We’ll now learn how to create collections using WriteStreams.

226

11.3 Streaming over collections

[| stream |
stream := String new writeStream.
stream
nextPutAll: 'This Smalltalk image contains: ';
print: Smalltalk allClasses size;
nextPutAll: ' classes.';
cr;
nextPutAll: 'This is really a lot.'.

stream contents.
>>> 'This Smalltalk image contains: 2322 classes.
»This is really a lot.'

[| string |
string := String streamContents:
[:stream |
stream

print: #(1 2 3);
space;
nextPutAll: 'size';
space;
nextPut: $=;
space;
print: 3. 1.

string.

| >>> "#(1 2 3) size = 3°'

WriteStreams are useful for appending a lot of data to a collection at various
locations. They are often used to construct strings that are based on static
and dynamic parts, as in this example:

This technique is used in the different implementations of the method printon:,
for example. There is a simpler and more efficient way of creating strings if
you are only interested in the content of the stream:

The message streamContents: defined SequenceableCollection creates a
collection and a stream on that collection for you. It then executes the block
you gave passing the stream as a parameter. When the block ends, stream-
Contents: returns the contents of the collection.

The following WriteStream methods are especially useful in this context:
nextPut: adds the parameter to the stream;

nextPutAll: adds each element of the collection, passed as a parameter, to
the stream;

print: adds the textual representation of the parameter to the stream.
There are also convenient messages for printing useful characters to a stream,

such as space, tab and cr (carriage return). Another useful method is en-

227

Streams

[T temp |
temp := String new.
(1 to: 100000)
do: [:1 | temp := temp, i asString, ' ' 1 1 timeToRun

| >>> 115176 "(milliseconds)"

[String streamContents: [:tempStream |
(1 to: 100000)
do: [:1 | tempStream nextPutAll: i asString; space] 1]

sureASpace which ensures that the last character in the stream is a space; if
the last character isn’t a space it adds one.

About String Concatenation

Using nextPut: and nextPutAll: onaWriteStream is often the best way to
concatenate characters. Using the comma concatenation operator (,)is far
less efficient:
[l temp |

temp := WriteStream on: String new.

(1 to: 100000)

do: [:1 | temp nextPutAll: i asString; space 1.

temp contents] timeToRun

>>> 1262 "(milliseconds)"

The reason that using a stream can be much more efficient is that using a
comma creates a new string containing the concatenation of the receiver and
the argument, so it must copy both of them. When you repeatedly concate-
nate onto the same receiver, it gets longer and longer each time, so that the
number of characters that must be copied goes up exponentially. This also
creates a lot of garbage, which must be collected. Using a stream instead of
string concatenation is a well-known optimization.

In fact, you can use the message streamContents: defined in Sequence-
ableCollection class (mentioned earlier) to help you do this:

Reading and writing at the same time

It’s possible to use a stream to access a collection for reading and writing at
the same time. Imagine you want to create a History class which will man-
age backward and forward buttons in a web browser. A history would react
as in figures 11-10 to 11-16.

This behaviour can be implemented using a ReadWriteStream.

Nothing really difficult here, we define a new class which contains a stream.
The stream is created during the initialize method.

We need methods to go backward and forward:

228

?

Figure 11-10 A new history is empty. Nothing is displayed in the web browser.

Figure 11-11 The user opens to page 1.

Figure 11-12 The user clicks on a link to page 2.

(peget) (pee2) (peoes)
A

Figure 11-13 The user clicks on a link to page 3.

(peger) (pese2) (peoes)
A

Figure 11-14 The user clicks on the Back button. They are now viewing page 2
again.

(peget) (pese2) (oo)
A

Figure 11-15 The user clicks again the back button. Page 1is now displayed.

Streams

Figure 11-16 From page 1, the user clicks on a link to page 4. The history forgets

pages 2 and 3.

EObject subclass: #History
instanceVariableNames: 'stream'
classVariableNames: ''

package: 'PBE-Streams'

History >> initialize

super initialize.

stream := ReadWriteStream on: Array new.
[History >> goBackward
self canGoBackward

ifFalse: [self error: 'Already on the first element'

stream skip: -2.
* stream next.

History >> goForward
self canGoForward
ifFalse: [self error: 'Already on the last element'
~ stream next

1.

Up to this point, the code is pretty straightforward. Next, we have to deal
with the goTo: method which should be activated when the user clicks on a

link. A possible implementation is:

This version is incomplete however. This is because when the user clicks on
the link, there should be no more future pages to go to, i.e., the forward but-
ton must be deactivated. To do this, the simplest solution is to write nil just

after, to indicate that history is at the end:

Now, only methods canGoBackward and canGoForward remain to be imple-

mented.

A stream is always positioned between two elements. To go backward, there
must be two pages before the current position: one page is the current page,

and the other one is the page we want to go to.

Let us add a method to peek at the contents of the stream:

History >> goTo: aPage
stream nextPut: aPage.

230

1.4 Using streams for file access

EHistory >> goTo: anObject
stream nextPut: anObject.
stream nextPut: nil.
stream back.
EHistory >> canGoBackward

~ stream position > 1

History >> canGoForward

~ stream atEnd not and: [stream peek notNil]
[History >> contents

* stream contents

And the history works as advertised:

1.4 Using streams for file access

You have already seen how to stream over collections of elements. It’s also
possible to stream over files on your hard disk. Once created, a stream on

a file is really like a stream on a collection; you will be able to use the same
protocol to read, write or position the stream. The main difference appears
in the creation of the stream. There are several different ways to create file
streams, as we shall now see.

Creating file streams

To create file streams, you will have to use one of the following instance cre-
ation messages offered by the class FileStream:

fileNamed: Open a file with the given name for reading and writing. If the
file already exists, its prior contents may be modified or replaced, but
the file will not be truncated on close. If the name has no directory
part, then the file will be created in the default directory.

EHistory new
goTo: #pagel;
goTo: #page2;
goTo: #page3;
goBackward;
goBackward;
goTo: #pages4;
contents
>>> #(#pagel #page4 nil nil)

231

Streams

newFileNamed: Create a new file with the given name, and answer a stream
opened for writing on that file. If the file already exists, ask the user
what to do.

forceNewFileNamed: Create a new file with the given name, and answer a
stream opened for writing on that file. If the file already exists, delete
it without asking before creating the new file.

oldFileNamed: Open an existing file with the given name for reading and
writing. If the file already exists, its prior contents may be modified or
replaced, but the file will not be truncated on close. If the name has no
directory part, then the file will be created in the default directory.

readOnlyFileNamed: Open an existing file with the given name for reading.

You have to remember that each time you open a stream on a file, you have
to close it too. This is done through the =close message defined in FileStream.

| stream |
stream := FileStream forceNewFileNamed: 'test.txt'.
stream
nextPutAll: 'This text is written in a file named ';
print: stream localName.
stream close.

stream := FileStream readOnlyFileNamed: 'test.txt'.
stream contents.

>>> 'This text is written in a file named ''test.txt
| stream close.

The message localName defined in class FileStream answers the last com-
ponent of the name of the file. You can also access the full path name using
the message fullName.

You will soon notice that manually closing the file stream is painful and
error-prone. That’s why FileStream offers a message called forceNewFile-
Named:do: to automatically close a new stream after evaluating a block that
sets its contents.

[string |
FileStream
forceNewFileNamed: 'test.txt'
do: [:stream |
stream
nextPutAll: 'This text is written in a file named ';
print: stream localName].
string := FileStream
readOnlyFileNamed: 'test.txt'
do: [:stream | stream contents].
string
>>> 'This text is written in a file named '‘'test.txt

232

1.4 Using streams for file access

The stream creation methods that take a block as an argument first create a
stream on a file, then execute the block with the stream as an argument, and
finally close the stream. These methods return what is returned by the block,
which is to say, the value of the last expression in the block. This is used in
the previous example to get the content of the file and put it in the variable
string.

Binary streams

By default, created streams are text-based which means you will read and
write characters. If your stream must be binary, you have to send the mes-
sage binary to your stream.

When your stream is in binary mode, you can only write numbers from 0 to
255 (1 Byte). If you want to use nextPutAll: to write more than one number
at a time, you have to pass a ByteArray as argument.

[FileStream
forceNewFileNamed: 'test.bin'
do: [:stream |
stream
binary;
nextPutAll: #(145 250 139 98) asByteArray].

[FileStream
readOnlyFileNamed: 'test.bin’
do: [:stream |

stream binary.

stream size.
>>> 4

stream next.
>>> 145

stream upToEnd.
>>> #[250 139 98]

1.

Here is another example which creates a picture in a file named test.pgm
(portable graymap file format). You can open this file with your favorite
drawing program.

[FileStream

forceNewFileNamed: 'test.pgm'

do: [:stream |

stream
nextPutAll: 'P5'; cr;
nextPutAll: '4 4'; cr;
nextPutAll: '255'; cr;
binary;
nextPutAll: #(255 0 255 0) asByteArray;
nextPutAll: #(0 255 0 255) asByteArray;

233

Streams

Figure 11-24 A 4x4 checkerboard you can draw using binary streams.

i nextPutAll: #(255 0 255 0) asByteArray;
L nextPutAll: #(0 255 0 255) asByteArray]

This creates a 4x4 checkerboard as shown in 11-24.

1.5 Chapter summary

Streams offer a better way (compared to collections) to incrementally read
and write a sequence of elements. There are easy ways to convert back and
forth between streams and collections.

+ Streams may be either readable, writeable or both readable and write-

able.

* To convert a collection to a stream, define a stream on a collection, e.g.,
ReadStream on: (1 to: 1000), or send the messages readStream,
etc. to the collection.

+ To convert a stream to a collection, send the message contents.

+ To concatenate large collections, instead of using the comma operator,
it is more efficient to create a stream, append the collections to the
stream with nextPutAl1l:, and extract the result by sending contents.

File streams are by default character-based. Send binary to explicitly
make them binary.

234

121

CHAPTER I 2

Morphic

Morphic is the name given to Pharo’s graphical interface. Morphic is written
in Pharo, so it is fully portable between operating systems. As a consequence,
Pharo looks exactly the same on Unix, MacOS and Windows. What distin-
guishes Morphic from most other user interface toolkits is that it does not
have separate modes for composing and running the interface: all the graph-
ical elements can be assembled and disassembled by the user, at any time.
(We thank Hilaire Fernandes for permission to base this chapter on his origi-
nal article in French.)

The history of Morphic

Morphic was developed by John Maloney and Randy Smith for the Self pro-
gramming language, starting around 1993. Maloney later wrote a new ver-
sion of Morphic for Squeak, but the basic ideas behind the Self version are
still alive and well in Pharo Morphic: directness and liveness. Directness means
that the shapes on the screen are objects that can be examined or changed
directly, that is, by clicking on them using a mouse. Liveness means that

the user interface is always able to respond to user actions: information on
the screen is continuously updated as the world that it describes changes. A
simple example of this is that you can detach a menu item and keep it as a
button.

Bring up the World Menu and meta-click once on it to bring up its morphic
halo, then meta-click again on a menu item you want to detach, to bring up
that item’s halo. (Recall that you should set halosEnabled in the Prefer-
ences browser.) Now drag that item elsewhere on the screen by grabbing the
black handle (see Figure 12-1), as shown in Figure 12-2.

235

Morphic

Figure 12-1 The grab handle.

x World .

1= System Browser 2
& Test Runner ®
7’ Spotter

) Monticello B 2, P12Yground I
»

&3 Tools

¢ system »
() Help >
{5 Windows »
[5/save

) Saveas...

|<>Save and quit
|<-Quit

Figure 12-2 Detaching a morph, here the Playground menu item, to make it an
independent button.

Listing 12-3 Creation of a String Morph
['"Morph' asMorph openInWorld

All of the objects that you see on the screen when you run Pharo are Morphs,
that is, they are instances of subclasses of class Morph. Morph itself is a large
class with many methods; this makes it possible for subclasses to implement
interesting behaviour with little code. You can create a morph to represent

any object, although how good a representation you get depends on the ob-

ject!

To create a morph to represent a string object, execute the following code in
a Playground.

This creates a Morph to represent the string 'Morph', and then opens it
(that is, displays it) in the world, which is the name that Pharo gives to the
screen. You should obtain a graphical element (a Morph), which you can ma-
nipulate by meta-clicking.

Of course, it is possible to define morphs that are more interesting graphi-
cal representations than the one that you have just seen. The method as-
Morph has a default implementation in class Object class that just creates a
StringMorph. So, for example, Color tan asMorph returns a StringMorph
labeled with the result of Color tan printString. Let’s change this so that
we get a coloured rectangle instead.

Open a browser on the Color class and add the following method to it:

Listing 12-4 Getting a morph for an instance of Color

Color >> asMorph
* Morph new color: self

236

12.2

12.2 Manipulating morphs

Wl _ __ 77\

x - 0O Playground [
Page | 3 B -

Color orange asMorph openInWorld

i 4

Figure 12-5 Color orange asMorph openInWorld with our new method.

Listing 12-6 Creation of two Color Morph

joe := Morph new color: Color blue.
joe openInWorld.
bill := Morph new color: Color red.

bill openInWorld.

Now execute Color orange asMorph openInWorld in a Playground. In-
stead of the string-like morph, you get an orange rectangle (see Figure 12-5)!

Manipulating morphs

Morphs are objects, so we can manipulate them like any other object in Pharo:
by sending messages, we can change their properties, create new subclasses
of Morph, and so on.

Every morph, even if it is not currently open on the screen, has a position
and a size. For convenience, all morphs are considered to occupy a rectan-
gular region of the screen; if they are irregularly shaped, their position and
size are those of the smallest rectangular box that surrounds them, which

is known as the morph’s bounding box, or just its bounds. The position
method returns a Point that describes the location of the morph’s upper left
corner (or the upper left corner of its bounding box). The origin of the coor-
dinate system is the screen’s upper left corner, with y coordinates increas-
ing down the screen and x coordinates increasing to the right. The extent
method also returns a point, but this point specifies the width and height of
the morph rather than a location.

Type the following code into a playground and Do it:

237

Morphic

lmr[

x -0 Playground

Page

joe := Morph new color: Color blue.
joe openInWorld.

bill := Morph new coler: Color red.

bill openInWerld.

joe pos‘lt'ion:oe position + (18@3))

Figure 12-7 Bill and Joe after 10 moves.

Listing 12-8 Make bill follow joe
[bill position: (joe position + (100@0))

Then type joe position and then Print it. To move joe, execute joe po-
sition: (joe position + (10@3)) repeatedly (see Figure 12-7).

It is possible to do a similar thing with size. joe extent answers joe’s size;
to have joe grow, execute joe extent: (joe extent * 1.1). Tochange
the color of a morph, send it the color: message with the desired Color
object as argument, for instance, joe color: Color orange. To add trans-
parency, try joe color: (Color orange alpha: 0.5).

To make bill follow joe, you can repeatedly execute this code:

If you move joe using the mouse and then execute this code, bill will move so
that it is 100 pixels to the right of joe.

You can see the result on Figure 12-9

12.3 Composing morphs
One way of creating new graphical representations is by placing one morph

inside another. This is called composition; morphs can be composed to any

depth.

238

12.3 Composing morphs

x - 0O Playground O ? -~
Page b B H =
joe := Morph new color: Color blue.

joe openInWorld.

bill := Morph new color: Color red.

bill openInWerld.

joe position:(joe position + (18@3)).

joe extent.

3 timesRepeat: [joe extent:(joe extent = 1.1)].
joe color: (Color orange alpha: ©.5).

bill position: (joe position + (100@R))

Figure 12-9 Bill follows Joe.

Listing 12-10 Create a Balloon inside Joe
balloon := BalloonMorph new color: Color yellow.

joe addMorph: balloon.
balloon position: joe position.

You can place a morph inside another by sending the message addMorph: to
the container morph.

Try adding a morph to another one:

The last line positions the balloon at the same coordinates as joe. Notice that
the coordinates of the contained morph are still relative to the screen, not
to the containing morph. There are many methods available to position a
morph; browse the geometry protocol of class Morph to see for yourself. For
example, to center the balloon inside joe, execute balloon center: joe
center.

If you now try to grab the balloon with the mouse, you will find that you ac-
tually grab joe, and the two morphs move together: the balloon is embedded

inside joe. It is possible to embed more morphs inside joe. In addition to do-
ing this programmatically, you can also embed morphs by direct manipula-

tion.

239

Morphic

sam(

Figure 12-11 The balloon is contained inside joe, the translucent orange morph.

Listing 12-12 Defining CrossMorph

EMorph subclass: #CrossMorph
instanceVariableNames: "'
classVariableNames: ''
package: 'PBE-Morphic'

Listing 12-13 Drawing a CrossMorph

ECrossMOrph >> drawOn: aCanvas

| crossHeight crossWidth horizontalBar verticalBar |
crossHeight := self height / 3.0.

crossWidth := self width / 3.0.

horizontalBar := self bounds insetBy: 0 @ crossHeight.
verticalBar := self bounds insetBy: crossWidth @ 0.
aCanvas fillRectangle: horizontalBar color: self color.
aCanvas fillRectangle: verticalBar color: self color

12.4 Creating and drawing your own morphs

While it is possible to make many interesting and useful graphical represen-
tations by composing morphs, sometimes you will need to create something
completely different.

To do this you define a subclass of Morph and override the drawOn: method
to change its appearance.

The morphic framework sends the message drawOn: to a morph when it
needs to redisplay the morph on the screen. The parameter to drawOn: is

a kind of Canvas; the expected behaviour is that the morph will draw itself
on that canvas, inside its bounds. Let’s use this knowledge to create a cross-
shaped morph.

Using the browser, define a new class CrossMorph inheriting from Morph:
We can define the drawOn: method like this:

Sending the bounds message to a morph answers its bounding box, which is
an instance of Rectangle. Rectangles understand many messages that create
other rectangles of related geometry. Here, we use the insetBy: message
with a point as its argument to create first a rectangle with reduced height,
and then another rectangle with reduced width.

To test your new morph, execute CrossMorph new openInWorld.

240

12.4 Creating and drawing your own morphs

¥ @0 _©0 o

(@)

a CrossMorph(978059264)

Figure 12-14 A CrossMorph with its halo; you can resize it as you wish.

Listing 12-15 Shaping the sensitive zone of the CrossMorph

[crossMorph >> containsPoint: aPoint
| crossHeight crossWidth horizontalBar verticalBar |
crossHeight := self height / 3.0.
crossWidth := self width / 3.0.
horizontalBar := self bounds insetBy: 0 @ crossHeight.
verticalBar := self bounds insetBy: crosswWidth @ 0.
* (horizontalBar containsPoint: aPoint) or: [verticalBar

containsPoint: aPoint]

The result should look something like Figure 12-14. However, you will notice
that the sensitive zone — where you can click to grab the morph — is still the

whole bounding box. Let’s fix this.

When the Morphic framework needs to find out which Morphs lie under
the cursor, it sends the message containsPoint: to all the morphs whose

bounding boxes lie under the mouse pointer. So, to limit the sensitive zone

of the morph to the cross shape, we need to override the containsPoint:

method.

Define the following method in class CrossMorph:

This method uses the same logic as drawOn :, so we can be confident that

the points for which containsPoint: answers true are the same ones that

will be colored in by drawOn. Notice how we leverage the containsPoint:

method in class Rectangle to do the hard work.

There are two problems with the code in the two methods above.

The most obvious is that we have duplicated code. This is a cardinal error:
if we find that we need to change the way that horizontalBar or verti-

calBar are calculated, we are quite likely to forget to change one of the two

occurrences. The solution is to factor out these calculations into two new

methods, which we put in the private protocol:

We can then define both drawOn: and containsPoint: using these meth-

ods:

241

Morphic

Listing 12-16 horizontalBar

CrossMorph >> horizontalBar
| crossHeight |
crossHeight := self height / 3.0.
* self bounds insetBy: 0 @ crossHeight

Listing 12-17 verticalBar

ECrossMOrph >> verticalBar
| crosswidth |
crossWidth := self width / 3.0.
~ self bounds insetBy: crossWidth @ 0

Listing 12-18 Refactored CrossMorph >> drawOn:

>CrossM0rph >> drawOn: aCanvas
aCanvas fillRectangle: self horizontalBar color: self color.
aCanvas fillRectangle: self verticalBar color: self color

This code is much simpler to understand, largely because we have given
meaningful names to the private methods. In fact, it is so simple that you
may have noticed the second problem: the area in the center of the cross,
which is under both the horizontal and the vertical bars, is drawn twice. This
doesn’t matter when we fill the cross with an opaque colour, but the bug be-
comes apparent immediately if we draw a semi-transparent cross, as shown
in Figure 12-20.

Execute the following code in a playground, line by line:

The fix is to divide the vertical bar into three pieces, and to fill only the top
and bottom. Once again we find a method in class Rectangle that does the
hard work for us: r1 areasOutside: r2 answers an array of rectangles
comprising the parts of r1 outside r2. Here is the revised code:

This code seems to work, but if you try it on some crosses and resize them,
you may notice that at some sizes, a one-pixel wide line separates the bot-
tom of the cross from the remainder, as shown in Figure 12-21. This is due
to rounding: when the size of the rectangle to be filled is not an integer,
fillRectangle: color: seems to round inconsistently, leaving one row
of pixels unfilled. We can work around this by rounding explicitly when we
calculate the sizes of the bars.

Listing 12-19 Refactored CrossMorph >> containsPoint:

CrossMorph >> containsPoint: aPoint
* (self horizontalBar containsPoint: aPoint) or: [self
verticalBar containsPoint: aPoint]

242

12.5 Interaction and animation

x-O Playground o
Page > Bm-

CrossMorph new openInWorld;
bounds:_(0@6 corner: 200@200);
color: [(color blue alpha: 6.4)|

Figure 12-20 The center of the cross is filled twice with the color.

% -0 Playground o 2
- > B

CrossMorph new openInWorld;
bounds:_ (060 corner: 2008200);
color: [(color blue alpha: 6.4)

i«

Figure 12-21 The cross-shaped morph, showing a row of unfilled pixels.

Listing 12-22 Use this code to show a bug

CrossMorph new openInWorld;
bounds: (0@0 corner: 200@200);
color: (Color blue alpha: 0.4)

12.5 Interaction and animation

To build live user interfaces using morphs, we need to be able to interact
with them using the mouse and keyboard. Moreover, the morphs need to be
able respond to user input by changing their appearance and position — that
is, by animating themselves.

243

Morphic

Listing 12-23 The revised CrossMorph >> drawOn: method, which fills the
center of the cross once
ECrossMorph >> drawOn: aCanvas

| topAndBottom |

aCanvas fillRectangle: self horizontalBar color: self color.

topAndBottom := self verticalBar areasOutside: self horizontalBar.

topAndBottom do: [:each | aCanvas fillRectangle: each color: self
color]

Listing 12-24 CrossMorph >> horizontalBar with explicit rounding

ECrossMOrph >> horizontalBar
| crossHeight |
crossHeight := (self height / 3.0) rounded.
* self bounds insetBy: 0 @ crossHeight

Listing 12-25 CrossMorph >> verticalBar with explicit rounding

ECrossMOrph >> verticalBar
| crosswidth |
crossWidth := (self width / 3.0) rounded.
~ self bounds insetBy: crossWidth @ ©

Mouse events

When a mouse button is pressed, Morphic sends each morph under the mouse
pointer the message handlesMouseDown:. If a morph answers true, then
Morphic immediately sends it the mouseDown : message; it also sends the
mouseUp: message when the user releases the mouse button. If all morphs
answer false, then Morphic initiates a drag-and-drop operation. As we will
discuss below, the mouseDown: and mouseUp: messages are sent with an ar-
gument — a MouseEvent object — that encodes the details of the mouse ac-
tion.

Let’s extend CrossMorph to handle mouse events. We start by ensuring that
all crossMorphs answer true to the handlesMouseDown: message.

Add this method to CrossMorph:

Suppose that when we click on the cross, we want to change the color of the
cross to red, and when we action-click on it, we want to change the color to
yellow. This can be accomplished by the mouseDown: method as follows:

Notice that in addition to changing the color of the morph, this method also
sends self changed. This makes sure that morphic sends drawOn: ina
timely fashion.

Listing 12-26 Declaring that CrossMorph will react to mouse clicks

CrossMorph >> handlesMouseDown: anEvent
~ true

244

12.5 Interaction and animation

Listing 12-27 Reacting to mouse clicks by changing the morph’s color

CrossMorph >> mouseDown: anEvent
anEvent redButtonPressed
ifTrue: [self color: Color red]. "click"
anEvent yellowButtonPressed
ifTrue: [self color: Color yellow]. "action-click"
self changed

@

Figure 12-28 Move Handle button.

Figure 12-29 Grab Handle button.

Note also that once the morph handles mouse events, you can no longer grab
it with the mouse and move it. Instead you have to use the halo: meta-click
on the morph to make the halo appear and grab either the brown move han-
dle (see Figure 12-28) or the black pickup handle (see Figure 12-29) at the top
of the morph.

The anEvent argument of mouseDown: is an instance of MouseEvent, which
is a subclass of MorphicEvent. MouseEvent defines the redButtonPressed
and yellowButtonPressed methods. Browse this class to see what other
methods it provides to interrogate the mouse event.

Keyboard events
To catch keyboard events, we need to take three steps.

1. Give the keyboard focus to a specific morph. For instance, we can give
focus to our morph when the mouse is over it.

2. Handle the keyboard event itself with the handleKeystroke: method.
This message is sent to the morph that has keyboard focus when the
user presses a key.

3. Release the keyboard focus when the mouse is no longer over our morph.

Let’s extend CrossMorph so that it reacts to keystrokes. First, we need to
arrange to be notified when the mouse is over the morph. This will happen if
our morph answers true to the handlesMouseOver: message

Declare that CrossMorph will react when it is under the mouse pointer.

This message is the equivalent of handlesMouseDown: for the mouse posi-
tion. When the mouse pointer enters or leaves the morph, the mouseEnter:
and mouseleave: messages are sent to it.

245

Morphic

Listing 12-30 We want to handle mouse over events

ECrossMOrph >> handlesMouseOver: anEvent
“true

Listing 12-31 Getting the keyboard focus when the mouse enters the morph

[crossMorph >> mouseEnter: anEvent
anEvent hand newKeyboardFocus: self

Listing 12-32 Handing back the focus when the pointer goes away

ECrossMOrph >> mouseleave: anEvent
anEvent hand newKeyboardFocus: nil

Define two methods so that CrossMorph catches and releases the keyboard
focus, and a third method to actually handle the keystrokes.

We have written this method so that you can move the morph using the
arrow keys. Note that when the mouse is no longer over the morph, the
handleKeystroke: message is not sent, so the morph stops responding

to keyboard commands. To discover the key values, you can open a Tran-
script window and add Transcript show: anEvent keyValue to the han-
dleKeystroke: method.

The anEvent argument of handleKeystroke: is an instance of Keyboard-
Event, another subclass of MorphicEvent. Browse this class to learn more
about keyboard events.

Morphic animations

Morphic provides a simple animation system with two main methods: step
is sent to a morph at regular intervals of time, while stepTime specifies the
time in milliseconds between steps. stepTime is actually the minimum time
between steps. If you ask for a stepTime of 1 ms, don’t be surprised if Pharo
is too busy to step your morph that often. In addition, startStepping turns

Listing 12-33 Receiving and handling keyboard events

ECrossMorph >> handleKeystroke: anEvent
| keyvalue |
keyValue := anEvent keyValue.
keyvValue = 30 "up arrow"

ifTrue: [self position: self position - (0 @ 1)].
keyvalue = 31 "down arrow"

ifTrue: [self position: self position + (0 @ 1)].
keyvalue = 29 "right arrow"

ifTrue: [self position: self position + (1 @ 0)].
keyvValue = 28 "left arrow"

ifTrue: [self position: self position - (1 @ 0)]

246

12.6 Interactors

Listing 12-34 Defining the animation time interval

ECrossMorph >> stepTime
" 100

Listing 12-35 Making a step in the animation

ECrossMorph >> step
(self color diff: Color black) < 0.1
ifTrue: [self color: Color red]
ifFalse: [self color: self color darker]

Figure 12-36 The debug handle button.

on the stepping mechanism, while stopStepping turns it off again. isStep-
ping can be used to find out whether a morph is currently being stepped.

Make CrossMorph blink by defining these methods as follows:

To start things off, you can open an inspector on a CrossMorph using the
debug handle (see Figure 12-36) in the morphic halo, type self startStep-
ping in the small playground pane at the bottom, and Do it.

Alternatively, you can modify the handleKeystroke: method so that you
can use the + and - keys to start and stop stepping. Add the following code to
the handleKeystroke: method:

12.6 Interactors

To prompt the user for input, the UIManager class provides a large number
of ready to use dialog boxes. For instance, the request:initialAnswer:
method returns the string entered by the user (Figure 12-39).

To display a popup menu, use one of the various chooseFrom: methods (Fig-
ure 12-40):

Browse the UIManager class and try out some of the interaction methods
offered.

Listing 12-37 Add the beginning and the end of the steps

keyValue = $+ asciiValue

ifTrue: [self startStepping 1.
keyValue = $- asciiValue

ifTrue: [self stopStepping 1.

247

12.7

Morphic

Listing 12-38 Use the UIManager

{UIManager default request: 'What''s your name?' initialAnswer: 'no

name'

Provide the following information

@ What's your name?

no name

0K Cancel

Figure 12-39 An input dialog.

Choose

@ Choose a shape

circle
oval

square
rectangle
triangle

Cancel

Figure 12-40 Pop-up menu.

Drag-and-drop

Morphic also supports drag-and-drop. Let’s examine a simple example with
two morphs, a receiver morph and a dropped morph. The receiver will ac-
cept a morph only if the dropped morph matches a given condition: in our
example, the morph should be blue. If it is rejected, the dropped morph de-
cides what to do.

Let’s first define the receiver morph:
Now define the initialization method in the usual way:

How do we decide if the receiver morph will accept or reject the dropped

Listing 12-41 Use the UIManager to open a popup

UIManager default
chooseFrom: #('circle' 'oval' 'square' 'rectangle' 'triangle')
lines: #(2 4) message: 'Choose a shape'

248

12.7 Drag-and-drop

Listing 12-42 Defining a morph on which we can drop other morphs

Morph subclass: #ReceiverMorph
instanceVariableNames: "'
classVariableNames: "'
package: 'PBE-Morphic'

Listing 12-43 Initializing ReceiverMorph
[ReceiverMorph >> initialize

super initialize.

color := Color red.

bounds := 0 @ 0 extent: 200 @ 200

Listing 12-44 Accept dropped morphs based on their color

EReceiverMorph >> wantsDroppedMorph: aMorph event: anEvent
* aMorph color = Color blue

morph? In general, both of the morphs will have to agree to the interaction.
The receiver does this by responding to wantsDroppedMorph:event:. Its
first argument is the dropped morph, and the second the mouse event, so
that the receiver can, for example, see if any modifier keys were held down
at the time of the drop. The dropped morph is also given the opportunity

to check and see if it likes the morph onto which it is being dropped, by re-
sponding to the message wantsToBeDroppedInto:. The default implementa-
tion of this method (in class Morph) answers true.

What happens to the dropped morph if the receiving morph doesn’t want

it? The default behaviour is for it to do nothing, that is, to sit on top of the
receiving morph, but without interacting with it. A more intuitive behav-

ior is for the dropped morph to go back to its original position. This can be
achieved by the receiver answering true to the message repelsMorph:event:
when it doesn’t want the dropped morph:

That’s all we need as far as the receiver is concerned.
Create instances of ReceiverMorph and E1lipseMorph in a playground:

Try to drag and drop the yellow E1lipseMorph onto the receiver. It will be
rejected and sent back to its initial position.

To change this behaviour, change the color of the ellipse morph to the color
blue (by sending it the message color: Color blue; right after new). Blue
morphs should be accepted by the ReceiverMorph.

Let’s create a specific subclass of Morph, named DroppedMorph, so we can

Listing 12-45 Changing the behaviour of the dropped morph when it is rejected

ReceiverMorph >> repelsMorph: aMorph event: anEvent
* (self wantsDroppedMorph: aMorph event: anEvent) not

249

Morphic

Listing 12-46 Create an instance of ReceiverMorph

ReceiverMorph new openInWorld;
bounds: (100@100 corner: 200@200).
EllipseMorph new openInWorld.

x - 0O Playground gz~

Page > B -=
ReceiverMorph new openInWerld; bounds: (100@188 corner: 208@200).

EllipseMorph new openInWorld.

Figure 12-47 AReceiverMorph and an EllipseMorph.

Listing 12-48 Defining a morph we can drag-and-drop onto ReceiverMorph

Morph subclass: #DroppedMorph
instanceVariableNames: "'
classVariableNames: "'
package: 'PBE-Morphic'

experiment a bit more:

Now we can specify what the dropped morph should do when it is rejected by
the receiver; here it will stay attached to the mouse pointer:

Sending the hand message to an event answers the hand, an instance of Hand-
Morph that represents the mouse pointer and whatever it holds. Here we tell
the World that the hand should grab self, the rejected morph.

Create two instances of DroppedMorph, and then drag and drop them onto
the receiver.

The green morph is rejected and therefore stays attached to the mouse pointer.

Listing 12-49 Initializing DroppedMorph
DroppedMorph >> initialize

super initialize.

color := Color blue.

self position: 250 @ 100

250

12.8

12.8 A complete example

Listing 12-50 Reacting when the morph was dropped but rejected

EDroppedMorph >> rejectDropMorphEvent: anEvent
| h |
h := anEvent hand.
WorldState addDeferredUIMessage: [h grabMorph: self].
anEvent wasHandled: true

Listing 12-51 Open a now DroppedMorph

EReceiverMorph new openInWorld.
morph := (DroppedMorph new color: Color blue) openInWorld.
morph position: (morph position + (70@0)).

(DroppedMorph new color: Color green) openInWorld.

x — 0O Playground [R
Page > B -

ReceiverMorph new openInWorld.

morph := (DroppedMorph new color: Color blue) openInWorld.
morph position: (morph position + (70@0)).

(DroppedMorph new color: Coler green) openInwcr'Ld.l

Figure 12-52 Creation of DroppedMorph and ReceiverMorph.

A complete example

Let’s design a morph to roll a die. Clicking on it will display the values of all
sides of the die in a quick loop, and another click will stop the animation.

Define the die as a subclass of BorderedMorph instead of Morph, because we
will make use of the border.

Listing 12-54 Defining the die morph

BorderedMorph subclass: #DieMorph
instanceVariableNames: 'faces dieValue isStopped'
classVariableNames: "'
package: 'PBE-Morphic'

251

Morphic

00 0 ®
(o) ® ®)
o

® O

)

a DieMorph(251396096)

Figure 12-53 The die in Morphic

Listing 12-55 Creating a new die with the number of faces we like

EDieMorph class >> faces: aNumber
* self new faces: aNumber

Listing 12-56 Initializing instances of DieMorph

[DieMorph >> initialize
super initialize.
self extent: 50 @ 50.
self
useGradientFill;
borderwidth: 2;
useRoundedCorners.
self setBorderStyle: #complexRaised.
self fillStyle direction: self extent.
self color: Color green.
dievalue := 1.
faces := 6.
isStopped := false

The instance variable faces records the number of faces on the die; we al-
low dice with up to 9 faces! dievValue records the value of the face that is
currently displayed, and isStopped is true if the die animation has stopped
running. To create a die instance, we define the faces: n method on the
class side of DieMorph to create a new die with n faces.

The initialize method is defined on the instance side in the usual way;
remember that new automatically sends initialize to the newly-created
instance.

We use a few methods of BorderedMorph to give a nice appearance to the
die: a thick border with a raised effect, rounded corners, and a color gradient
on the visible face. We define the instance method faces: to check for a
valid parameter as follows:

It may be good to review the order in which the messages are sent when a die
is created. For instance, if we start by evaluating DieMorph faces: 9:

252

12.8 A complete example

Listing 12-57 Setting the number of faces of the die

EDieMorph >> faces: aNumber
"Set the number of faces"

((aNumber isInteger and: [aNumber > @]) and: [aNumber <= 9])
ifTrue: [faces := aNumber]

Listing 12-58 Nine methods for placing points on the faces of the die

[DieMorph >> facel
* {(0.5 @ 0.5)}

+ The class method DieMorph class >> faces: sends new to DieMorph
class.

+ The method for new (inherited by DieMorph class from Behavior)
creates the new instance and sends it the initialize message.

» The initialize method in DieMorph sets faces to an initial value of
6.

+ DieMorph class >> new returns to the class method DieMorph class
>> faces:, which then sends the message faces: 9 to the new in-
stance.

» The instance method DieMorph >> faces: now executes, setting the
faces instance variable to 9.

Before defining drawOn :, we need a few methods to place the dots on the
displayed face:

[DieMorph >> face2
~{0.2500.25 . 0.75@0.75}

[DieMorph >> face3
~{0.25@0.25 . 0.7500.75 . 0.500.5}

[DieMorph >> face4
~{0.2500.25 . 0.75@0.25 . 0.75@0.75 . 0.25@0.75}

[DieMorph >> face5
~{0.2500.25 . 0.7500.25 . 0.75@0.75 . 0.2500.75 . 0.520.5}

[DieMorph >> face6
~{0.2500.25 . 0.7500.25 . 0.75@0.75 . 0.2500.75 . 0.2500.5 .
0.7500.5}

[DieMorph >> face7
~{0.25@0.25 . 0.75@0.25 . 0.7500.75 . 0.2500.75 . 0.2520.5 .
0.7500.5 . 0.5@0.5}

[DieMorph >> faces
~{0.2500.25 . 0.7500.25 . 0.75@0.75 . 0.2500.75 . 0.2500.5 .
0.75@0.5 . 0.5@0.5 . 0.5@0.25}

253

Morphic

Listing 12-59 Drawing the die morph
EDieMorph >> drawOn: aCanvas
super drawOn: aCanvas.
(self perform: ('face', dievValue asString) asSymbol)
do: [:aPoint | self drawDotOn: aCanvas at: aPoint]

Listing 12-60 Drawing a single dot on a face

EDieMorph >> drawDotOn: aCanvas at: aPoint
aCanvas
filloval: (Rectangle
center: self position + (self extent * aPoint)
extent: self extent / 6)
color: Color black

Listing 12-61 Create a Die 6
[(DieMorph faces: 6) openInWorld.

DieMorph >> face9
~{0.25@0.25 . 0.75@0.25 . 0.7500.75 . 0.2500.75 . 0.25x0.5 .
0.7590.5 . 0.530.5 . 0.5@0.25 . 0.50.75}

These methods define collections of the coordinates of dots for each face.
The coordinates are in a square of size 1x1; we will simply need to scale them
to place the actual dots.

The drawOn: method does two things: it draws the die background with the
super-send, and then draws the dots.

The second part of this method uses the reflective capacities of Pharo. Draw-
ing the dots of a face is a simple matter of iterating over the collection given
by the faceX method for that face, sending the drawDotOn:at: message for
each coordinate. To call the correct faceX method, we use the perform:
method which sends a message built from a string, (' face', dievalue
asString) asSymbol. You will encounter this use of perform: quite reg-
ularly.

Since the coordinates are normalized to the [0:1] interval, we scale them to
the dimensions of our die: self extent * aPoint.

We can already create a die instance from a playground (see result on Figure
12-62):

To change the displayed face, we create an accessor that we can use as myDie
dievalue: 5:

Now we will use the animation system to show quickly all the faces:

DieMorph >> step
isStopped ifFalse: [self dieValue: (1 to: faces) atRandom]

Now the die is rolling!

254

12.8 A complete example

Figure 12-62 A new die 6 with (DieMorph faces: 6) openInWorld

Listing 12-63 Setting the current value of the die

DieMorph >> dieValue: aNumber
((aNumber isInteger and: [aNumber > @]) and: [aNumber <= faces
D
ifTrue: [
dievValue := aNumber.
self changed]

a DieMorph(251396096)

Figure 12-64 Result of (DieMorph faces: 6) openInWorld; dieValue: 5.

To start or stop the animation by clicking, we will use what we learned previ-
ously about mouse events, First, activate the reception of mouse events;

DieMorph >> mouseDown: anEvent
anEvent redButtonPressed
ifTrue: [isStopped := isStopped not]

Now the die will roll or stop rolling when we click on it.

Listing 12-65 Animating the die

DieMorph >> stepTime
~ 100

255

12.9

Morphic

Listing 12-66 Handling mouse clicks to start and stop the animation

EDieMorph >> handlesMouseDown: anEvent
* true

Listing 12-67 Drawing a translucent die

EDieMorph >> drawOn: aCanvas

| theCanvas |

theCanvas := aCanvas asAlphaBlendingCanvas: 0.5.

super drawOn: theCanvas.

(self perform: ('face', dieValue asString) asSymbol)
do: [:aPoint | self drawDotOn: theCanvas at: aPoint]

L "

Figure 12-68 The die displayed with alpha-transparency

More about the canvas

The drawOn: method has an instance of Canvas as its sole argument; the
canvas is the area on which the morph draws itself. By using the graphics
methods of the canvas you are free to give the appearance you want to a
morph. If you browse the inheritance hierarchy of the Canvas class, you will
see that it has several variants. The default variant of Canvas is FormCan-
vas, and you will find the key graphics methods in Canvas and FormCanvas.
These methods can draw points, lines, polygons, rectangles, ellipses, text,
and images with rotation and scaling.

It is also possible to use other kinds of canvas, for example to obtain trans-
parent morphs, more graphics methods, antialiasing, and so on. To use these
features you will need an AlphaBlendingCanvas or a BalloonCanvas. But
how can you obtain such a canvas in a drawOn: method, when drawOn: re-
ceives an instance of FormCanvas as its argument? Fortunately, you can
transform one kind of canvas into another.

To use a canvas with a 0.5 alpha-transparency in DieMorph, redefine dra-
won: like this:

That’s all you need to do!

256

12.10

12,10 Chapter summary

Chapter summary

Morphic is a graphical framework in which graphical interface elements can
be dynamically composed.

You can convert an object into a morph and display that morph on the
screen by sending it the messages asMorph openInWorld.

You can manipulate a morph by meta-clicking on it and using the han-
dles that appear. (Handles have help balloons that explain what they
do.)

You can compose morphs by embedding one onto another, either by
drag and drop or by sending the message addMorph:.

You can subclass an existing morph class and redefine key methods,
like initialize and drawOn:.

You can control how a morph reacts to mouse and keyboard events by
redefining the methods handlesMouseDown:, handlesMouseOver:,
etc.

You can animate a morph by defining the methods step (what to do)
and stepTime (the number of milliseconds between steps).

257

CHAPTER I 3 .

Seaside by example

Seaside is a framework for building web applications in Smalltalk, originally
developed by Avi Bryant and Julian Fitzell in 2002. Once mastered, Seaside
makes web applications almost as easy to write as desktop applications. Sea-
side is really interesting for developing fast complex applications. For exam-
ple http://allstocker.com is a Seaside commercial applications or the Quuve,
FinWorks and CableExpertise application from http://www.pharo.org/success
have been developed in Seaside.

Seaside is unusual in that it is thoroughly object-oriented: there are no HTML
templates, no complicated control flows through web pages, and no encoding
of state in URLs. Instead, you just send messages to objects. What a nice idea!

13.1 Why do we need Seaside?

Modern web applications try to interact with the user in the same way as
desktop applications: they ask the user questions and the user responds, usu-
ally by filling in a form or clicking a button. But the web works the other way
around: the user’s browser makes a request of the server, and the server re-
sponds with a new web page. So web application development frameworks
have to cope with a host of problems, chief among them being the manage-
ment of this inverted control flow. Because of this, many web applications try
to forbid the use of the browser’s Back button due to the difficulty of keep-
ing track of the state of a session. Expressing non-trivial control flows across
multiple web pages is often cumbersome, and multiple control flows can be
difficult or impossible to express.

Seaside is a component-based framework that makes web development eas-
ier in several ways. First, control flow can be expressed naturally using mes-
sage sends. Seaside keeps track of which web page corresponds to which

259

http://allstocker.com
http://www.pharo.org/success

13.2

Seaside by example

point in the execution of the web application. This means that the browser’s
Back button works correctly.

Second, state is managed for you. As the developer, you have the choice of
enabling backtracking of state, so that navigation Back in time will undo side-
effects. Alternatively, you can use the transaction support built into Seaside
to prevent users from undoing permanent side-effects when they use the
back button. You do not have to encode state information in the URL — this
too is managed automatically for you.

Third, web pages are built up from nested components, each of which can
support its own, independent control flow. There are no HTML templates —
instead valid HTML is generated programmatically using a simple Smalltalk-
based protocol. Seaside supports Cascading Style Sheets (CSS), so content
and layout are cleanly separated.

Finally, Seaside provides a convenient web-based development interface,
making it easy to develop applications iteratively, debug applications inter-
actively, and recompile and extend applications while the server is running.

Getting started

The Seaside community

The Seaside.st website (http://www.seaside.st) contains many Seaside-related
resources, including downloads, documentation and tutorials. (Keep in mind
that Seaside has evolved considerably over the years, and not all available
material refers to the latest version.) There are also several active mailing
lists, which you can find at http://www.seaside.st/community/mailinglist.

In addition, the Wiki on the Seaside GitHub repository (https://github.com/
seasidest/seaside/wiki) provides some crucial documentation, including the
Release Notes for each version of Seaside.

Installing Seaside using the one-click experience image

The easiest way to get started is to download the Seaside One-Click Ex-
perience 3.1 from the Pharo Downloads section of the Seaside web site
(http://www.seaside.st/download/pharo). This is a prepackaged version of

the latest stable version of Seaside for Mac 0SX, Linux and Windows, built
on Pharo 4. The current latest Seaside version is 3.2. These are full Pharo
distributions, which include the Pharo VM as well as a development image
with many Seaside-related packages preloaded, and a helpful Seaside control
panel that starts when you open the image.

Download and launch the Seaside One-Click image (feel free to refer to the
Getting Started section of Chapter : A Quick Tour of Pharo for an in-depth

260

http://www.seaside.st
http://www.seaside.st/community/mailinglist
https://github.com/seasidest/seaside/wiki
https://github.com/seasidest/seaside/wiki
http://www.seaside.st/download/pharo

13.2 Getting started

x -0 Welcome to Seaside 3.1 &P -
Page () N7 W=
B A
"Seaside is alread ing on port 8088. To get started, simply use yo rowser to open htty nd
tak look at t xample anc nentati listed the
t e e the t) g the Se. e Panel
"The f ing truct r to load Sea
Metacello new
repository: 'http://www.smalltalkhub.com/mc/Seaside/MetacelloConfigurations/main';
configuration: 'Seaside3';
version: #'release3.l';
load: #('OneClick').
ZnZincServerAdaptor startOn: 8080.
WAPharoServerAdapterSpecBrowser open. v
x -0 Seaside Control Panel v ||x -0 Welcome to Pharo 4.0! -
ZnZinc: ptor zinc on port [running] =
elco Llive l mer
< b
Stop Browse lecti
from the context meni
Type: ZnZincServerAdaptor
Port: 8080 PharoTutorial go.
Encoding: utf-8
Zinc on port 8080 [running] 4 Lre e ed with h set -
that you can use to ex e the e evel) -

Figure 13-1 Start up the Seaside One-Click Experience image.

Listing 13-2 Starting and stopping Seaside using the Zinc Server adaptor

ZnZincServerAdaptor startOn: 86080. "start on port 8080"
ZnZincServerAdaptor stop.

discussion of launching Pharo images). Once started, you should see some-
thing similar to Figure 13-1 - a familiar Pharo development environment
with some windows pre-opened, such as welcome messages as well as a Sea-
side Control Panel.

Starting the Seaside server

The easiest way to start and stop the Seaside web server is through the Sea-
side Control Panel. If you're using the Seaside One-Click Experience im-
age, it should already be open (and running a server adapter) when you open
the image for the first time. You can manually open it at any time, however,
by evaluating WAPharoServerAdapterSpecBrowser open.

Right-clicking on the top pane of the Seaside Control Panel lets you add new
server adapters. For example, you can add a ZnZincServerAdaptor, specify
a port number, then start it using the Start button on the control panel,
which launches a new Seaside server that listens on that port.

You can also start and stop the Seaside web server from a playground, by
sendning the startOn: and stop messages to your server adapter of choice.

261

Seaside by example

The Seaside welcome page

Once the Seaside server is running, navigate to http://localhost:8080/ in your
web browser. You should see a web page that looks like Figure 13-3.

The Welcome page contains links to some sample Seaside applications. It
also links to various documents and resources, and (in the sidebar) links to
the Configuration and Browse applications that allow you to interact with
Seaside applications registered in your image.

Let’s look at one of the example applications that demonstrates the Counter
component: click on the Counter link.

This page is a small Seaside application: it displays a counter component that
can be incremented or decremented by clicking on the ++ and —- links (see
Figure 13-4).

Play with the counter by clicking on these links. Use your browser’s Back
button to go back to a previous state, and then click on ++ again. Notice how
the counter is correctly incremented with respect to the currently displayed
state, rather than the state that the counter was in when you started using
the Back button.

Notice the toolbar at the bottom of the web page in Figure 13-3. Seaside sup-
ports a notion of sessions to keep track of the state of the application for
different users. New Session will start a new session on the counter appli-
cation. Configure allows you to configure the settings of your application
through a web interface. (To close the Configure view, click on the x in the
top right corner.) Halos provides a way to explore the state of the applica-
tion running on the Seaside server. Profile and Memory provide detailed in-
formation about the run-time performance of the application. XHTML can be
used to validate the generated web page, but works only when the web page
is publicly accessible from the Internet, because it uses the W3C validation
service.

Single components

Seaside applications are built up from pluggable components. In fact, com-
ponents are ordinary Smalltalk objects. The only thing that is special about
them is that they are instances of classes that inherit from the Seaside frame-
work class WAComponent. We can explore components and their classes from
the Pharo image, or directly from the web interface using halos.

Click on the Halos link at the bottom of the page to toggle on halo function-
ality. You’ll see a number of nested components each with their own halo
icons, including the Counter component (you may have to scroll down a bit
to reach it), like the one seen in Figure 13-5.

At the top left of the component, the text WACounter tells us the class of the
Seaside component that implements its behavior. Next to this are three

262

http://localhost:8080/

Welcome to Seaside 3.1

Congratulations, you have a working Seaside environment.

Getting started
Test the water with the steps below:

1. Try out some examples
o Counter, a simple Seaside component.
o Multi-Counter, showing how Seaside components can be re-used.
o Task, illustrating Seaside's innovative approach to application control flow.

2. Create your first component

Name your component: MyFirstComponent Create

3. Browse the documentation
o The Seaside Book will teach you all you need to know about Seaside and how
to build killer web applications.
o The Seaside Tutorial has 12 chapters and introduces a sample application to
explain the main features of Seaside.

New Session Configure Halos Profile Memory XHTML 0/0 ms

Search the Seaside site
Join the community

Join the mailing list to ask
questions and get help.

Search the mailing list
Diving In

Browse the applications
installed in your image.

Configure your Seaside
development environment.

Check out examples of
Seaside's JQuery and JQuery
Ul integration.

Seaside 3.1 changes

Seaside add-on libraries

Figure 13-3 The Seaside Welcome application at http://localhost:8080/.

Example: Counter

[go back]

The counter is an example of a very simple Seaside component. It increments
and decrements a number by clicking on a link. Test the example below by

clicking on the "++" and "--" links:

0

+4 --

Figure 13-4 The counter.

Seaside by example

WACounter [@ &f Render / Source
0

++ --

Figure 13-5 Halos.

x — 0O Halt -
Proceed Abandon Debug Report
WACounter(WAPharolnspector) Doltin: A

OpalCompiler evaluate

OpalCompiler(AbstractCompiler) evaluate:in:to:

WAPharolnspector evaluate -
R T e S L) 4 .

Figure 13-6 Debugging the running Counter application in the Pharo image.

clickable icons. The first is the Class Browser (the notepad with pencil
icon), which opens up a (web-based) Seaside class browser on this compo-
nent’s class. The second is the Object Inspector (notepad with magnify-
ing glass icon), which opens a web-based object inspector on the actual WA-
Counter instance. The third is the CSS Style Manager (the coloured circles
icon), opens a Seaside view to display the CSS style sheet for this component.

At the top right of the component, the Render / Source links let you tog-
gle between the Rendered and (formatted) Source views of the component’s
HTML source code. Experiment with all of these links. Note that the ++ and -
links are also active in the source view.

The Seaside Class Browser and Object Inspector can be very convenient when
the server is running on another computer, especially when the server does
not have a display, or if it is in remote place. However, when you are first
developing a Seaside application, the server will be running locally, and it is
easy to use the ordinary Pharo development tools in the server image.

Using the Object Inspector link in the web browser, open an inspector on the
underlying Pharo counter object, type self halt and click the doIt button.

The form submits, and the browser will hang, spinning. Now switch to the
Pharo Seaside image. You should see a pre-debugger window (Figure 13-6)
showing a WACounter object executing a halt. Examine this execution in the

264

13.2 Getting started

WAMultiCounter [[@ &F Render / Source
WACounter (4 [@ & Render / Source
o e

WACounter [« @, & Render / Source
<hl>2</h1>

<a href="/examples/multicounter?_s=unHhhsf96gPCiPfU&_k=XJ0_dxjjHylb7q-d&

18">++ i) .

Ig' hr'eF;"/exampies/multlcounter?_s=uthhsf969PC1 PfU& ; _k=XJ0_dxjjHylb7q-d&
">--

WACounter [& ‘6, g Render / Source

0

Figure 13-7 Independent subcomponents.

debugger, and then Proceed. Go back to the web browser and notice that the
Counter application is running again.

Multiple components

Seaside components can be instantiated multiple times and in different con-
texts.

Now, point your web browser to http://localhost:8080/examples/multicounter.

You will see a simple application composed of a number of independent in-
stances of the WACounter component, nested inside a WAMultiCounter.
Increment and decrement several of the counters. Verify that they behave
correctly even if you use the Back button. Toggle the halos to see how the ap-
plication is built out of nested components. Use the Seaside class browser to
view the implementation of WAMultiCounter. You should see two methods
on the class side (description, and initialize) and three on the instance
side (children, initialize, and renderContentOn:). Note that an applica-
tion is simply a component that is willing to be at the root of the component
containment hierarchy; this willingness is indicated by defining a class-side
method canBeRoot to answer true.

You can use the Seaside web interface to configure, copy or remove individ-
ual applications (which are root-level components). Try making the follow-
ing configuration change.

Point your web browser to http://localhost:8080/config.

265

http://localhost:8080/examples/multicounter
http://localhost:8080/config

Seaside by example

Dispatcher at /examples

| Add | | |\ Open | |\ Copy | |\ Remove | |\ Set 3e‘au|::|
-/ Dispatcher Dispatcher: fexamples
‘ Dispatcher
_— Add new request handler
counter Application
demo. rss RSS feed Name: |counter2
examplebrowser Application Type: | Application v

Application
[ok | [cancel |

Figure 13-8 Add a new application.

If you are asked for a login, supply the default login and password (admin
and seaside). You can see a list of a registered applications and dispatchers.
Change into the examples dispatcher list by clicking on the link on the left
side. With the buttons at the topbar, we can add new request handlers, open
the current, copy, remove or set it as the default page. We want to add a new
example application. Select Add, enter the name counter2 and choose the
type Application, click OK (see Figure 13-8).

On the next screen, set the Root Component to WACounter, apply the changes
(Figure 13-9).

Now we have a new counter installed at http://localhost:8080/examples/counter2.
Use the same Remove-button in the configuration interface to remove this
entry point.

Seaside operates in two modes: development mode, which is what we have
seen so far, and deployment mode, in which the toolbar is not available.

You can put a Seaside Application into deployment mode by removing the
inherited Root Decoration Class (again, see Figure 13-9).

Alternatively, you can disable the development toolbar for all new aplica-
tions by evaluating the code:

AAdmin applicationDefaults
removeParent: WADevelopmentConfiguration instance

If you want to enable the password protection, you need to add the WAAu-
thConfiguration inthe Inherited Configuration. Choose WAAuthCon-
figuration from the list of possible parents, after adding this configuration,
you can define the Login and Password setting.

266

http://localhost:8080/examples/counter2

Application: /examples/counter2

Cache

Plugins configured:

Expiry Policy WALastAccessExpiryPolicy
Reaping Strategy WaAccessintervalReapingStrategy
Removal Action WANotifyRemavalAction
Cache Miss Strategy WACacheMissStrategy

Replace cache
Filters

Possible filters:

| WAExceptionFilter v
WAExceptionFilter

Inherited Configuration
Possible parents:
|WAAccesslntervalReapingStrategyConﬂguration v |

Assigned parents:

WARenderLoopConfiguration -
(*) Application Defaults

®

General

Libraries (none)

Root Class | WACounter v (unspecified)
WAToolDecoration [inherited] «

Root Decoration Classes [1 _

Session Allow Termination false

Session Class WASession

Tracking Strategy a WAQueryFieldHandlerTrackingStrategy

Figure 13-9 Configure the new application.

Seaside by example

13.3 Seaside components

As we mentioned in the previous section, Seaside applications are built out of
components. Let’s take a closer look at how Seaside works by implementing
the Hello World component.

Every Seaside component should inherit directly or indirectly from WACom-
ponent, as shown in Figure 13-11. (Incidentally, the "WA’ prefix often used in
Seaside code stands for "'Web Application’.)

Define a subclass of WAComponent called WAHelloWorld.

Components must know how to render themselves. Usually this is done by
implementing the method renderContentOn:, which gets as its argument an
instance of WAHtm1Canvas, which knows how to render HTML.

Implement the following method, and put it in a protocol called rendering:

WAHelloWorld >> renderContentOn: html
html text: 'hello world'

Now we must inform Seaside that this component is willing to be a stan-
dalone application.

Implement the following method on the class side of WAHe1loWor1ld.

WAHelloWorld class >> canBeRoot
~ true

We are almost done!

Point your web browser at http://localhost:8080/config, add a new entry point
called hello, and set its root component to be WAHelloWor1ld.

Now navigate to http://localhost:8080/hello. That’s it! You should see a web
page similar to Figure 13-10.

State backtracking and the Counter application

The counter application is only slightly more complex than the hello world
application.

The class WACounter is a standalone application, so WACounter class must
answer true to the canBeRoot message. It must also register itself as an ap-
plication; this is done in its class-side initialize method, as shown in Fig-
ure 13-11.

WACounter defines two methods, increase and decrease, which will be
triggered from the ++ and -- links on the web page. It also defines an in-
stance variable count to record the state of the counter. However, we also
want Seaside to synchronize the counter with the browser page: when the
user clicks on the browser’s Back button, we want seaside to backtrack the

268

http://localhost:8080/config
http://localhost:8080/hello

Seaside

 http://localhost: 8080,/ seaside/ hello

Figure 13-10 Hello World in Seaside.

New Session Configure Toggle Halos Profiler Memory Terminate XHTML 0/0 ms

self I

L1 registerAsApplication:
‘examples/counter’'

super initialize.
_-” | self count: 0

e WAPresenter
‘‘‘‘‘‘‘ states
[T tals8). WAComponent :
~~~~~~~ canBeRoot
WACouhter -
_>~._ |count -
[count :=count 7] "~ {canBeRoof .-
S |initialize” .-
!”'t'ahze
=~-.___ |increase
ldecrease

1 Array with: self]---- - -]

renderContentOn: html
states

html heading: count.

html anchor
callback: [ self increase J;
with: '++'.

html space.

html anchor
callback: [ self decrease |;

- with: '--'

Figure 13-11 The WACounter class, which implements the counter application.
Methods with underlined names are on the class-side; those with plain-text
names are on the instance side.



13.4

Seaside by example

state of the WACounter object. Seaside includes a general mechanism for
backtracking, but each application has to tell Seaside which parts of its state
to track.

A component enables backtracking by implementing the states method on
the instance side: states should answer an array containing all the objects
to be tracked. In this case, the WACounter object adds itself to Seaside’s table
of backtrackable objects by returning Array with: self.

Backtracking caveat There is a subtle but important point to watch for
when declaring objects for backtracking. Seaside tracks state by making

a copy of all the objects declared in the states array. It does this using a
WASnapshot object; WASnapshot is a subclass of IdentityDictionary that
records the objects to be tracked as keys and shallow copies of their state as
values. If the state of an application is backtracked to a particular snapshot,
the state of each object entered into the snapshot dictionary is overwritten
by the copy saved in the snapshot.

Here is the point to watch out for: In the case of WACounter, you might think
that the state to be tracked is a number — the value of the count instance
variable. However, having the states method answer Array with: count
won’t work. This is because the object named by count is an integer, and in-
tegers are immutable. The increase and decrease methods don’t change
the state of the object 0 into 1 or the object 3 into 2. Instead, they make
count hold a different integer: every time the count is incremented or decre-
mented, the object named by count is replaced by another. This is why WA-
Counter>>states must return Array with: self. When the state of a WA-
Counter object is replaced by a previous state, the value of each of the in-
stance variable in the object is replaced by a previous value; this correctly
replaces the current value of count by a prior value.

Rendering HTML

The purpose of a web application is to create, or render, web pages. As we
mentioned in Section 13.3, each Seaside component is responsible for ren-
dering itself. So, let’s start our exploration of rendering by seeing how the
counter component renders itself.

Rendering the Counter

The rendering of the counter is relatively straightforward; the code is shown
in Figure 13-11. The current value of the counter is displayed as an HTML
heading, and the increment and decrement operations are implemented

as HTML anchors (that is, links) with callbacks to blocks that will send in-
crease and decrease to the counter object.

270



13.4 Rendering HTML

) WAComponent

“777=----{children

super initialize.
- WAMultiCounter _.-| counters := (1 to: 5) collect:
[ trué . counters - - [ :each | WACounter new ]
"*-{canBeRoot  ..---7 P
initialize --~ - do: [ :each | html render: each ]
“--..__ |renderContentOn: html -~ separatedBy: [ html horizontalRule ]
“1children

Figure 13-12 WAMultiCounter.

We will have a closer look at the rendering protocol in a moment. But before
we do, let’s have a quick look at the multi-counter.

From Counter to MultiCounter

WAMultiCounter, shown in Figure 13-12 is also a standalone application, so
it overrides canBeRoot to answer true. In addition, it is a composite compo-
nent, so Seaside requires it to declare its children by implementing a method
children that answers an array of all the components it contains. It renders
itself by rendering each of its subcomponents, separated by a horizontal rule.
Aside from instance and class-side initialization methods, there is nothing
else to the multi-counter!

More about rendering HTML

As you can see from these examples, Seaside does not use templates to gen-
erate web pages. Instead it generates HTML programmatically. The basic
idea is that every Seaside component should override the method render-
ContentOn:; this message will be sent by the framework to each component
that needs to be rendered. This renderContentOn: message will have an
argument that is an HTML canvas onto which the component should render
itself. By convention, the HTML canvas parameter is called html. An HTML
canvas is analogous to the graphics canvas used by Morphic (and most other
drawing frameworks) to abstract away from the device-dependent details of
drawing.

Here are some of the most basic rendering methods:

html text: 'hello world'. "render a plain text string"
html html: '&ndash;'. "render an HTML incantation"
html render: 1. "render any object"

The message render: anyObject can be sent to an HTML canvas to render
anyObject; it is normally used to render subcomponents. anyObject will

271



Seaside by example

| seasideDemo >> renderContentOn: html
html heading: 'Rendering Demo'.
html heading

level: 2;
with: 'Rendering basic HTML: '
html div

class: 'subcomponent';
with: htmlDemo.
"render the remaining components ...

itself be sent the message renderContentOn: this is what happens in the
multi-counter (see Figure 13-12).

Using brushes

A canvas provides a number of brushes that can be used to render (i.e., paint)
content on the canvas. There are brushes for every kind of HTML element
— paragraphs, tables, lists, and so on. To see the full protocol of brushes and
convenience methods, you should browse the class WACanvas and its sub-
classes. The argument to renderContentOn: is actually an instance of the
subclass WARender.

We have already seen the following brush used in the counter and multi-
counter examples:

[html horizontalRule.

In Figure 13-13 we can see the output of many of the basic brushes offered by
Seaside. (The source code for method SeasideDemo >> renderContentOn:
defined below is in the package PBE-SeasideDemo in the project http://www.
squeaksource.com/PharoByExample.) The root component SeasideDemo sim-
ply renders its subcomponents, which are instances of SeasideHtmlDemo,
SeasideFormDemo, SeasideEditCallDemo and SeasideDialogDemo, as
shown below.

Recall that a root component must always declare its children, or Seaside will
refuse to render them.

SeasideDemo >> children
* { htmlDemo . formDemo . editDemo . dialogDemo }

Notice that there are two different ways of instantiating the heading brush.
The first way is to set the text directly by sending the message heading:.
The second way is to instantiate the brush by sending heading, and then to
send a cascade of messages to the brush to set its properties and render it.
Many of the available brushes can be used in these two ways.

272


http://www.squeaksource.com/PharoByExample
http://www.squeaksource.com/PharoByExample

800 Seaside

A http://localhost: 8080 /seaside [Seaside+widget+demo & » Q-

Rendering Demo
Rendering basic HTML:

A plain text paragraph.

A paragraph with plain text followed by a line break.
Emphasized text followed by a horizontal rule.

()

An image URI: ==*==

1. An ordered list item

« An unordered list item

A table with one data cell.

Raw text within a div with id ‘author'. A span with class 'highlight'.

An anchor with a local action: toggle boolean: true

A form subcomponent:

a heading

Heading: a heading red  [4)Radio on: O off: @ [
Calling an edit field subcomponent:

edit me edit
Some standard dialogs:

self request: self inform: self confirm:

New Session Configure Toggle Halos Profiler Memory Terminate XHTML 2/0 ms

Figure 13-13 RenderingDemo.



Seaside by example

Important  If you send a cascade of messages to a brush including the
message with:, thenwith: should be the final message. with: both sets
the content and renders the result.

In method renderContentOn: above, the first heading is at level 1, since
this is the default. We explicitly set the level of the second heading to 2. The
subcomponent is rendered as an HTML div with the CSS class subcomponent.
(More on CSS in Section 13.5.) Also note that the argument to the with: key-
word message need not be a literal string: it can be another component, or
even — as in the next example — a block containing further rendering ac-
tions.

The SeasideHtmlDemo component demonstrates many of the most basic
brushes. Most of the code should be self-explanatory.

SeasideHtmlDemo >> renderContentOn: html
self renderParagraphsOn: html.
self renderListsAndTablesOn: html.
self renderDivsAndSpansOn: html.
self renderLinkWithCallbackOn: html

It is common practice to break up long rendering methods into many helper
methods, as we have done here.

A word of advice: Don’t put all your rendering code into a single method.

Instead, split it into helper methods named using the pattern render=0n:.
All rendering methods go in the rendering protocol. Don’t send renderCon-
tentOn: from your own code, use render: instead.

Look at the following code. The first helper method, SeasideHtmlDemo>>ren-
derParagraphsoOn:, shows you how to generate HTML paragraphs, plain

and emphasized text, and images. Note that in Seaside simple elements are
rendered by specifying the text they contain directly, whereas complex el-
ements are specified using blocks. This is a simple convention to help you
structure your rendering code.

[ SeasideHtmlDemo >> renderParagraphsOn: html
html paragraph: 'A plain text paragraph.'.
html paragraph: [
html
text: 'A paragraph with plain text followed by a line break. ';
break;
emphasis: 'Emphasized text ';
text: 'followed by a horizontal rule.';
horizontalRule;
text: 'An image URI:
html image
url: self squeakImageUrl;
width: '50']

274



13.4 Rendering HTML

The next helper method, SeasideHtmlDemo>>renderListsAndTablesOn:,
shows you how to generate lists and tables. A table uses two levels of blocks
to display each of its rows and the cells within the rows.

[ SeasideHtmlDemo >> renderListsAndTablesOn: html
html orderedList: [
html listItem: 'An ordered list item'].
html unorderedList: [
html listItem: 'An unordered list item'].
html table: [
html tableRow: [
html tableData: 'A table with one data cell.']]

The next example shows how we can specify class or id attributes for div
and span elements (for use with CSS). Of course, the messages class: and
id: can also be sent to the other brushes, not just to div and span. The
method SeasideDemoWidget>>style defines how these HTML elements
should be displayed (see Section 13.5).

[ seasideHtmlDemo >> renderDivsAndSpansOn: html
html div
id: 'author';
with: [
html text: 'Raw text within a div with id '‘'author''. '.
html span
class: 'highlight';
with: 'A span with class ''highlight''."']

Finally we see a simple example of a link, created by binding a simple call-
back to an anchor (i.e., a link). Clicking on the link will cause the subsequent
text to toggle between true and false by toggling the instance variable
toggleValue.

[ seasideHtmlDemo >> renderLinkwithCallbackOn: html
html paragraph: [
html text: 'An anchor with a local action: '.
html span with: [
html anchor
callback: [toggleValue := toggleValue not];
with: 'toggle boolean:'].
html space.
html span
class: 'boolean';
with: togglevalue ]

Note that actions should appear only in callbacks.

The code executed while rendering should not change the state of the appli-
cation!

275



Seaside by example

Forms

Forms are rendered just like the other examples that we have already seen.
Here is the code for the SeasideFormDemo component in Figure 13-13.

[ SeasideFormDemo >> renderContentOn: html
| radioGroup
html heading: heading.
html form: [
html span: 'Heading:
html textInput on: #heading of: self.
html select
list: self colors;
on: #ticolor of: self.
radioGroup := html radioGroup.
html text: 'Radio on:'.
radioGroup radioButton
selected: radioOn;
callback: [radioOn := truel.
html text: 'off:'.
radioGroup radioButton
selected: radioOn not;
callback: [radioOn := falsel].
html checkbox on: #checked of: self.
html submitButton
text: 'done' ]

Since a form is a complex entity, it is rendered using a block. Note that all
the state changes happen in the callbacks, not as part of the rendering,.

There is one Seaside feature used here that is worth special mention, namely
the message on:of:. In the example, this message is used to bind a text in-
put field to the variable heading. Anchors and buttons also support this
message. The first argument is the name of an instance variable for which
accessors have been defined; the second argument is the object to which this
instance variable belongs. Both observer (heading) and mutator (heading:)
accessor messages must be understood by the object, with the usual naming
convention. In the case of a text input field, this saves us the trouble of hav-
ing to define a callback that updates the field as well as having to bind the
default contents of the HTML input field to the current value of the instance
variable. Using on: #heading of: self,the heading variable is updated
automatically whenever the user updates the text input field.

The same message is used twice more in this example, to cause the selec-
tion of a colour on the HTML form to update the color variable, and to bind
the result of the checkbox to the checked variable. Many other examples
can be found in the functional tests for Seaside. Have a look at the package
Seaside-Tests-Functional, or just point your browser to http://localhost:
8080/tests/functional. Select WAInputPostFunctionalTest and click on the
Restart button to see most of the features of forms.

276


http://localhost:8080/tests/functional
http://localhost:8080/tests/functional

13.5

13.5 CSS: Cascading style sheets

Don'’t forget, if you toggle Halos, you can browse the source code of the ex-
amples directly using the Seaside class browser.

CSS: Cascading style sheets

Cascading Style Sheets (http://www.w3.0rg/Style/CSS/), or CSS for short, are a
standard way for web applications to separate style from content. Seaside
relies on CSS to avoid cluttering your rendering code with layout considera-
tions.

You can set the CSS style sheet for your web components by defining the
method style, which should return a string containing the CSS rules for
that component. The styles of all the components displayed on a web page
are joined together, so each component can have its own style. A better ap-
proach can be to define an abstract class for your web application that de-
fines a common style for all its subclasses.

Actually, for deployed applications, it is more common to define style sheets
as external files. This way the look and feel of the component is completely
separate from its functionality. (Have a look at WAFileLibrary, which pro-
vides a way to serve static files without the need for a standalone server.)

If you already are familiar with CSS, then that’s all you need to know. Other-
wise, read on for a very brief introduction to CSS.

Instead of directly encoding display attributes in the paragraph and text el-
ements of your web pages, CSS lets you define different classes of elements,
and place all display considerations in a separate style sheet.

To put it another way, a CSS style sheet consists of a set of rules that specify
how to format given HTML elements. Each rule consists of two parts. There
is a selector that specifies which HTML elements the rule applies to, and there
is a declaration which sets a number of attributes for that element.

The previous method illustrates a simple style sheet for the rendering demo
shown earlier in Figure 13-13. The first rule specifies a preference for the
fonts to use for the body of the web page. The next few rules specify proper-
ties of second-level headings (h2), tables (table), and table data (td).

The remaining rules have selectors that will match HTML elements that have
the given class or id attributes. CSS selectors for class attributes start with
a . and those for id attributes with #. The main difference between class and
id attributes is that many elements may have the same class, but only one el-
ement may have a given id (i.e., an identifier). So, whereas a class attribute,
such as highlight, may occur multiple times on any page, an id must iden-
tify a unique element on the page, such as a particular menu, the modified
date, or author. Note that a particular HTML element may have multiple
classes, in which case all the applicable display attributes will be applied in
sequence.

277


http://www.w3.org/Style/CSS/

Seaside by example

Listing 13-15 SeasideDemoWidget common style sheet.

SeasideDemoWidget >> style
body {
font: 10pt Arial, Helvetica, sans-serif, Times New Roman;
}
h2 {
font-size: 12pt;
font-weight: normal;
font-style: italic;
}
table { border-collapse: collapse; }
td {
border: 2px solid #CCCCCC;
padding: 4px;
}
#author {
border: 1px solid black;
padding: 2px;
margin: 2px;
}
.subcomponent {
border: 2px solid lightblue;
padding: 2px;
margin: 2px;
}
.highlight { background-color: yellow; }
.boolean { background-color: lightgrey; }
.field { background-color: lightgrey; }

Selector conditions may be combined, so the selector div.subcomponent
will only match an HTML element if it is both a div and it has a class attribute
equal to subcomponent.

It is also possible to specify nested elements, though this is seldom necessary.
For example, the selector p span will match a span within a paragraph but
not within a div.

There are numerous books and web sites to help you learn CSS. For a dra-
matic demonstration of the power of CSS, we recommend you to have a look
at the CSS Zen Garden (http://www.csszengarden.com/), which shows how the
same content can be rendered in radically different ways simply by changing
the CSS style sheet.

278


http://www.csszengarden.com/

13.6 Managing control flow

13.6 Managing control flow

Seaside makes it particularly easy to design web applications with non-trivial
control flow. There are basically two mechanisms that you can use:

1. A component can call another component by sending caller call: callee.
The caller is temporarily replaced by the callee, until the callee returns con-
trol by sending answer:. The caller is usually self, but could also be any

other currently visible component.

2. A workflow can be defined as a task. This is a special kind of component
that subclasses WATask (instead of WAComponent). Instead of defining ren-
derContentOn:, it defines no content of its own, but rather defines a go
method that sends a series of call: messages to activate various subcom-
ponents in turn.

Call and answer

Call and answer are used to realize simple dialogues.

There is a trivial example of call: and answer: in the rendering demo of

Figure 13-13. The component SeasideEditCallDemo displays a text field

and an edit link. The callback for the edit link calls a new instance of SeasideEd-
itAnswerDemo initialized to the value of the text field. The callback also up-

dates this text field to the result which is sent as an answer.

(We underline the call: and answer: sends to draw attention to them.)

[ SeasideEditCallDemo >> renderContentOn: html

html span
class: 'field';
with: self text.

html space.

html anchor
callback: [self text: (self call: (SeasideEditAnswerDemo new
text: self text))];
with: 'edit'

What is particularly elegant is that the code makes absolutely no reference to
the new web page that must be created. At run-time, a new page is created in
which the SeasideEditCallDemo component is replaced by a SeasideEdi-
tAnswerDemo component; the parent component and the other peer compo-
nents are untouched.

It is important to keep in mind that call: and answer: should never be
used while rendering. They may safely be sent from within a callback, or
from within the go method of a task.

The SeasideEditAnswerDemo component is also remarkably simple. It just
renders a form with a text field. The submit button is bound to a callback
that will answer the final value of the text field.

279



Seaside by example

self request: self inform: self confirm:

aString self
aBoolean
edit this yes! Are you happy?
"some text " (done ) (ok) (Yes )(No )

Figure 13-16 Some standard dialogs.

[ SeasideEditAnswerDemo >> renderContentOn: html
html form: [
html textInput
on: f#text of: self.
html submitButton
callback: [ self answer: self text ];

text: 'ok'.

]

That’s it.

Seaside takes care of the control flow and the correct rendering of all the
components. Interestingly, the Back button of the browser will also work just
fine (though side effects are not rolled back unless we take additional steps).

Convenience methods

Since certain call-answer dialogues are very common, Seaside provides some
convenience methods to save you the trouble of writing components like
SeasideEditAnswerDemo. The generated dialogues are shown in Figure 13-
16. We can see these convenience methods being used within SeasideDi-
alogDemo>>renderContentOn:

The message request: performs a call to a component that will let you edit
a text field. The component answers the edited string. An optional label and
default value may also be specified.

SeasideDialogDemo >> renderContentOn: html
html anchor
callback: [ self request: 'edit this' label: 'done' default:
'some text' 1;
with: 'self request:'.

280



13.6 Managing control flow

The message inform: calls a component that simply displays the argument
message and waits for the user to click Ok. The called component just returns
self.

html space.

html anchor
callback: [ self inform: 'yes!' 1];
with: 'self inform:'.

The message confirm: asks a question and waits for the user to select either
Yes or No. The component answers a boolean, which can be used to perform
further actions.

html space.

html anchor
callback: [
(self confirm: 'Are you happy?"')
ifTrue: [ self inform: ':-)' 1]
ifFalse: [ self inform: ':-(' 1]

1;

with: 'self confirm:'.

A few further convenience methods, such as chooseFrom:caption:, are de-
fined in the convenience protocol of WAComponent.

Tasks

A task is a component that subclasses WATask. It does not render anything
itself, but simply calls other components in a control flow defined by imple-
menting the method go.

WAConvenienceTest is a simple example of a task defined in the package
Seaside-Tests-Functional. To see its effect, just point your browser to
http://localhost:8080/tests/functional, select WAFlowConvenienceFunctional-
Test and click Restart.
WAFlowConvenienceFunctionalTest >> go

[ self chooseCheese.

self confirmCheese ] whileFalse.
self informCheese

This task calls in turn three components. The first, generated by the conve-
nience method chooseFrom: caption:,isaWAChoiceDialog that asks the
user to choose a cheese.
WAFlowConvenienceFunctionalTest >> chooseCheese
cheese := self
chooseFrom: #('Greyerzer' 'Tilsiter' 'Sbrinz')
caption: 'What''s your favorite Cheese?'.

281


http://localhost:8080/tests/functional

Seaside by example

What's your favorite Cheese?

Greyerzer 4]

E (Cancel

f

no

e

Is Greyerzer your favorite cheese? Your favorite cheese is Greyerzer.

Yes ) ( No ) — yes —yp»| (

o
x

Figure 13-17 A simple task.

L cheese isNil ifTrue: [ self chooseCheese ]

The second is a WAYesOrNoDialog to confirm the choice (generated by the
convenience method confirm:).

WAFlowConvenienceFunctionalTest >> confirmCheese
“self confirm: 'Is ', cheese, ' your favorite cheese?'

Finally a WAFormDialog is called (via the convenience method inform:).

WAFlowConvenienceFunctionalTest >> informCheese
self inform: 'Your favorite cheese is ', cheese, '.'

The generated dialogues are shown in Figure 13-17.

Transactions

We saw in Section 13.3 that Seaside can keep track of the correspondence
between the state of components and individual web pages by having com-
ponents register their state for backtracking: all that a component need do
is implement the method states to answer an array of all the objects whose
state must be tracked.

Sometimes, however, we do not want to backtrack state: instead we want
to prevent the user from accidentally undoing effects that should be perma-
nent. This is often referred to as "the shopping cart problem”. Once you
have checked out your shopping cart and paid for the items you have pur-
chased, it should not be possible to go Back with the browser and add more
items to the shopping cart!

Seaside allows you to enforce restriction this by defining a task within which
certain actions are grouped together as transactions. You can backtrack within
a transaction, but once a transaction is complete, you can no longer go back
to it. The corresponding pages are invalidated, and any attempt to go back to

282



13.6 Managing control flow

en0o Seaside Sushi Store : Fill your cart

(«]>] @ hup:/ localhost:BOB0 /seaside /examples/store?_s=JTEtNxLHMpIuhKIOdG) Q- Google

sushiNet

fresh, raw fish delivered to your door
Search: Welcome to the sushiNet online store.
This is a sample Seaside application.
Browse

Use the search box at the top left to find some results.
Good searches to try might be "tuna”, "saba", or "fish".

New Session Configure Toggle Halos Profiler Memory Terminate XHTML 1/16 ms

Figure 13-18 The Sushi Store.

them will cause Seaside to generate a warning and redirect the user to the
most recent valid page.

The Seaside Sushi Store is sample application that illustrates many of the fea-
tures of Seaside, including transactions. This application is bundled with
your installation of Seaside, so you can try it out by pointing your browser
at http://localhost:8080/seaside/examples/store. (If you cannot find it in your
image, there is a version of the sushi store available on SqueakSource from
http://www.squeaksource.com/SeasideExamples/.)

The sushi store supports the following workflow:

+ Visit the store.

Browse or search for sushi.

Add sushi to your shopping cart.
Checkout.

¢ Verify your order.

« Enter shipping address.

» Verify shipping address.

» Enter payment information.
* Your fish is on its way!

If you toggle the halos, you will see that the top-level component of the sushi
store is an instance of WAStore. It does nothing but render the title bar, and
then it renders task, an instance of WAStoreTask.

WAStore >> renderContentOn: html
"... render the title bar ...
html div id: 'body'; with: task

n

283


http://localhost:8080/seaside/examples/store
http://www.squeaksource.com/SeasideExamples/

Seaside by example

WAStoreTask captures this workflow sequence. At a couple of points it is
critical that the user not be able to go back and change the submitted infor-
mation.

Purchase some sushi and then use the Back button to try to put more sushi
into your cart.

You will get the message That page has expired.

Seaside lets the programmer say that a certain part of a workflow acts like a
transaction: once the transaction is complete, the user cannot go back and
undo it. This is done by sending isolate: to a task with the transactional
block as its argument. We can see this in the sushi store workflow as follows:

[ wAStoreTask >> go
| shipping billing creditCard |
cart := WAStoreCart new.
self isolate:
[[ self fillcart.
self confirmContentsOfCart 1]
whileFalse ].

self isolate:
[ shipping := self getShippingAddress.
billing := (self useAsBillingAddress: shipping)
ifFalse: [ self getBillingAddress ]
ifTrue: [ shipping 1.
creditCard := self getPaymentInfo.
self shipTo: shipping billTo: billing payWith: creditCard ].

self displayConfirmation.

Here we see quite clearly that there are two transactions. The first fills the
cart and closes the shopping phase. (The helper methods such as fillCart
take care of instantiating and calling the right subcomponents.) Once you
have confirmed the contents of the cart you cannot go back without starting
anew session. The second transaction completes the shipping and payment
data. You can navigate back and forth within the second transaction until
you confirm payment. However, once both transactions are complete, any
attempt to navigate back will fail.

Transactions may also be nested. A simple demonstration of this is found in
the class WANestedTransaction. The first isolate: takes as argument a
block that contains another, nested isolate:

WANestedTransaction >> go
self inform: 'Before parent txn'.
self isolate:
[self inform: 'Inside parent txn'.
self isolate: [self inform: 'Inside child txn'].
self inform: 'Outside child txn'].

284



13.7

13.7 A complete tutorial example

+—x +|+| 6 +—{x|++|| 6
12 3 Drop open” -~ 123 Drop, 5

456 Rot 1 456 Rott| 1
7 8 9 Exch 7 8 9 Exch close

0 C Enter 0 C Enter

Figure 13-19 RPN calculator and its stack machine.

L self inform: 'Outside parent txn'

Go to http://localhost:8080/tests/functionals, select WATransactionTest and
click on Restart. Try to navigate back and forth within the parent and child
transaction by clicking the Back button and then clicking Ok. Note that as
soon as a transaction is complete, you can no longer go back inside the trans-
action without generating an error upon clicking Ok.

A complete tutorial example

Let’s see how we can build a complete Seaside application from scratch. (The
exercise should take at most a couple of hours. If you prefer to just look at
the completed source code, you can grab it from the SqueakSource project
http://www.squeaksource.com/PharoByExample. The package to load is PBE-
SeasideRPN. The tutorial that follows uses slightly different class names so
that you can compare your implementation with ours.) We will build a RPN
(Reverse Polish Notation) calculator as a Seaside application that uses a sim-
ple stack machine as its underlying model. Furthermore, the Seaside inter-
face will let us toggle between two displays — one which just shows us the
current value on top of the stack, and the other which shows us the complete
state of the stack. The calculator with the two display options is shown in
Figure 13-19.

We begin by implementing the stack machine and its tests.

First, Define a new class called MyStackMachine with an instance variable
contents initialized to a new OrderedCollection.

MyStackMachine >> initialize
super initialize.
contents := OrderedCollection new.

285


http://localhost:8080/tests/functionals
http://www.squeaksource.com/PharoByExample

Seaside by example

The stack machine should provide operations to push: and pop values, view
the top of the stack, and perform various arithmetic operations to add, sub-
tract, multiply and divide the top values on the stack.

Write some tests for the stack operations and then implement these opera-
tions. Here is a sample test:

[ MyStackMachineTest >> testDiv

stack
push: 3;
push: 4;
div.

self assert: stack size = 1.
self assert: stack top = (4/3).

You might consider using some helper methods for the arithmetic opera-
tions to check that there are two numbers on the stack before doing any-
thing, and raising an error if this precondition is not fulfilled. (It’s a good
idea to use Object>>assert: to specify the preconditions for an operation.
This method will raise an AssertionFailure if the user tries to use the stack
machine in an invalid state.) If you do this, most of your methods will just be
one or two lines long.

You might also consider implementing MyStackMachine>>printOn: to
make it easier to debug your stack machine implementation with the help of
an object inspector. (Hint: just delegate printing to the contents variable.)

Complete the MyStackMachine by writing operations dup (push a duplicate
of the top value onto the stack), exch (exchange the top two values), and
rotUp (rotate the entire stack contents up — the top value will move to the
bottom).

Now we have a simple stack machine implementation. We can start to imple-
ment the Seaside RPN Calculator.

We will make use of 5 classes:

1. MyRPNWidget — this should be an abstract class that defines the common
CSS style sheet for the application, and other common behavior for the com-
ponents of the RPN calculator. It is a subclass of WAComponent and the direct
superclass of the following four classes.

2. MyCalculator — this is the root component. It should register the appli-
cation (on the class side), it should instantiate and render its subcomponents,
and it should register any state for backtracking.

3. MyKeypad - this displays the keys that we use to interact with the calcula-
tor.

4. MyDisplay — this component displays the top of the stack and provides a
button to call another component to display the detailed view.

286



13.7 A complete tutorial example

5. MyDisplayStack — this component shows the detailed view of the stack
and provides a button to answer back. It is a subclass of MyDisplay.

Create a package MyCalculator, and define MyRPNWidget.
Define the common style for the application.

Here is a minimal CSS for the application. You can make it more fancy if you

like.

[ MyRPNWidget >> style
~ 'table.keypad { float: left; }
td.key {
border: 1px solid grey;
background: lightgrey;
padding: 4px;
text-align: center;
}
table.stack { float: left; }
td.stackcell {
border: 2px solid white;
border-left-color: grey;
border-right-color: grey;
border-bottom-color: grey;
padding: 4px;
text-align: right;
}
td.small { font-size: 8pt; }'

Define MyCalculator to be a root component and register itself as an appli-
cation (i.e., implement canBeRoot and initialize on the class side).

Implement MyCalculator>>renderContentOn: to render something trivial
(such as its name), and verify that the application runs in a browser.

MyCalculator is responsible for instantiating MyStackMachine, MyKeypad
and MyDisplay.

Define MyKeypad and MyDisplay as subclasses of MyRPNWidget.

All three components will need access to a common instance of the stack
machine, so define the instance variable stackMachine and an initialization
method setMyStackMachine: in the common parent, MyRPNWidget. Add
instance variables keypad and display to MyCalculator and initialize them
inMyCalculator>>initialize. (Don’t forget to send super initialize!)

Pass the shared instance of the stack machine to the keypad and the display
in the same initialize method.

Implement MyCalculator>>renderContentOn: to simply render in turn the
keypad and the display. To correctly display the subcomponents, you must
implement MyCalculator>>children to return an array with the keypad
and the display. Implement placeholder rendering methods for the keypad

287



Seaside by example

RPNCalculator [& [ & [R|S]
RPNKeypad [& [c, & [R|S]
RPNDisplay [& [, & [R|S]

o

Figure 13-20 Displaying the top of the stack.

and the display and verify that the calculator now displays its two subcompo-
nents.

Now we will change the implementation of the display to show the top value
of the stack.

Use a table with class keypad containing a row with a single table data cell
with class stackcell.

Change the rendering method of the keypad to ensure that the number 0

is pushed on the stack in case it is empty. (Define and use MyKeypad>>en-
sureStackMachineNotEmpty.) Also make it display an empty table with
class keypad. Now the calculator should display a single cell containing the
value 0. If you toggle the halos, you should see something like this: Figure
13-20

Now let’s implement an interface to interact with the stack.

First, define the following helper methods, which will make it easier to script
the interface:

EMyKeypad >> renderStackButton: text callback: aBlock colSpan:
anInteger on: html
html tableData
class: 'key';
colSpan: anlInteger;
with:
[ html anchor
callback: aBlock;
with: [ html html: text 1]

EMyKeypad >> renderStackButton: text callback: aBlock on: html
self
renderStackButton: text
callback: aBlock
colSpan: 1
on: html

288



13.7 A complete tutorial example

We will use these two methods to define the buttons on the keypad with ap-
propriate callbacks. Certain buttons may span multiple columns, but the de-
fault is to occupy just one column.

Use the two helper methods to script the keypad as follows.

(Hint: start by getting the digit and Enter keys working, then the arithmetic
operators.)

EMyKeypad >> renderContentOn: html
self ensureStackMachineNotEmpty.
html table
class: 'keypad';
with: [
html tableRow: [
self renderStackButton: '+' callback: [self stackOp: #add]
on: html.
self renderStackButton: '&ndash;' callback: [self stackOp:
#min] on: html.
self renderStackButton: '&times;' callback: [self stackOp:
#mul] on: html.
self renderStackButton: '&divide;' callback: [self
stackOp: #div] on: html.
self renderStackButton: '&plusmn;' callback: [self
stackOp: #neg] on: html ].
html tableRow: [
self renderStackButton: '1' callback: [self type: '1'] on:

html.

self renderStackButton: '2' callback: [self type: '2'] on:
html.

self renderStackButton: '3' callback: [self type: '3'] on:
html.

self renderStackButton: 'Drop' callback: [self
stackPopIfNotEmpty]

colSpan: 2 on: html ].
"and soon ... "

html tableRow: [

self renderStackButton: '0' callback: [self type: '0']
colSpan: 2 on: html.

self renderStackButton: 'C' callback: [self stackClearTop]
on: html.

self renderStackButton: 'Enter'

callback: [self stackOp: #dup. self setClearMode]
colSpan: 2 on: html ]]

Check that the keypad displays properly. If you try to click on the keys, how-
ever, you will find that the calculator does not work yet.

Implement MyKeypad>>type: to update the top of the stack by appending
the typed digit. You will need to convert the top value to a string, update it,

289



Seaside by example

and convert it back to an integer, something like this:

MyKeypad >> type: aString
stackMachine push: (self stackPopTopOrZero asString, aString)
asNumber.

The two methods stackPopTopOrZero and stackPopIfNotEmpty are used to
guard against operating on an empty stack.

>MyKeypad >> stackPopTopOrzZero
* stackMachine isEmpty
ifTrue: [ 0 ]
ifFalse: [ stackMachine pop 1]

[ MyKeypad >> stackPopIfNotEmpty
stackMachine isEmpty
ifFalse: [ stackMachine pop 1]

Now when you click on the digit keys the display should be updated. (Be sure
that MyStackMachine>>pop returns the value popped, or this will not work!)

Next, we must implement MyKeypad>>stackOp:. Something like this will do
the trick:

MyKeypad >> stackOp: op
[ stackMachine perform: op ] on: AssertionFailure do: [ ].

The point is that we are not sure that all operations will succeed. For exam-
ple, addition will fail if we do not have two numbers on the stack. For the
moment we can just ignore such errors. If we are feeling more ambitious
later on, we can provide some user feedback in the error handler block.

The first version of the calculator should be working now. Try to enter some
numbers by pressing the digit keys, hitting Enter to push a copy of the cur-
rent value, and entering + to sum the top two values.

You will notice that typing digits does not behave the way you might ex-
pect. Actually the calculator should be aware of whether you are typing a
new number, or appending to an existing number.

Adapt MyKeypad>>type: to behave differently depending on the current
typing mode.

Introduce an instance variable mode which takes on one of the three values:
the symbol #typing (when you are typing), #push (after you have performed
a calculator operation and typing should force the top value to be pushed), or
#clear (after you have performed Enter and the top value should be cleared
before typing). The new type: method might look like this:

MyKeypad >> type: aString
self inPushMode ifTrue: [
stackMachine push: stackMachine top.
self stackClearTop 1.

290



13.7 A complete tutorial example

i self inClearMode ifTrue: [ self stackClearTop 1.
stackMachine push: (self stackPopTopOrZero asString, aString)
asNumber.

Typing might work better now, but it is still frustrating not to be able to see
what is on the stack.

Define MyDisplayStack as a subclass of MyDisplay.

Add a button to the rendering method of MyDisplay which will call a new in-
stance of MyDisplayStack. You will need an HTML anchor that looks some-
thing like this:

html anchor
callback: [ self call: (MyDisplayStack new setMyStackMachine:
stackMachine)];
with: 'open'

The callback will cause the current instance of MyDisplay to be temporarily
replaced by a new instance of MyDisplayStack whose job it is to display the
complete stack. When this component signals that it is done (i.e., by sending
self answer), then control will return to the original instance of MyDis-
play.

Define the rendering method of MyDisplayStack to display all of the values
on the stack.

(You will either need to define an accessor for the stack machine’s contents
or you can define MyStackMachine>>do: to iterate over the stack values.)
The stack display should also have a button labelled close whose callback
will simply perform self answer.

html anchor
callback: [ self answer];
with: 'close'

Now you should be able to open and close the stack while you are using the
calculator.

There is, however, one thing we have forgotten. Try to perform some op-
erations on the stack. Now use the Back button of your browser and try to
perform some more stack operations. For example, open the stack, type 1,
Enter twice and +. The stack should display 2 and 1. Now hit the Back button.
The stack now shows three times 1 again. Now if you type +, the stack shows
3. Backtracking is not yet working.

Implement MyCalculator>>states to return an array with the contents of
the stack machine.

Check that backtracking now works correctly.

291



Seaside by example

A quick look at AJAX

AJAX (Asynchronous JavaScript and XML) is a technique to make web appli-
cations more interactive by exploiting JavaScript functionality on the client
side.

Two well-known JavaScript libraries are Prototype (http://www.prototypejs.
org) and script.aculo.us (http://script.aculo.us). Prototype provides a frame-
work to ease writing JavaScript. script.aculo.us provides some additional
features to support animations and drag-and-drop on top of Prototype. Both
frameworks are supported in Seaside through the package Scriptaculous.

All ready made images have the Scriptaculous package extensions already
loaded. The latest version is available from http://www.squeaksource.com/
Seaside. An online demo is available at http://scriptaculous.seasidehosting.
st. Alternatively, if you have a enabled image running, simply go to http:
//localhost:8080/javascript/scriptaculous.

The Scriptaculous extensions follow the same approach as Seaside itself —
simply configure Pharo objects to model your application, and the needed
Javascript code will be generated for you.

Let us look at a simple example of how client-side Javascript support can
make our RPN calculator behave more naturally. Currently every keystroke
to enter a digit generates a request to refresh the page. We would like in-
stead to handle editing of the display on the client-side by updating the dis-
play in the existing page.

To address the display from JavaScript code, we must first give it a unique id.

Update the calculator’s rendering method as follows. (If you have not imple-
mented the tutorial example yourself, you can simply load the complete ex-
ample (PBE-SeasideRPN) from http://www.squeaksource.com/PharoByExample
and apply the suggested changes to the classes RPN* instead of My *.

MyCalculator >> renderContentOn: html
html div id: 'keypad'; with: keypad.
html div id: 'display'; with: display.

To be able to re-render the display when a keyboard button is pressed, the
keyboard needs to know the display component.

Add a display instance variable to MyKeypad, an initialize method MyKey-
pad>>setDisplay:, and call this from MyCalculator>>initialize. Now
we are able to assign some JavaScript code to the buttons by updating MyKey -
pad>>renderStackButton:callback:colSpan:on: as follows:

MyKeypad >> renderStackButton: text callback: aBlock colSpan:
anInteger on: html
html tableData
class: 'key';
colSpan: anlnteger;

202


http://www.prototypejs.org
http://www.prototypejs.org
http://script.aculo.us
http://www.squeaksource.com/Seaside
http://www.squeaksource.com/Seaside
http://scriptaculous.seasidehosting.st
http://scriptaculous.seasidehosting.st
http://localhost:8080/javascript/scriptaculous
http://localhost:8080/javascript/scriptaculous
http://www.squeaksource.com/PharoByExample

13.8 A quick look at AJAX

with: [
html anchor
callback: aBlock;

onClick: "handle Javascript event"”
(html scriptaculous updater
id: 'display';

callback: [ :r |
aBlock value.
r render: display J;
return: false);
with: [ html html: text ] 1]

onClick: specifies a JavaScript event handler. html updater returns an
instance of PTUpdater, a Smalltalk object representing the JavaScript AJAX
Updater object (http://www.prototypejs.org/api/ajax/updater). This object per-
forms AJAX requests and updates a container’s contents based on the re-
sponse text. id: tells the updater what HTML DOM element to update, in
this case the contents of the div element with the id *display’. callback:
specifies a block that is triggered when the user presses the button. The
block argument is a new renderer r, which we can use to render the dis-
play component. (Note: Even though HTML is still accessible, it is not valid
anymore at the time this callback block is evaluated). Before rendering the
display component we evaluate aBlock to perform the desired action.

return: false tells the JavaScript engine to not trigger the original link
callback, which would cause a full refresh. We could instead remove the
original anchor callback:, but like this the calculator will still work even
if JavaScript is disabled.

Try the calculator again, and notice how a full page refresh is triggered ev-
ery time you press a digit key. (The URL of the web page is updated at each
keystroke.)

Although we have implemented the client-side behavior, we have not yet
activated it. Now we will enable the Javascript event handling.

Click on the Configure link in the toolbar of the calculator.

Configure the Libraries attribute under the General section. (You may
need to enable the modification of this attribute, by first selecting Modify).
From the list of available libraries, select PTDevelopmentLibrary and apply
the changes.

Instead of manually adding the library, you may also do it programmatically
when you register the application:

MyCalculator class >> initialize
(WAAdmin register: self asApplicationAt: self applicationName)
addLibrary: PTDevelopmentLibrary

293


http://www.prototypejs.org/api/ajax/updater

Seaside by example

Client | Server (Seaside)

WADIspatcher ] [ :MyCaiculator MyKeypad MyDisplay
i § i i i i
/seaside/rpn
/seas‘ide/rpn
I N :
renderContenton renderContentOn: renderContentOn:
retu rnRe‘sponse:

|

] 5
clicks button !
) JavaScript

Trigger Request

i {seasidelrpn?s
\ renderContentOn:

returnResponse:

JavaScript
Update DOM

Seaside: AJAX Processing (simplified)

Lukas Renggli, 2007

Figure 13-21 Seaside AJAX processing (simplified).

For this example the PTDevelopmentLibrary is sufficient, but for the full set
of the scriptaculous extensions you need to add the SUDevelopmentLibrary,
too.

Try the revised application. Note that the feedback is much more natural. In
particular, a new URL is not generated with each keystroke.

You may well ask, yes, but how does this work? Figure 13-21 shows how the RPN
applications would both without and with AJAX. Basically AJAX short-circuits
the rendering to only update the display component. Javascript is respon-
sible both for triggering the request and updating the corresponding DOM
element. Have a look at the generated source-code, especially the JavaScript
code:

new Ajax.Updater(
'display’,
'"http://localhost/seaside/RPN+Calculator’,
{'evalScripts': true,
'parameters': ['UNDERSCOREs=zcdqfonqwbeYzkza',
"UNDERSCOREk=3jMORHtqr','9'].join('&"')});

204



13.9 Chapter summary

Lreturn false

For more advanced examples, have a further look at http://localhost:8080/
javascript/scriptaculous.

Hints

In case of server side problems use the Debugger. In case of client side prob-
lems use FireFox (http://www.mozilla.com) with the JavaScript debugger Fire-
Bug (http://www.getfirebug.com/) plugin enabled.

13.9 Chapter summary

The easiest way to get started is to download the Seaside One-Click Expe-
rience from http://seaside.st

Turn the server on and off by evaluating ZnzincServerAdaptor star-
tOn: 8080 and ZnZincServerAdaptor stop.

Toggle Halos to directly view application source code, run-time ob-
jects, CSS and HTML.

Remove the root decoration class WAToolDecoration in the applica-
tion configuration, to disable the toolbar

Send WAAdmin applicationDefaults removeParent: WADevelop-
mentConfiguration instance, to disable toolbar for new Compo-
nents

Seaside web applications are composed of components, each of which
is an instance of a subclass of WAComponent.

Only a root component may be registered as an application. It should
implement canBeRoot on the class side. Alternatively it may register
itself as an application in its class-side initialize method by sending
WAAdmin register: self asApplicationAt: application path. If you
override description it is possible to return a descriptive application
name that will be displayed in the configuration editor.

To backtrack state, a component must implement the states method
to answer an array of objects whose state will be restored if the user
clicks the browser’s Back button.

A component renders itself by implementing renderContentOn:. The
argument to this method is an HTML rendering canvas (usually called
html).

A component can render a subcomponent by sending self render:
subcomponent.

295


http://localhost:8080/javascript/scriptaculous
http://localhost:8080/javascript/scriptaculous
http://www.mozilla.com
http://www.getfirebug.com/
http://seaside.st

206

Seaside by example

HTML is generated programmatically by sending messages to brushes.
A brush is obtained by sending a message, such as paragraph or div, to
the HTML canvas.

If you send a cascade of messages to a brush that includes the message
with:, thenwith: should be the last message sent. The with: mes-
sage sets the contents and renders the result.

Actions should appear only in callbacks. You should not change the
state of the application while you are rendering it.

You can bind various form widgets and anchors to instance variables
with accessors by sending the message on: instance variable of : object
to the brush.

You can define the CSS for a component hierarchy by defining the
method style, which should return a string containing the style sheet.
(For deployed applications, it is more usual to refer to a style sheet lo-
cated at a static URL.)

Control flows can be programmed by sending x call: vy, in which
case component x will be replaced by y until y answers by sending
answer: with a result in a callback. The receiver of call: is usually
self, but may in general be any visible component.

A control flow can also be specified as a task — a instance of a subclass
of WATask. It should implement the method go, which should call: a
series of components in a workflow.

Use WAComponents’s convenience methods request:, inform:, con-
firm: and chooseFrom:caption: for basic interactions.

To prevent the user from using the browser’s Back button to access a

previous execution state of the web application, you can declare por-
tions of the workflow to be a transaction by enclosing them in an iso-
late: block.



CHAPTER I I

Reflection

Pharo is a reflective programming language. In a nutshell, this means that
programs are able to reflect on their own execution and structure. More tech-
nically, this means that the metaobjects of the runtime system can be reified

as ordinary objects, which can be queried and inspected. The metaobjects

in Pharo are classes, metaclasses, method dictionaries, compiled methods,
but also the run-time stack, processes, and so on. This form of reflection is
also called introspection, and is supported by many modern programming lan-
guages.

Conversely, it is possible in Pharo to modify reified metaobjects and reflect
these changes back to the runtime system (see Figure 14-1). This is also called
intercession, and is supported mainly by dynamic programming languages,

Metaobjects i Q

< \O ¢

reflection

Objects

Figure 14-1 Reification and reflection.

297




14.1

Reflection

and only to a very limited degree by static languages. So pay attention when
people say that Java is a reflective language, it is an introspective one not a
reflective one.

A program that manipulates other programs (or even itself) is a metaprogram.
For a programming language to be reflective, it should support both intro-
spection and intercession. Introspection is the ability to examine the data
structures that define the language, such as objects, classes, methods and
the execution stack. Intercession is the ability to modify these structures, in
other words to change the language semantics and the behavior of a pro-
gram from within the program itself. Structural reflection is about examining
and modifying the structures of the run-time system, and behavioural reflec-
tion is about modifying the interpretation of these structures.

In this chapter we will focus mainly on structural reflection. We will explore
many practical examples illustrating how Pharo supports introspection and
metaprogramming.

Introspection

Using the inspector, you can look at an object, change the values of its in-
stance variables, and even send messages to it.

Evaluate the following code in a playground:

w := GTPlayground openlLabel: 'My Playground'.
w inspect

This will open a second playground and an inspector. The inspector shows
the internal state of this new playground, listing its instance variables on the
left (borderColor, borderWidth, bounds...) and the value of the selected
instance variable on the right. The bounds instance variable represents the
precise area occupied by the playground.

Now choose the inspector and click the playground area of the inspector
which has a comment on top and type self bounds: (Rectangle ori-
gin: 10@10 corner: 300@300 ) in it of select asshown in Figure 14-2 and
then Do It like you do with a code of a Playground.

Immediately you will see the Playground we created change and resize itself.

Accessing instance variables

How does the inspector work? In Pharo, all instance variables are protected.
In theory, it is impossible to access them from another object if the class
doesn’t define any accessor. In practice, the inspector can access instance
variables without needing accessors, because it uses the reflective abilities
of Pharo. Classes define instance variables either by name or by numeric
indices. The inspector uses methods defined by the Object class to access

208



14.1 Introspection

x = 0 Playground

% — O InspectoronaGLMSystem Gz
My Playground

a GLMSystemWindow(711761408) P @

R.. Ex.. Sub... Morph  Meta

Variable Value
x -0 Playground Dz~ = self a GLMSystem\
Page | -= > borderColor Color lightGray

» I borderWidth 1
w 1= GTPlayground openLabel: 'My Playground'. » ® bounds (46.0@137.0) ¢
W nspec » % closeBox a MultistateBu

» = collapseBox a MultistateBu,,

» (€ collapsedFrame nil

> color (Colorr:0.823

a GLMSyste 11761408)"
self bounds: ectangle origin: 10@L0
corner: 300@380 )

Figure 14-2 Inspecting aWorkspace.

them: instVarAt: index and instVarNamed: aString can be used to get
the value of the instance variable at position index or identified by aString,
respectively. Similarly, to assign new values to these instance variables, it
uses instVarAt:put: and instVarNamed:put:.

For instance, you can change the value of the w binding of the first workspace
by evaluating:

w instVarNamed: 'bounds' put: (Rectangle origin: 10@10 corner:
500@500).

Important  Caveat: Although these methods are useful for building develop-
ment tools, using them to develop conventional applications is a bad idea: these
reflective methods break the encapsulation boundary of your objects and can
therefore make your code much harder to understand and maintain.

Both instVarAt: and instVarAt:put: are primitive methods, meaning

that they are implemented as primitive operations of the Pharo virtual ma-
chine. If you consult the code of these methods, you will see the special pragma
syntax <primitive: N> where N is an integer.

Object >> instVarAt: index
"Primitive. Answer a fixed variable in an object.

<primitive: 173 error: ec>
self primitiveFailed

299



Reflection

1

x = 0 Playground (% IS
Page B @ -

w := GTPlayground somelnstance.

w class allInstVarNames collect: [:each | each -> (w instVarNamed:
each)]

an Array(#registry->a SubscriptionRegistry #suspendAll->false
#suspendedAnnouncemets->an OrderedCollection() #logger->a GLMNullLogger
#pane->a GLMPane(968075776 root) #title->'Playground' #titleIcon->nil
#transformation->nil #actions->an OrderedCollection(a GLMGenericAction
a GLMGenericAction) #condition->nil #implicitMotNil->nil
#dynamicActionsBlock->nil #color->nil #customvValidation->nil
#shouldvalidate->nil #acceptsSelectien->nil #parentPrototype->nil
#registeredAnnouncers->nil #updateActions->an OrderedCollection()
#selectionActions-»an OrderedCollection()
#selectionDynamicActionsBlock->nil #implicitAlINil->nil
frawSelectionTransmissions-»an IdentitySet(GLMTransmission (origins=an
OrderedCollection(a GLMPresentationBoundPort 41321472
(name=#rawSelection value=nil)) destination=a GLMPresentationBoundPort
8554508624 (name=#selection value=nil))) #statusPane->nil

| 2

Figure 14-3 Displaying all instance variables of a GTPlayground.

Any Pharo code after the primitive declaration is executed only if the prim-
itive fails. This also allows the debugger to be started on primitive methods.

In this specific case, there is no way to implement this method, so the whole
method just fails.

Other methods are implemented on the VM for faster execution. For exam-
ple some arithmetic operations on SmallInteger :

[ * aNumber
"Primitive. Multiply the receiver by the argument and answer with
the
result if it is a SmalllInteger. Fail if the argument or the result
is not a
SmallInteger. Essential. No Lookup. See Object documentation
whatIsAPrimitive."

<primitive: 9>
* super * aNumber

If this primitive fails, for example if the VM does not handle the type of the
argument, the Pharo code is executed. Although it is possible to modify the
code of primitive methods, beware that this can be risky business for the
stability of your Pharo system.

Figure 14-3 shows how to display the values of the instance variables of an
arbitrary instance (w) of class GTPlayground. The method allInstVarNames

300



14.1 Introspection

returns all the names of the instance variables of a given class.

>GTP1aygr0und allInstVarNames

>>>

#(#registry #suspendAll #suspendedAnnouncemets #logger #pane #title
#titleIcon #transformation #actions #condition #implicitNotNil
#dynamicActionsBlock #color #fcustomValidation #shouldValidate
#acceptsSelection #parentPrototype #registeredAnnouncers
#updateActions #selectionActions #selectionDynamicActionsBlock
#implicitAlINil #rawSelectionTransmissions #statusPane
#sourcelLink #initializationBlock #cachedDisplayedValue
#labelActionBlock #portChangeActions #wantsSteps #stepTime
#stepCondition #presentations #arrangement)

w := GTPlayground somelnstance.
w class allInstVarNames collect: [:each | each -> (w instVarNamed:
each)]

In the same spirit, it is possible to gather instances that have specific proper-
ties iterating over instances of a class using an iterator such as select:. For
instance, to get all objects who are directly included in the world morph (the
main root of the graphical displayed elements), try this expression:

Morph allSubInstances
select: [ :each |
| own |
own := (each instVarNamed: 'owner').
own isNotNil and: [ own isWorldMorph 1]

Querying classes and interfaces

The development tools in Pharo (system browser, debugger, inspector...) all
use the reflective features we have seen so far.

Here are a few other messages that might be useful to build development
tools:

isKindOf: aClass returns true if the receiver is instance of aClass or of
one of its superclasses. For instance:

[1.5 class
>>> BoxedFloat64

1.5 isKindOf: Float
>>> true

1.5 isKindOf: Number
>>> true

1.5 isKindOf: Integer
>>> false

301



Reflection

respondsTo: aSymbol returns true if the receiver has a method whose se-
lector is aSymbol. For instance:

(1.5 respondsTo: #floor
>>> true "since Number implements floor"

[1.5 floor
>>> 1

EException respondsTo: #,
>>> true "exception classes can be grouped"

Important Caveat: Although these features are especially useful for imple-
menting development tools, they are normally not appropriate for typical
applications. Asking an object for its class, or querying it to discover which
messages it understands, are typical signs of design problems, since they vi-
olate the principle of encapsulation. Development tools, however, are not
normal applications, since their domain is that of software itself. As such
these tools have a right to dig deep into the internal details of code.

Code metrics

Let’s see how we can use Pharo’s introspection features to quickly extract
some code metrics. Code metrics measure such aspects as the depth of the
inheritance hierarchy, the number of direct or indirect subclasses, the num-
ber of methods or of instance variables in each class, or the number of locally
defined methods or instance variables. Here are a few metrics for the class
Morph, which is the superclass of all graphical objects in Pharo, revealing
that it is a huge class, and that it is at the root of a huge hierarchy. Maybe it
needs some refactoring!

[ "inheritance depth"
Morph allSuperclasses size.
>>> 2

[ "number of methods"
Morph allSelectors size.
>>> 1304

[ "number of instance variables"
Morph allInstVarNames size.
>>> 6

[ "number of new methods"
Morph selectors size.
>>> 896

"number of new variables"
Morph instVarNames size.
>>> 6

302



14.2 Browsing code

[ "direct subclasses"
Morph subclasses size.
>>> 63

[ "total subclasses”
Morph allSubclasses size.
>>> 376

[ "total lines of code!"
Morph linesOfCode.
| >>> 4964

One of the most interesting metrics in the domain of object-oriented lan-
guages is the number of methods that extend methods inherited from the
superclass. This informs us about the relation between the class and its su-
perclasses. In the next sections we will see how to exploit our knowledge of
the runtime structure to answer such questions.

14.2 Browsing code

In Pharo, everything is an object. In particular, classes are objects that pro-
vide useful features for navigating through their instances. Most of the mes-
sages we will look at now are implemented in Behavior, so they are under-
stood by all classes.

For example, you can obtain a random instance of a given class by sending it
the message someInstance.

Point someInstance
>>> 090

You can also gather all the instances with allInstances, or the number of
active instances in memory with instanceCount.

EByteString allInstances
| >>> #('collection' ‘'position’ ...)

[ByteString instanceCount
| >>> 104565

[string allSubInstances size
>>> 101675

These features can be very useful when debugging an application, because
you can ask a class to enumerate those of its methods exhibiting specific
properties. Here are some more interesting and useful methods for code dis-
covery through reflection.

whichSelectorsAccess: returns the list of all selectors of methods that
read or write the instance variable named by the argument

303



Reflection

whichSelectorsStoreInto: returns the selectors of methods that modify
the value of an instance variable

whichSelectorsReferTo: returns the selectors of methods that send a
given message

[ Point whichSelectorsAccess: 'x'
| >>> #(#degrees #grid: #roundTo: #nearestPointAlonglLineFrom:to: ...)

[

[ Point whichSelectorsStoreInto: 'x
| >>> #(#bitShiftPoint: #setR:degrees: #setX:setY: #fromSton:)

[ Point whichSelectorsReferTo: #+
| >>> an OrderedCollection(#degrees #reflectedAbout: #grid: ...)

The following messages take inheritance into account:

whichClassIncludesSelector: returns the superclass that implements
the given message

unreferencedInstanceVariables returns the list of instance variables
that are neither used in the receiver class nor any of its subclasses

Rectangle whichClassIncludesSelector: #inspect
>>> Object

Rectangle unreferencedInstanceVariables
>>> #()

SystemNavigation is a facade that supports various useful methods for
querying and browsing the source code of the system. SystemNavigation
default returns an instance you can use to navigate the system. For exam-
ple:

SystemNavigation default allClassesImplementing: #yourself
>>> {Object}

The following messages should also be self-explanatory:

[ SystemNavigation default allSentMessages size
>>>370

E(SystemNavigation default allUnsentMessagesIn: Object selectors) size
>>> 31

[ SsystemNavigation default allUnimplementedCalls size
>>> 521

Note that messages implemented but not sent are not necessarily useless,
since they may be sent implicitly (e.g., using perform:). Messages sent but
not implemented, however, are more problematic, because the methods
sending these messages will fail at runtime. They may be a sign of unfinished
implementation, obsolete APIs, or missing libraries.

304



14.3 Classes, method dictionaries and methods

x =0 Playground [ R
Page » E .=
SystemNavigation default browseAllImplementorsOf:#ifTrue:
x -0 Implementors of ifTrue: [4] -
Boolean (controlling) ifTrue: [Kernel]
False (contrelling) ifTrue: [Kernel]
True (controlling) ifTrue: [Kernel]

MyBooleanObject (controlling) ifTrue: [OpalCompiler-Tests]

Browse Users Senders Implementors Version Source v

ifTrue: alternativeBlock

nswer the value of alter|

AalternativeBlock value

Figure 14-4 Browse all implementations of ifTrue:.

Point allCallsOn returns all messages sent explicitly to Point as a re-
ceiver.

All these features are integrated into the programming environment of Pharo,
in particular the code browsers. As we mentioned before, there are conve-
nient keyboard shortcuts for browsing all implementors (CMD-b CMD-m) and
browsing senders (CMD-b CMD-n) of a given message. What is perhaps not so
well known is that there are many such pre-packaged queries implemented

as methods of the SystemNavigation class in the browsing protocol. For
example, you can programmatically browse all implementors of the message
ifTrue: by evaluating:

[SystemNavigation default browseAllImplementorsOf: #ifTrue:
Particularly useful are the methods browseAllSelect: and browseMeth-
odsWithSourceString:matchCase:. Here are two different ways to browse

all methods in the system that perform super sends (the first way is rather
brute force, the second way is better and eliminates some false positives):

SystemNavigation default browseMethodsWithSourceString: 'super'’
matchCase: true.

SystemNavigation default browseAllSelect: [:method | method
sendsToSuper ].

14.3 Classes, method dictionaries and methods

Since classes are objects, we can inspect or explore them just like any other
object.

Evaluate Point inspect.

305



x -0

aPoint class (Point)

Inspector on a Point class (Point)

# @ aMethodDictionary [102 items] (size 102)

Reflection

# @, aCompilediethod (Point>>#")

v b G AL Al Met... Meta Items Keys Raw Meta w b S I AST  Hea.. Meta
Variable Value Key Value Variable Value
o o #if Point>>#'//! 0} self Point>>#*
> 1 category #'Kernel-BasicObj . e Pointsf'<=" R — sisPoint
» (] classPool aDictionary [0iter., et . 1 lteral2 -
» { } environment a SystemDictionar. ' R ;a dantTopoint:
> 3 format 65538 # N Fadaptiorointan
» 1 literal4 #ifTrue:
» (© instanceVariables nil # y .
© layout aFixedLayout # "1 lterals i
" v o > 3 literals #Point->Point
» (€ localSelectors nil
5 L #e< » I bc29 16
¥ {} methodDict aMethodbictiona,, - e 5 hean e
{3 self aMethodDictio ?; T
81 nit #abs Point>>#abs <elf properties
ez nil #adaptToCollection:andsend: Point>>#adaptToColl
@3 il sadapt i pETONUn
> 14 #corner: #adhereTo: Point>>#adhereTo:
B -~ #angle Point>>#angle
"Point" #anglewith: Point>>#anglewith:
self #asFloatPoint Point>>#asFloatPoint
#asintegerPoint Point>>#asintegerPoi
Figure 14-5 Inspector on class Point and the bytecode of its #* method.
Behavior MethodDictionary
superclass .
new methodDict at
compile: at:put:
addSelector:withMethod: keys
removeSelector: removeKey:ifAbsent:
methodClass
ClassDescription
name
category
*
[ MetaClass | Class CompiledMethod
selectors sendsToSuper
superclass methodReference
compiledMethodAt: getSource
compiler valueWithReceiver: arguments:

Figure 14-6 Classes, method dictionaries and compiled methods

In Figure 14-5, the inspector shows the structure of class Point. You can see
that the class stores its methods in a dictionary, indexing them by their se-
lector. The selector #x points to the decompiled bytecode of Point>>x.

Let us consider the relationship between classes and methods. In Figure 14-6
we see that classes and metaclasses have the common superclass Behavior.
This is where new is defined, amongst other key methods for classes. Every

class has a method dictionary, which maps method selectors to compiled

methods. Each compiled method knows the class in which it is installed. In
Figure 14-5 we can even see that this is stored in an association in 1iteralsé.

306



14.4 Browsing environments

We can exploit the relationships between classes and methods to pose queries
about the system. For example, to discover which methods are newly intro-
duced in a given class, i.e., do not override superclass methods, we can navi-
gate from the class to the method dictionary as follows:

[:aClass| aClass methodDict keys select: [:aMethod |
(aClass superclass canUnderstand: aMethod) not 1] value:
Smalllnteger
>>> an IdentitySet(#threeDigitName #printStringBase:nDigits: ...)

A compiled method does not simply store the bytecode of a method. 1t is also
an object that provides numerous useful methods for querying the system.
One such method is isAbstract (which tells if the method sends subclass-
Responsibility). We can use it to identify all the abstract methods of an
abstract class.

[:aClass| aClass methodDict keys select: [:aMethod |
(aClass>>aMethod) isAbstract ]] value: Number
>>> an IdentitySet(#storeOn:base: #printOn:base: #+ #- #x #/ ...)

Note that this code sends the >> message to a class to obtain the compiled
method for a given selector.

To browse the super-sends within a given hierarchy, for example within the
Collections hierarchy, we can pose a more sophisticated query:

[ class := Collection.
SystemNavigation default
browseMessagelist: (class withAllSubclasses gather: [:each |
each methodDict associations
select: [:assoc | assoc value sendsToSuper]
thenCollect: [:assoc | RGMethodDefinition realClass: each
selector: assoc keyll)
name: 'Supersends of ', class name, ' and its subclasses'

Note how we navigate from classes to method dictionaries to compiled meth-
ods to identify the methods we are interested in. A RGMethodDefinition is
a lightweight proxy for a compiled method that is used by many tools. There
is a convenience method CompiledMethod>>methodReference to return the
method reference for a compiled method.

(Object>>#=) methodReference selector
>>> f#=

14.4 Browsing environments
Although SystemNavigation offers some useful ways to programmatically
query and browse system code, there are more ways. The Browser, which

is integrated into Pharo, allows us to restrict the environment in which a
search is to perform.

307



Reflection

Suppose we are interested to discover which classes refer to the class Point
but only in its own package.

Open a browser on the class Point.

Action-click on the top level package Kernel in the package pane and select
Browse scoped. A new browser opens, showing only the package Kernel
and all classes within this package (and some classes which have extension
methods from this package). Now, in this browser, select again the class
Point, Action-click on the class name and select Analyse > Class refs.
This will show all methods that have references to the class Point but only
those from the package Kernel. Compare this result with the search from a
Browser without restricted scope.

This scope is what we call a Browsing Environment (class RBBrowserEnviron-
ment). All other searches, like senders of a method or implementors of a method
from within this browser are restricted to this environments too.

Browser environments can also be created programmatically. Here, for ex-
ample, we create a new RBBrowserEnvironment for Collection and its sub-
classes, select the super-sending methods, and browse the resulting environ-
ment.

((RBBrowserEnvironment new forClasses: (Collection

withAllSubclasses))
selectMethods: [:method | method sendsToSuper])
browse.

Note how this is considerably more compact than the earlier, equivalent ex-
ample using SystemNavigation.

Finally, we can find just those methods that send a different super message
programmatically as follows:

((RBBrowserEnvironment new forClasses: (Collection
withAllSubclasses))
selectMethods: [:method |
method sendsToSuper
and: [(method parseTree superMessages includes: method selector)
notll)
browse

Here we ask each compiled method for its (Refactoring Browser) parse tree,
in order to find out whether the super messages differ from the method’s
selector. Have a look at the querying protocol of the class RBProgramNode
to see some the things we can ask of parse trees.

Instead of browsing the environment in a System Browser, we can spawn a
MessageBrower from the list of all methods in this environment.

308



14.5 Accessing the run-time context

x -0 Playground o 2
Page > B

((R8BrowserEnvironment new forClasses: (Collection withAllsubclasses))
selectMethods: [:method |
method sendsToSuper
and: [(method parseTree superMessages includes: method selector) notl])
browse.
MessageBrowser browse: ((RBBrowserEnvironment new forClasses: (Collection
withAllsubclasses))
selectMethods: [:method |
method sendsToSuper
and: [(method parseTree superMessages includes: method selector) not]]) methods
title: 'Collection methods sending different super®

il

x-0 — Collection>>#printNameOn: -
Scoped  Variables Hi g Ve
x -0 Collection methods sending different super [5] - v (] Collection ~all- printNameon:
< inti [Coll st 1 (23] Last Modified Meth: 1 String printing
‘SortedCollection (adding) add: [Collections-Sequenceable] > t:' Configurations
String (comparing) alike: [Collections-Strings] £ Work
symbol (private) string: [Collections-Strings] Collections-Abstrac
i [Collections-Weak] Collections-Sequer:
Collections-Strings
Collections-Weak
Browse Users Senders Implementors Version Source v |« , AHir. ©Class 7 Com,
printNameOn: astream printNameOn: astream
super printOn: astream super printOn: aStream

1201 Formatasyouread W 4L
1. Sends different super message 7 X Helpful? b P

Figure 14-7 Finding methods

>MessageBrowser browse: ((RBBrowserEnvironment new forClasses:
(Collection withAllSubclasses))
selectMethods: [:method |
method sendsToSuper
and: [(method parseTree superMessages includes: method selector)
not]]) methods
title: 'Collection methods sending different super'

In Figure 14-7 we can see that 5 such methods have been found within the
Collection hierarchy, including Collection>>printNameOn:, which sends
super printOn:.

14.5 Accessing the run-time context

We have seen how Pharo’s reflective capabilities let us query and explore
objects, classes and methods. But what about the run-time environment?

Method contexts

In fact, the run-time context of an executing method is in the virtual ma-
chine — it is not in the image at all! On the other hand, the debugger obvi-
ously has access to this information, and we can happily explore the run-
time context, just like any other object. How is this possible?

Actually, there is nothing magical about the debugger. The secret is the
pseudo-variable thisContext, which we have encountered only in passing

309



Reflection

x -0 Playground IR
Page > B =
3 factorial

x — O Inspector on a Context (Smalllnteger(Integer)>>f: a7~

a Context (Smalllnteger{Integer)>>factorial) 4

Raw  Source Meta

Variable Value
c self smallinteger(Integer)>>factorial
» (€ closureOrNil nil
» [} method Integer=>#factorial
» I pc 43
» I receiver 0
» (£ sender smallinteger(Integer)>>factorial
» I stackp 0

"SmallInteger (Integer)>>factorial”

self
x — 0O Halt -
Proceed Abandon Debug Report
Smallinteger(Iinteger} factorial A

Smallinteger(Iinteger} factorial
Smallinteger(Iinteger} factorial
Smallinteger(Iinteger} factorial
UndefinedObject Dolt

E)DalComD\'ler evaluate v

Figure 14-8 Inspecting thisContext.

before. Whenever thisContext is referred to in a running method, the en-
tire run-time context of that method is reified and made available to the im-
age as a series of chained Context objects.

We can easily experiment with this mechanism ourselves.

Change the definition of Integer>>factorial by inserting the expression
thisContext inspect. self halt. as shown below:

Integer>>factorial
"Answer the factorial of the receiver."
self = 0 ifTrue: [thisContext inspect. self halt. " 1].
self > 0 ifTrue: [" self * (self - 1) factoriall].
self error: 'Not valid for negative integers'

Now evaluate 3 factorial in a workspace. You should obtain both a debug-
ger window and an inspector, as shown in Figure 14-8.

Inspecting thisContext gives you full access to the current execution con-
text, the stack, the local tempories and arguments, the senders chain and the
receiver. Welcome to the poor man’s debugger! If you now browse the class
of the explored object (i.e., by evaluating self browse in the bottom pane of

310



14.5 Accessing the run-time context

the inspector) you will discover that it is an instance of the class Context, as
is each sender in the chain.

thisContext is not intended to be used for day-to-day programming, but it
is essential for implementing tools like debuggers, and for accessing infor-
mation about the call stack. You can evaluate the following expression to
discover which methods make use of thisContext:

SystemNavigation default browseMethodsWithSourceString:
"thisContext' matchCase: true

As it turns out, one of the most common applications is to discover the sender
of a message. Here is a typical application:

subclassResponsibility
"This message sets up a framework for the behavior of the class'
subclasses.
Announce that the subclass should have implemented this message."

SubclassResponsibility signalFor: thisContext sender selector

By convention, methods that send self subclassResponsibility are con-
sidered to be abstract. But how does Object>>subclassResponsibility
provide a useful error message indicating which abstract method has been
invoked? Very simply, by asking thisContext for the sender.

Intelligent breakpoints

The Pharo way to set a breakpoint is to evaluate self halt at an interesting
point in a method. This will cause thisContext to be reified, and a debugger
window will open at the breakpoint. Unfortunately this poses problems for
methods that are intensively used in the system.

Suppose, for instance, that we want to explore the execution of Morph>>open-
InWorld. Setting a breakpoint in this method is problematic.

Pay attention the following experiment will break everything! Take a fresh
image and set the following breakpoint:

Morph >> openInWorld
"Add this morph to the world."
self halt.
self openInWorld: self currentWorld

Notice how your image immediately freezes as soon as you try to open any
new Morph (Menu/Window/...)! We do not even get a debugger window. The
problem is clear once we understand that 1) Morph>>openInWorld is used by
many parts of the system, so the breakpoint is triggered very soon after we
interact with the user interface, but 2) the debugger itself sends openInWorld
as soon as it opens a window, preventing the debugger from opening! What

311



Reflection

we need is a way to conditionally halt only if we are in a context of interest.
This is exactly what Object>>haltIf: offers.

Suppose now that we only want to halt if openInWorld is sent from, say, the
context of MorphTest>>testOpenInWorld.

Fire up a fresh image again, and set the following breakpoint:

Morph>>openInWorld
"Add this morph to the world."
self haltIf: #testOpenInWorld.
self openInWorld: self currentWorld

This time the image does not freeze. Try running the MorphTest.

[MorphTest run:#testOpenInWorld.

How does this work? Let’s have a look at Object>>haltIf:. It first calls if:
with the condition to the Exception class Halt. This method itself will check
if the condition is a symbol, which is true in this case and finally calls

[Object >> haltIfCallChainContains: aSelector

| cntxt |
cntxt := thisContext.
[cntxt sender isNil] whileFalse: [
cntxt := cntxt sender.
(cntxt selector = aSelector) ifTrue: [self signalll].

Starting from thisContext, haltIfCallChainContains: goes up through
the execution stack, checking if the name of the calling method is the same
as the one passed as parameter. If this is the case, then it signals itself, the
exception which, by default, summons the debugger.

It is also possible to supply a boolean or a boolean block as an argument to
haltIf:, but these cases are straightforward and do not make use of this-
Context.

14.6 Intercepting messages not understood

So far we have used Pharo’s reflective features mainly to query and explore
objects, classes, methods and the run-time stack. Now we will look at how to
use our knowledge of its system structure to intercept messages and modify
behaviour at run time.

When an object receives a message, it first looks in the method dictionary of
its class for a corresponding method to respond to the message. If no such
method exists, it will continue looking up the class hierarchy, until it reaches
Object. If still no method is found for that message, the object will send itself

312



14.6 Intercepting messages not understood

the message doesNotUnderstand: with the message selector as its argu-
ment. The process then starts all over again, until Object>>doesNotUnder-
stand: is found, and the debugger is launched.

But what if doesNotUnderstand: is overridden by one of the subclasses of
Object in the lookup path? As it turns out, this is a convenient way of real-
izing certain kinds of very dynamic behaviour. An object that does not un-
derstand a message can, by overriding doesNotUnderstand:, fall back to an
alternative strategy for responding to that message.

Two very common applications of this technique are 1) to implement lightweight
proxies for objects, and 2) to dynamically compile or load missing code.

Lightweight proxies

In the first case, we introduce a minimal object to act as a proxy for an exist-
ing object. Since the proxy will implement virtually no methods of its own,
any message sent to it will be trapped by doesNotUnderstand:. By imple-
menting this message, the proxy can then take special action before delegat-
ing the message to the real subject it is the proxy for.

Let us have a look at how this may be implemented.
We define a LoggingProxy as follows:

ProtoObject subclass: #LoggingProxy
instanceVariableNames: 'subject invocationCount'
classVariableNames: "'
package: 'PBE-Reflection'

Note that we subclass ProtoObject rather than Object because we do not
want our proxy to inherit around 400 methods (!) from Object.

Object methodDict size
>>> 397

Our proxy has two instance variables: the subject it is a proxy for, and a
count of the number of messages it has intercepted. We initialize the two in-
stance variables and we provide an accessor for the message count. Initially
the subject variable points to the proxy object itself.

LoggingProxy >> initialize
invocationCount := 0.
subject := self.

LoggingProxy >> invocationCount
~ invocationCount

We simply intercept all messages not understood, print them to the Tran-
script, update the message count, and forward the message to the real sub-
ject.

313



Reflection

LoggingProxy >> doesNotUnderstand: aMessage
Transcript show: 'performing ', aMessage printString; cr.
invocationCount := invocationCount + 1.
~ aMessage sendTo: subject

Here comes a bit of magic. We create a new Point object and a new Log-
gingProxy object, and then we tell the proxy to become: the point object:

point := 1@2.
LoggingProxy new become: point.

This has the effect of swapping all references in the image to the point to
now refer to the proxy, and vice versa. Most importantly, the proxy’s sub-
ject instance variable will now refer to the point!

point invocationCount
>>> 0

[point + (3a4)
| >>> 496

point invocationCount
>>> 1

This works nicely in most cases, but there are some shortcomings:

[ point class
>>> LoggingProxy

Actually the method class is implemented in ProtoObject, but even if it
were implemented in Object, which LoggingProxy does not inherit from, it
isn’t actually send to the LoggingProxy or its subject. The message is directly
answered by the virtual machine. yourself is also never truly sent.

Other messages that may be directly interpreted by the VM, depending on
the receiver, include:

+- < > <= >= = ~= x / \ ==7g bitShift: // bitAnd: bitOr: at:
at:put: size next nextPut: atEnd blockCopy: value value: do:
new new: X Vy.

Selectors that are never sent, because they are inlined by the compiler and
transformed to comparison and jump bytecodes:

ifTrue: ifFalse: ifTrue:ifFalse: ifFalse:ifTrue: and: or: while-
False: whileTrue: whileFalse whileTrue to:do: to:by:do: caseOf:
caseOf:otherwise: ifNil: ifNotNil: ifNil:ifNotNil: ifNotNil:ifNil:

Attempts to send these messages to non-boolean normally results in an ex-
ception from the VM as it can not use the inlined dispatching for non-boolean
receivers. You can intercept this and define the proper behavior by overrid-
ing mustBeBoolean in the receiver or by catching the NonBooleanReceiver
exception.

314



14.6 Intercepting messages not understood

Even if we can ignore such special message sends, there is another funda-
mental problem which cannot be overcome by this approach: self-sends
cannot be intercepted:

Epoint 1= 1@2.

LoggingProxy new become: point.
point invocationCount

>>> 0

[ point rectangle: (3@4)
| >>> 1@2 corner: 3@4

point invocationCount
>>> 1

Our proxy has been cheated out of two self-sends in the rect: method:

[ Point >> rect: aPoint
~ Rectangle origin: (self min: aPoint) corner: (self max: aPoint)

Although messages can be intercepted by proxies using this technique, one
should be aware of the inherent limitations of using a proxy. In Section 14.7
we will see another, more general approach for intercepting messages.

Generating missing methods

The other most common application of intercepting not understood mes-
sages is to dynamically load or generate the missing methods. Consider a
very large library of classes with many methods. Instead of loading the en-
tire library, we could load a stub for each class in the library. The stubs know
where to find the source code of all their methods. The stubs simply trap all
messages not understood, and dynamically load the missing methods on de-
mand. At some point, this behaviour can be deactivated, and the loaded code
can be saved as the minimal necessary subset for the client application.

Let us look at a simple variant of this technique where we have a class that
automatically adds accessors for its instance variables on demand:

[ DynamicAcccessors >> doesNotUnderstand: aMessage

| messageName |

messageName := aMessage selector asString.

(self class instVarNames includes: messageName)
ifTrue: [

A

self class compile: messageName, String cr,
" aMessage sendTo: self 1.
* super doesNotUnderstand: aMessage

, messageName.

Any message not understood is trapped here. If an instance variable with the
same name as the message sent exists, then we ask our class to compile an
accessor for that instance variables and we re-send the message.

315



Reflection

self methodDict at: #x put: cc

Behavior

compile:

Object

aMethodDict | |
: ClassDescription
10 : A

/
9 methodDict at: #x put: [ Class |

myDA x / compiledMethod 8 A\
( e 7. [ Objectclass |

doesNotUnderstand:

self doesNotUnderstand: #x 3

1 4 L2 DynamicAccessors |- 6
X self class compile: 'x A x' TN
g doesNotUnderstand:  ~—__"" Dyr A s class |
7 A~
.5 11
13 .
B aMessage sendTo: self Key
12 Tt ” instance-of —
. | :Message | message send = ——>
receiver perform: #x lookup  eeeee- >

Figure 14-9 Dynamically creating accessors.

Suppose the class DynamicAccessors has an (uninitialized) instance variable
x but no pre-defined accessor. Then the following will generate the accessor
dynamically and retrieve the value:

myDA := DynamicAccessors new.
myDA X
>>> nil

Let us step through what happens the first time the message x is sent to our
object (see Figure 14-9).

(1) We send x to myDA, (2) the message is looked up in the class, and (3) not
found in the class hierarchy. (4) This causes self doesNotUnderstand: #x
to be sent back to the object, (5) triggering a new lookup. This time doesNo-
tUnderstand: is found immediately in DynamicAccessors, (6) which asks
its class to compile the string 'x * x'. The compile method is looked up
(7), and (8) finally found in Behavior, which (9-10) adds the new compiled
method to the method dictionary of DynamicAccessors. Finally, (11-13) the
message is resent, and this time it is found.

The same technique can be used to generate setters for instance variables, or
other kinds of boilerplate code, such as visiting methods for a Visitor.

Note the use of Object>>perform: in step (12) which can be used to send
messages that are composed at run-time:

5 perform: #factorial
>>> 120

6 perform: ('fac', 'torial') asSymbol
>>> 720

316



14.7 Objects as method wrappers

4 perform: #max: withArguments: (Array with: 6)
>>> 6

14.7 Objects as method wrappers

We have already seen that compiled methods are ordinary objects in Pharo,
and they support a number of methods that allow the programmer to query
the runtime system. What is perhaps a bit more surprising, is that any ob-
ject can play the role of a compiled method. All it has to do is respond to the
method run:with:in: and a few other important messages.

Define an empty class Demo. Evaluate Demo new answer42 and notice how
the usual Message Not Understood error is raised.

Now we will install a plain object in the method dictionary of our Demo class.

Evaluate Demo methodDict at: #answer42 put: ObjectsAsMethodsEx-
ample new.

Now try again to print the result of Demo new answer42. This time we get
the answer 42.

If we take look at the class ObjectsAsMethodsExample we will find the fol-
lowing methods:

answer42
42

run: oldSelector with: arguments in: aReceiver
“self perform: oldSelector withArguments: arguments

When our Demo instance receives the message answer42, method lookup
proceeds as usual, however the virtual machine will detect that in place of

a compiled method, an ordinary Pharo object is trying to play this role. The
VM will then send this object a new message run:with:in: with the original
method selector, arguments and receiver as arguments. Since ObjectsAs-
MethodsExample implements this method, it intercepts the message and
delegates it to itself.

We can now remove the fake method as follows:

[Demo methodDict removeKey: #answer42 ifAbsent: []

If we take a closer look at ObjectsAsMethodsExample, we will see that its su-
perclass also implements some methods like flushcache, methodClass:

and selector:, but they are all empty. These messages may be sent to a
compiled method, so they need to be implemented by an object pretend-

ing to be a compiled method. (flushcache is the most important method

to be implemented; others may be required by some tools and depending

on whether the method is installed using Behavior>>addSelector:with-
Method: or directly using MethodDictionary>>at:put:.)

317



Reflection

Using method wrappers to perform test coverage

Method wrappers are a well-known technique for intercepting messages.

In the original implementation(http://www.squeaksource.com/Method-
Wrappers.html), a method wrapper is an instance of a subclass of Compiled-
Method. When installed, a method wrapper can perform special actions be-
fore or after invoking the original method. When uninstalled, the original
method is returned to its rightful position in the method dictionary.

In Pharo, method wrappers can be implemented more easily by implement-

ing run:with:in: instead of by subclassing CompiledMethod. In fact, there

exists a lightweight implementation of objects as method wrappers (http://www.squeak-
source.com/ObjectsAsMethodsWrap.html), but it is not part of standard

Pharo at the time of this writing.

Nevertheless, the Pharo Test Runner uses precisely this technique to evalu-
ate test coverage. Let’s have a quick look at how it works.

The entry point for test coverage is the method TestRunner>>runCoverage:

TestRunner >> runCoverage
| packages methods |
. "identify methods to check for coverage"
self collectCoverageFor: methods

The method TestRunner>>collectCoverageFor: clearly illustrates the
coverage checking algorithm:

[ TestRunner >> collectCoverageFor: methods
| wrappers suite |
wrappers := methods collect: [ :each | TestCoverage on: each ].
suite := self
resetResult;
suiteForAllSelected.

[ wrappers do: [ :each | each install ].
[ self runSuite: suite ] ensure: [ wrappers do: [ :each | each
uninstall ] ] ] valueUnpreemptively.

wrappers := wrappers reject: [:each | each hasRun].
wrappers := wrappers collect: [:each | each reference].
wrappers isEmpty
ifTrue: [ UIManager default inform: 'Congratulations. Your
tests cover all code under analysis.' ]
ifFalse:

A wrapper is created for each method to be checked, and each wrapper is
installed. The tests are run, and all wrappers are uninstalled. Finally the user
obtains feedback concerning the methods that have not been covered.

How does the wrapper itself work? The TestCoverage wrapper has three
instance variables, hasRun, reference and method. They are initialized as

318



14.8 Pragmas

follows:

ETestCoverage class >> on: aMethodReference
~ self new initializeOn: aMethodReference

TestCoverage >> initializeOn: aMethodReference

hasRun := false.
reference := aMethodReference.
method := reference compiledMethod

The install and uninstall methods simply update the method dictionary in
the obvious way:

[ TestCoverage >> install
reference actualClass methodDict
at: reference selector
put: self

TestCoverage >> uninstall
reference actualClass methodDict
at: reference selector
put: method

The run:with:in: method simply updates the hasRun variable, uninstalls
the wrapper (since coverage has been verified), and resends the message to
the original method.

run: aSelector with: anArray in: aReceiver
self mark; uninstall.
* aReceiver withArgs: anArray executeMethod: method

mark
hasRun := true

Take a look at ProtoObject>>withArgs:executeMethod: to see how a
method displaced from its method dictionary can be invoked.

That’s all there is to it!

Method wrappers can be used to perform any kind of suitable behaviour be-
fore or after the normal operation of a method. Typical applications are in-
strumentation (collecting statistics about the calling patterns of methods),
checking optional pre- and post-conditions, and memoization (optionally
cacheing computed values of methods).

14.8 Pragmas

A pragma is an annotation that specifies data about a program, but is not in-
volved in the execution of the program. Pragmas have no direct effect on
the operation of the method they annotate. Pragmas have a number of uses,
among them:

319



Reflection

Information for the compiler: pragmas can be used by the compiler to make
a method call a primitive function. This function has to be defined by the
virtual machine or by an external plug-in.

Runtime processing: Some pragmas are available to be examined at runtime.

Pragmas can be applied to a program’s method declarations only. A method
may declare one or more pragmas, and the pragmas have to be declared
prior any Smalltalk statement. Each pragma is in effect a static message send
with literal arguments.

We briefly saw pragmas when we introduced primitives earlier in this chap-
ter. A primitive is nothing more than a pragma declaration. Consider <prim-
itive: 173 error:ec> ascontained in instVarAt:. The pragma’s selector
is primitive:error: and its arguments is an immediate literal value, 173.
The variable ec is an error code, filled by the VM in case the execution of the
implementation on the VM side failed.

The compiler is probably the bigger user of pragmas. SUnit is another tool

that makes use of annotations. SUnit is able to estimate the coverage of an
application from a test unit. One may want to exclude some methods from

the coverage. This is the case of the documentation method in SplitJointTest
class:

SplitJointTest class >> documentation
<ignoreForCoverage>
"self showDocumentation"

A "

This package provides function....
By simply annotating a method with the pragma <ignoreForCoverage> one
can control the scope of the coverage.

As instances of the class Pragma, pragmas are first class objects. A compiled
method answers to the message pragmas. This method returns an array of
pragmas.

(SplitJoinTest class >> #showDocumentation) pragmas.
>>> an Array(<ignoreForCoverage>)

(Float>>#+) pragmas
>>> an Array(<primitive: 41>)

Methods defining a particular query may be retrieved from a class. The class
side of SplitJoinTest contains some methods annotated with <ignoreFor-
Coverage>:

Pragma allNamed: #ignoreForCoverage in: SplitJoinTest class
>>> an Array(<ignoreForCoverage> <ignoreForCoverage>
<ignoreForCoverage>)

A variant of al1Named: in: may be found on the class side of Pragma.

320



14.9

14.9 Chapter summary

A pragma knows in which method it is defined (using method), the name of
the method (selector), the class that contains the method (methodClass),
its number of arguments (numArgs), about the literals the pragma has for
arguments (hasLiteral: and hasLiteralSuchThat:).

Chapter summary

Reflection refers to the ability to query, examine and even modify the metaob-
jects of the runtime system as ordinary objects.

The Inspector uses instVarAt: and related methods to view private
instance variables of objects.

Send Behavior>>allInstances to query instances of a class.

The messages class, isKindOf:, respondsTo: etc. are useful for
gathering metrics or building development tools, but they should be
avoided in regular applications: they violate the encapsulation of ob-
jects and make your code harder to understand and maintain.

SystemNavigation is a utility class holding many useful queries for
navigation and browsing the class hierarchy. For example, use Sys-
temNavigation default browseMethodsWithSourceString: 'pharo'’
matchCase:true. to find and browse all methods with a given source
string. (Slow, but thorough!)

Every Pharo class points to an instance of MethodDictionary which
maps selectors to instances of CompiledMethod. A compiled method
knows its class, closing the loop.

RGMethodDefinition is a leightweight proxy for a compiled method,
providing additional convenience methods, and used by many Pharo
tools.

RBBrowserEnvironment, part of the Refactoring Browser infrastruc-
ture, offers a more refined interface than SystemNavigation for query-
ing the system, since the result of a query can be used as a the scope of
anew query. Both GUI and programmatic interfaces are available.

thisContext is a pseudo-variable that reifies the runtime stack of the
virtual machine. It is mainly used by the debugger to dynamically con-
struct an interactive view of the stack. It is also especially useful for
dynamically determining the sender of a message.

Intelligent breakpoints can be set using haltIf:, taking a method se-
lector as its argument. haltIf: halts only if the named method occurs
as a sender in the run-time stack.

A common way to intercept messages sent to a given target is to use
a minimal object as a proxy for that target. The proxy implements as

321



322

Reflection

few methods as possible, and traps all message sends by implementing
doesNotunderstand:. It can then perform some additional action and
then forward the message to the original target.

Send become: to swap the references of two objects, such as a proxy
and its target.

Beware, some messages, like class and yourself are never really
sent, but are interpreted by the VM. Others, like +, - and ifTrue:
may be directly interpreted or inlined by the VM depending on the
receiver.

Another typical use for overriding doesNotUnderstand: is to lazily
load or compile missing methods.

doesNotUnderstand: cannot trap self-sends.

A more rigorous way to intercept messages is to use an object as a
method wrapper. Such an object is installed in a method dictionary in
place of a compiled method. It should implement run:with:in: which
is sent by the VM when it detects an ordinary object instead of a com-
piled method in the method dictionary. This technique is used by the
SUnit Test Runner to collect coverage data.



CHAPTER I 5 .

Regular expressions in Pharo

Regular expressions are widely used in many scripting languages such as
Perl, Python and Ruby. They are useful to identify strings that match a cer-
tain pattern, to check that input conforms to an expected format, and to
rewrite strings to new formats. Pharo also supports regular expressions
due to the Regex package contributed by Vassili Bykov. Regex is installed
by default in Pharo. If you are using an older image that does not include
Regex the Regex package, you can install it yourself from SqueakSource
(http://www.squeaksource.com/Regex.html).

A regular expression' is a pattern that matches a set of strings. For exam-
ple, the regular expression 'h.*o"' will match the strings 'ho', 'hiho"' and
"hello', but it will not match "'hi' or 'yo'. We can see this in Pharo as fol-

lows:
[ "ho' matchesRegex: 'h.xo'

>>> true

[ "hiho" matchesRegex: 'h.*0'
| >>> true

[ "hello" matchesRegex: 'h.*o'
>>> true

[ "hi' matchesRegex: 'h.xo0'
| >>> false

E'yo' matchesRegex: 'h.*o'
>>> false

Ihttp://en.wikipedia.org/wiki/Regular_expression

323


http://www.squeaksource.com/Regex.html
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression

15.1

Regular expressions in Pharo

In this chapter we will start with a small tutorial example in which we will
develop a couple of classes to generate a very simple site map for a web site.
We will use regular expressions

. to identify HTML files,
. to strip the full path name of a file down to just the file name,

. to extract the title of each web page for the site map, and

= W N =

. to generate a relative path from the root directory of the web site to
the HTML files it contains.

After we complete the tutorial example, we will provide a more complete
description of the Regex package, based largely on Vassili Bykov’s documen-
tation provided in the package. (The original documentation can be found on
the class side of RxParser.)

Tutorial example — generating a site map

Our job is to write a simple application that will generate a site map for a
web site that we have stored locally on our hard drive. The site map will con-
tain links to each of the HTML files in the web site, using the title of the doc-
ument as the text of the link. Furthermore, links will be indented to reflect
the directory structure of the web site.

Accessing the web directory

Todo If you do not have a web site on your machine, copy a few HTML
files to a local directory to serve as a test bed.

We will develop two classes, WebDir and WebPage, to represent directories
and web pages. The idea is to create an instance of WebDir which will point
to the root directory containing our web site. When we send it the message
makeToc, it will walk through the files and directories inside it to build up
the site map. It will then create a new file, called toc.htmt, containing links
to all the pages in the web site.

One thing we will have to watch out for: each WebDir and WebPage must re-
member the path to the root of the web site, so it can properly generate links
relative to the root.

Todo Define the class WebDir with instance variables webDir and
homePath, and define the appropriate initialization method.

Also define class-side methods to prompt the user for the location of the web
site on your computer, as follows:

324



15.1  Tutorial example — generating a site map

(S18]S) WebDir on: /Usersfoscar/Sites/onweb on Newlnspector =
¥ WebDir on: /Users/oscar/Sites/fonweb LJnixFiIeDirectory on

» homePath : '/Users/oscar/Sites/fonwel| | sars/oscar/Sites/onweb’

» htmlRegex : a RxMatcher

» webDir : UnixFileDirectory on '/Users

» Class : WebDir

» Methods
LIRS > .

A

Figure 15-1 A WebDir instance.

[WebDir >> setDir: dir home: path
webDir := dir.
homePath := path

WebDir class >> onDir: dir
* self new setDir: dir home: dir pathString

WebDir class >> selectHome
* self onDir: UIManager default chooseDirectory

The last method opens a browser to select the directory to open. Now, if you
inspect the result of WebDir selectHome, you will be prompted for the di-
rectory containing your web pages, and you will be able to verify that webDir
and homePath are properly initialized to the directory holding your web site

and the full path name of this directory.

It would be nice to be able to programmatically instantiate a WebDir, so let’s

add another creation method.

I Todo Add the following methods and try it out by inspecting the result

of WebDir onPath: 'path to your web site’.

WebDir class>>onPath: homePath
~ self onPath: homePath home: homePath

WebDir class>>onPath: path home: homePath
* self new setDir: path asFileReference home: homePath

Pattern matching HTML files

So far so good. Now we would like to use regexes to find out which HTML

files this web site contains.

325



Regular expressions in Pharo

If we browse the FileDirectory class, we find that the method fileNames
will list all the files in a directory. We want to select just those with the file
extension .html. The regex that we need is ' . *\.html'. The first dot will
match any character except a newline:

x' matchesRegex:
>>> true

matchesRegex:
>>> true

[ Character cr asString matchesRegex:
>>> true

The * (known as the Kleene star, after Stephen Kleene, who invented it) is a
regex operator that will match the preceding regex any number of times (in-
cluding zero).

matchesRegex: 'x*

>>> true

x' matchesRegex: 'x=*'
>>> true

xx' matchesRegex:
>>> true

X*

[ 'y' matchesRegex: 'x
| >>> false

Since the dot is a special character in regexes, if we want to literally match a
dot, then we must escape it.

matchesRegex:
>>> true

matchesRegex:
>>> true

matchesRegex: '\.'
>>> true

matchesRegex: '\.'
| >>> false

Now let’s check our regex to find HTML files works as expected.

[ "index.html' matchesRegex: '.x\.html'
| >>> true

[ "foo.html' matchesRegex: '.\.html'
| >>> true

E'style.css' matchesRegex: '.x\.html'
| >>> false

326



15.1  Tutorial example — generating a site map

"index.htm' matchesRegex: '.*\.html'
>>> false

Looks good. Now let’s try it out in our application.

Todo Add the following method to WebDir and try it out on your test
web site.

WebDir >> htmlFiles
* webDir fileNames select: [ :each | each matchesRegex: '.x\.html'

]

If you send htmlFiles to a WebDir instance and print 1it,you should see
something like this:

(WebDir onPath: '...') htmlFiles
>>> #('index.html' ...)

Caching the regex

Now, if you browse matchesRegex:, you will discover that it is an extension
method of String that creates a fresh instance of RxParser every time it is
sent. That is fine for ad hoc queries, but if we are applying the same regex to
every file in a web site, it is smarter to create just one instance of RxParser
and reuse it. Let’s do that.

Todo Add anew instance variable htmlRegex to WebDir and initialize
it by sending asRegex to our regex string. Modify WebDir>>htmlFiles to
use the same regex each time as follows:

WebDir >> initialize
htmlRegex := '.*\.html' asRegex

WebDir >> htmlFiles
~ webDir fileNames select: [ :each | htmlRegex matches: each ]

Now listing the HTML files should work just as it did before, except that we
reuse the same regex object many times.

Accessing web pages

Accessing the details of individual web pages should be the responsibility of a
separate class, so let’s define it, and let the WebDir class create the instances.

Todo Define a class WebPage with instance variables path, to identify
the HTML file, and homePath, to identify the root directory of the web
site. (We will need this to correctly generate links from the root of the
web site to the files it contains.) Define an initialization method on the
instance side and a creation method on the class side.

327



Regular expressions in Pharo

WebPage >> initializePath: filePath homePath: dirPath
path := filePath.
homePath := dirPath

WebPage class >> on: filePath forHome: homePath
" self new initializePath: filePath homePath: homePath

A WebDir instance should be able to return a list of all the web pages it con-
tains.

Todo Add the following method to WebDir, and inspect the return
value to verify that it works correctly.

[webDir >> webPages
* self htmlFiles collect:
[ :each | webPage
on: webDir pathString, '/', each
forHome: homePath ]

You should see something like this:

[ (WebDir onPath: '...") webPages
| >>> an Array(a WebPage a WebPage ...)

String substitutions

That’s not very informative, so let’s use a regex to get the actual file name
for each web page. To do this, we want to strip away all the characters from
the path name up to the last directory. On a Unix file system directories end
with a slash (/), so we need to delete everything up to the last slash in the file
path.

The String extension method copyWithRegex:matchesReplacedwWith:
does what we want:

'hello' copyWithRegex: '[elo]+' matchesReplacedwith: 'i'

>>> 'hi'

In this example the regex [elo] matches any of the characters e, 1 or o.
The operator + is like the Kleene star, but it matches exactly one or more
instances of the regex preceding it. Here it will match the entire substring
'ello' and replay it in a fresh string with the letter i.

I Todo Add the following method and verify that it works as expected.

WebPage >> fileName
~ path copyWithRegex: '.*/' matchesReplacedWith: "'

Now you should see something like this on your test web site:

328



15.1  Tutorial example — generating a site map

(WebDir onPath: '...') webPages collect: [:each | each fileName ]
>>> #('index.html' ...)

Extracting regex matches

Our next task is to extract the title of each HTML page. First we need a way
to get at the contents of each page. This is straightforward.

| Todo Addthe following method and try it out.

WebPage >> contents
* (FileStream oldFileOrNoneNamed: path) contents

Actually, you might have problems if your web pages contain non-ascii char-
acters, in which case you might be better off with the following code:

[webPage >> contents
* (FileStream oldFileOrNoneNamed: path)
converter: LatinlTextConverter new;
contents

You should now be able to see something like this:

[ (WebDir onPath: '...') webPages first contents
>>> '<head>
<title>Home Page</title>

Now let’s extract the title. In this case we are looking for the text that occurs
between the HTML tags <title> and </title>.

What we need is a way to extract part of the match of a regular expression.
Subexpressions of regexes are delimited by parentheses. Consider the regex
([CARETaeioul+)([aeioul+); it consists of two subexpressions, the first
of which will match a sequence of one or more non-vowels, and the second
of which will match one or more vowels: the operator CARET at the start of
a bracketed set of characters negates the set. (NB: In Pharo the caret is also
the return keyword, which we write as *. To avoid confusion, we will write
CARET when we are using the caret within regular expressions to negate sets
of characters, but you should not forget, they are actually the same thing.)
Now we will try to match a prefix of the string 'pharo' and extract the sub-
matches:

[l re |

re := '([CARETaeioul+)([aeiou]+)"' asRegex.
re matchesPrefix: 'pharo'
>>> true

re subexpression: 1
>>> 'pha’

329



Regular expressions in Pharo

re subexpression: 2
>>> 'ph'’

{re subexpression: 3
>>> 'a’

After successfully matching a regex against a string, you can always send it
the message subexpression: 1 to extract the entire match. You can also
send subexpression: n where n-1 is the number of subexpressions in the
regex. The regex above has two subexpressions, numbered 2 and 3.

We will use the same trick to extract the title from an HTML file.

I Todo Define the following method:

WebPage >> title
| re |
re := '[\w\W]#<title>(.*)</title>' asRegexIgnoringCase.
~ (re matchesPrefix: self contents)
ifTrue: [ re subexpression: 2 ]
ifFalse: [ '(', self fileName, ' -- untitled)' ]

There are a couple of subtle points to notice here. First, HTML does not care
whether tags are upper or lower case, so we must make our regex case insen-
sitive by instantiating it with asRegexIgnoringCase.

Second, since dot matches any character except a newline, the regex . +<ti-
tle>(.*)</title> will not work as expected if multiple lines appear before
the title. The regex \w matches any alphanumeric, and \W will match any
non-alphanumeric, so [\w\W] will match any character including newlines. (If
we expect titles to possible contain newlines, we should play the same trick
with the subexpression.)

Now we can test our title extractor, and we should see something like this:

(WebDir onPath: '...') webPages first title
>>> '"Home page'

More string substitutions

In order to generate our site map, we need to generate links to the individual
web pages. We can use the document title as the name of the link. We just
need to generate the right path to the web page from the root of the web
site. Luckily this is trivial — it is simple the full path to the web page minus
the full path to the root directory of the web site.

We must only watch out for one thing. Since the homePath variable does not
end in a /, we must append one, so that relative path does not include a lead-
ing /. Notice the difference between the following two results:

330



15.1  Tutorial example — generating a site map

[ */home/testweb/index.html’' copyWithRegex: '/home/testweb’
matchesReplacedWith: "'
>>> '/index.html'

[ '/home/testweb/index.html' copyWithRegex: '/home/testweb/’
matchesReplacedWith: "'
>>>  ‘'index.html'

The first result would give us an absolute path, which is probably not what
we want.

I Todo Define the following methods:

EWebPage >> relativePath

~ path
copyWithRegex: homePath, '/'
matchesReplacedWith: "'

WebPage >> link
" '<a href=""', self relativePath, '">', self title, '</a>'

You should now be able to see something like this:

[ (WebDir onPath: '...') webPages first link
>>> '<a href="index.html">Home Page</a>'

Generating the site map

Actually, we are now done with the regular expressions we need to generate
the site map. We just need a few more methods to complete the application.

Todo If you want to see the site map generation, just add the following
methods.

If our web site has subdirectories, we need a way to access them:

WebDir >> webDirs
* webDir directoryNames
collect: [ :each | WebDir onPath: webDir pathString, '/', each
home: homePath ]

We need to generate HTML bullet lists containing links for each web page of
a web directory. Subdirectories should be indented in their own bullet list.

[webDir >> printTocOn: aStream
self htmlFiles
ifNotEmpty: [
aStream nextPutAll: '<ul>'; cr.
self webPages
do: [:each | aStream nextPutAll: '<li>';
nextPutAll: each link;

331



Regular expressions in Pharo

600 toc.html
nu + Eﬁ\e'fffu;ersfns(arfnu(umentsiPmJa((s,'Squsaklmages[FBE/DummWVEbSlleitu(.hlm\ & [ Q~ Google

« Pharo By Example - Home Page
» Pharo Par L'Exemple -- Home Page
® (toc.html -- untitled

o About Pharo by Example
o About Pharo Par L'Exemple

Figure 15-2 A small site map.

nextPutAll: '</1i>"; cr].
self webDirs
do: [:each | each printTocOn: aStream].
aStream nextPutAll: '</ul>'; crl]

We create a file called toc.html in the root web directory and dump the site
map there.

[webDir >> tocFileName
~ 'toc.html'

WebDir >> makeToc
| tocStream |
tocStream := (webDir / self tocFileName) writeStream.
self printTocOn: tocStream.
tocStream close.

Now we can generate a table of contents for an arbitrary web directory!

[WebDir selectHome makeToc

15.2 Regex syntax

We will now have a closer look at the syntax of regular expressions as sup-
ported by the Regex package.

The simplest regular expression is a single character. It matches exactly that
character. A sequence of characters matches a string with exactly the same
sequence of characters:

{‘a' matchesRegex: 'a

>>> true

'foobar' matchesRegex: 'foobar'
>>> true

332



15.2 Regex syntax

'blorple’ matchesRegex: 'foobar'
>>> false

Operators are applied to regular expressions to produce more complex reg-
ular expressions. Sequencing (placing expressions one after another) as an
operator is, in a certain sense, invisible — yet it is arguably the most common.

We have already seen the Kleene star («) and the + operator. A regular ex-
pression followed by an asterisk matches any number (including 0) of matches
of the original expression. For example:

[ rab’ matchesRegex: 'a*b'
>>> true

[ "aaaaab’ matchesRegex: 'axb'
>>> true

[ b matchesRegex: 'a*b'
>>> true

aac' matchesRegex: 'axb'
| >>> false "b does not match"

The Kleene star has higher precedence than sequencing. A star applies to the
shortest possible subexpression that precedes it. For example, ab* means a
followed by zero or more occurrences of b, not zero or more occurrences of ab:

"abbb' matchesRegex: 'ab='
>>> true

'abab' matchesRegex: 'ab='
>>> false

To obtain a regex that matches zero or more occurrences of ab, we must enclose
ab in parentheses:

'abab' matchesRegex: '(ab)+*"'
>>> true

'abcab' matchesRegex: '(ab)+'
>>> false "c spoils the fun"

Two other useful operators similar to = are + and ?. + matches one or more
instances of the regex it modifies, and ? will match zero or one instance.

ac' matchesRegex: 'abxc'
>>> true
[rac! matchesRegex: 'ab+c'
>>> false "need at least one b"

[ "abbc’ matchesRegex: 'ab+c'
>>> true

333



Regular expressions in Pharo

'abbc' matchesRegex: 'ab?c’
>>> false "too many b's"

As we have seen, the characters *, +, ?, (, and ) have special meaning within
regular expressions. If we need to match any of them literally, it should be
escaped by preceding it with a backslash \ . Thus, backslash is also special
character, and needs to be escaped for a literal match. The same holds for all
further special characters we will see.

[ "ab* matchesRegex: 'abx*
>>> false "star in the right string is special”

'ab*' matchesRegex: 'ab\x'
>>> true

a\c' matchesRegex: 'a\\c'
| >>> true

The last operator is |, which expresses choice between two subexpressions.
It matches a string if either of the two subexpressions matches the string.
It has the lowest precedence — even lower than sequencing. For example,
ab+* | ba* means a followed by any number of b’s, or b followed by any number of
a’s:

[ "abb' matchesRegex: 'ab*|bax'

»>>> true

[ "baa’ matchesRegex: 'ab*|bax'
| >>> true

[ "baab' matchesRegex: 'abx|bax'
| >>> false

A bit more complex example is the expression c(ald)+r, which matches the
name of any of the Lisp-style car, cdr, caar, cadr, ... functions:
[ "car' matchesRegex: 'c(ald)+r’
>>>> true

[ "cdr' matchesRegex: 'c(ald)+r’
| >>> true

[ "cadr' matchesRegex: 'c(ald)+r'
>>> true

It is possible to write an expression that matches an empty string, for exam-
ple the expression a| matches an empty string. However, it is an error to
apply =, +, or ? to such an expression: (al| )« is invalid.

So far, we have used only characters as the smallest components of regular
expressions. There are other, more interesting, components. A character set
is a string of characters enclosed in square brackets. It matches any single
character if it appears between the brackets. For example, [01] matches
either 0 or 1:

334



15.2 Regex syntax

['0' matchesRegex: '[01]"
| >>> true

[ '3' matchesRegex: '[01]"
| >>> false

[ "11' matchesRegex: '[01]"
| >>> false "a set matches only one character"

Using plus operator, we can build the following binary number recognizer:

'10010100' matchesRegex: '[01]+'
>>> true

'10001210"' matchesRegex: '[01]+'
>>> false

If the first character after the opening bracket is CARET, the set is inverted: it
matches any single character not appearing between the brackets:

'0' matchesRegex: '[CARETO1]'
>>> false

'3' matchesRegex: '[CARETO1]'
>>> true

For convenience, a set may include ranges: pairs of characters separated by
a hyphen (-). This is equivalent to listing all characters in between: ' [0-9]"
is the same as '[0123456789]"'. Special characters within a set are CARET, -,
and ], which closes the set. Below are examples how to literally match them
in a set:

[ "CARET' matchesRegex: '[01CARET]"
| >>> true "put the caret anywhere except the start"”

'-' matchesRegex: '[01-]"
| >>> true "put the hyphen at the end"

[ matchesRegex: '[]01]'
| >>> true "put the closing bracket at the start"

Thus, empty and universal sets cannot be specified.

Character classes

Regular expressions can also include the following backquote escapes to re-
fer to popular classes of characters: \w to match alphanumeric characters,
\d to match digits, and \s to match whitespace. Their upper-case variants,
\W, \D and \S, match the complementary characters (non-alphanumerics,
non-digits and non-whitespace). Here is a summary of the syntax seen so far:

335



Regular expressions in Pharo

Syntax  What it represents

a literal match of character a
match any char (except newline)
(...) group subexpression
\X escape the following special character where ’x’ can be 'w’,)’s’,’d’,;W’,’S’,’D’
* Kleene star — match previous regex zero or more times
+ match previous regex one or more times
? match previous regex zero times or once

| match choice of left and right regex
[abcd]  match choice of characters abcd
[“abcd] match negated choice of characters

[0-9] match range of characters 0 to 9
\w match alphanumeric

\W match non-alphanumeric

\d match digit

\D match non-digit

\s match space

\S match non-space

As mentioned in the introduction, regular expressions are especially use-
ful for validating user input, and character classes turn out to be especially
useful for defining such regexes. For example, non-negative numbers can be
matched with the regex \d+:

'42' matchesRegex: '\d+'
>>> true

'-1' matchesRegex: '\d+'
>>> false

Better yet, we might want to specify that non-zero numbers should not start
with the digit 0:

[ 0" matchesRegex: '0|([1-9]\d*)"
| >>> true

[ "1' matchesRegex: '0[([1-9]\d*)"
| >>> true

[ 42" matchesRegex: '0[([1-9]\d*)"
| >>> true

[ '099' matchesRegex: '©[([1-9]\d*)"
>>> false "leading 0"

We can check for negative and positive numbers as well:

'0' matchesRegex: '(O((\+[-)?[1-9]1\d*))"
>>> true

336



15.2 Regex syntax

[ "-1' matchesRegex: '(0]((\+|-)?2[1-9]\d*))"
| >>> true

[ 42" matchesRegex: "(0]((\+]-)?[1-91\d*))"
| >>> true

[ "+99' matchesRegex: '(0]((\+|-)?[1-9]\d*))"
| >>> true

[ "-0' matchesRegex: '(0]((\+|-)?[1-9]\d*))"
| >>> false "negative zero"

[ "01' matchesRegex: '(0]((\+]-)?[1-91\d*))"
| >>> false "leading zero"
Floating point numbers should require at least one digit after the dot:

[ "0' matchesRegex: '(01((\+|-)?2[1-91\d*))(\.\d+)?"
| >>> true

['0.9' matchesRegex: '(01((\+]-)?[1-91\d*))(\.\d+)?"
»>>> true

[ '3.14" matchesRegex: '(0]((\+[-)?[1-91\d*))(\.\d+)?"
»>>> true

[ "-42' matchesRegex: '(01((\+]-)?[1-91\d*))(\.\d+)?"
| >>> true

[*2." matchesRegex: '(01((\+[-)?[1-91\d*))(\.\d+)?"
| >>> false "need digits after ."

For dessert, here is a recognizer for a general number format: anything like

999, 0or 999.999, or -999.999e+21.

'-999.999e+21"' matchesRegex: '(\+[-)?\d+(\.\d*)?2((elE)(\+]|-)?\d+)?"

>>> true

Character classes can also include the following grep(1)-compatible ele-

ments:
Syntax What it represents
[:alnum:]  any alphanumeric
[:alpha:]  any alphabetic character
[:cntrl:]  any control character (ascii code below 32)
[:digit:]  any decimal digit
[:graph:]  any graphical character (ascii code above 32)
[:lower:] any lowercase character
[:print:] any printable character (here, the same as [ : graph:])
[:punct:]  any punctuation character
[:space:]  any whitespace character
[:upper:] any uppercase character
[:xdigit:] any hexadecimal character

337



Regular expressions in Pharo

Note that these elements are components of the character classes, i.e., they
have to be enclosed in an extra set of square brackets to form a valid regular
expression. For example, a non-empty string of digits would be represented
as [[:digit:]]+. The above primitive expressions and operators are com-
mon to many implementations of regular expressions.

'42' matchesRegex: '[[:digit:]]+"
>>> true

Special character classes

The next primitive expression is unique to this Smalltalk implementation. A
sequence of characters between colons is treated as a unary selector which

is supposed to be understood by characters. A character matches such an
expression if it answers true to a message with that selector. This allows a
more readable and efficient way of specifying character classes. For example,
[0-9] is equivalent to : isDigit:, but the latter is more efficient. Analo-
gously to character sets, character classes can be negated: : CARETisDigit:
matches a character that answers false to isDigit, and is therefore equiva-
lent to [CARETO-9].

So far we have seen the following equivalent ways to write a regular ex-
pression that matches a non-empty string of digits: [0-91+, \d+, [\d]+,
[[:digit:]]+, :isDigit:+.

[ "42' matchesRegex: '[0-9]+"

L >>> true

[ 42" matchesRegex: '\d+'
>>> true

[ "42' matchesRegex: '[\d]+"
| >>> true

[r42" matchesRegex: '[[:digit:]]+"
| >>> true

[ "42' matchesRegex: ':isDigit:+'
>>> true

Matching boundaries

The last group of special primitive expressions shown next is used to match
boundaries of strings.

338



15.3

15.3 Regex API

Syntax What it represents

CARET  match an empty string at the beginning of a line

\$ match an empty string at the end of a line

\b match an empty string at a word boundary

\B match an empty string not at a word boundary
\< match an empty string at the beginning of a word
\> match an empty string at the end of a word

"hello world' matchesRegex: '.*\bw.='
>>> true "word boundary before w"

"hello world' matchesRegex: '.*\bo.='
>>> false "no boundary before o"

Regex API

Up to now we have focussed mainly on the syntax of regexes. Now we will
have a closer look at the different messages understood by strings and regexes.

Matching prefixes and ignoring case

So far most of our examples have used the String extension method match-
esRegex:.

Strings also understand the following messages: prefixMatchesRegex:,
matchesRegexIgnoringCase: and prefixMatchesRegexIgnoringCase:.

The message prefixMatchesRegex: is just like matchesRegex, except that
the whole receiver is not expected to match the regular expression passed as
the argument; matching just a prefix of it is enough.

[ "abacus' matchesRegex: '(alb)+'
| >>> false

[ "abacus' prefixMatchesRegex: '(alb)+"
>>> true

[ "ABBA' matchesRegexIgnoringCase: '(alb)+’
| >>> true

[ "Abacus' matchesRegexIgnoringCase: '(alb)+'
| >>> false

[ "Abacus' prefixMatchesRegexIgnoringCase: '(alb)+"
| >>> true

339



Regular expressions in Pharo

Enumeration interface

Some applications need to access all matches of a certain regular expression
within a string. The matches are accessible using a protocol modeled after
the familiar Collection-like enumeration protocol.

regex:matchesDo: evaluates a one-argument aBlock for every match of the
regular expression within the receiver string.

| list |

list := OrderedCollection new.

'Jack meet Jill' regex: '\w+' matchesDo: [:word | list add: word].
list

>>> an OrderedCollection('Jack' 'meet' 'Jill')

regex:matchesCollect: evaluates a one-argument aBlock for every match
of the regular expression within the receiver string. It then collects the re-
sults and answers them as a SequenceableCollection.

'Jack meet Jill' regex: '\w+' matchesCollect: [:word | word size]
>>> an OrderedCollection(4 & 4)

allRegexMatches: returns a collection of all matches (substrings of the re-
ceiver string) of the regular expression.

'Jack and Jill went up the hill' allRegexMatches: '\w+'
>>> an OrderedCollection('Jack' 'and' 'Jill' 'went' 'up' 'the'
"hill')

Replacement and translation

It is possible to replace all matches of a regular expression with a certain
string using the message copyWithRegex:matchesReplacedWith:.

'Krazy hates Ignatz' copyWithRegex: '\<[[:lower:]]+\>"'
matchesReplacedWith: 'loves'
>>> 'Krazy loves Ignatz'

A more general substitution is match translation. This message evaluates a
block passing it each match of the regular expression in the receiver string
and answers a copy of the receiver with the block results spliced into it in
place of the respective matches.

'Krazy loves Ignatz' copyWithRegex: '\b[a-z]+\b'
matchesTranslatedUsing: [:each | each asUppercase]
>>> 'Krazy LOVES Ignatz'

All messages of enumeration and replacement protocols perform a case-
sensitive match. Case-insensitive versions are not provided as part of a String
protocol. Instead, they are accessible using the lower-level matching inter-
face presented in the following section.

340



15.3 Regex API

Lower-level interface

When you send the message matchesRegex: to a string, the following hap-
pens:

+ A fresh instance of RxParser is created, and the regular expression
string is passed to it, yielding the expression’s syntax tree.

+ The syntax tree is passed as an initialization parameter to an instance
of RxMatcher. The instance sets up some data structure that will work
as a recognizer for the regular expression described by the tree.

+ The original string is passed to the matcher, and the matcher checks
for a match.

The Matcher

If you repeatedly match a number of strings against the same regular ex-
pression using one of the messages defined in String, the regular expres-
sion string is parsed and a new matcher is created for every match. You can
avoid this overhead by building a matcher for the regular expression, and
then reusing the matcher over and over again. You can, for example, create
a matcher at a class or instance initialization stage, and store it in a variable
for future use. You can create a matcher using one of the following methods:

* You can send asRegex or asRegexIgnoringCase to the string.

* You can directly invoke the RxMatcher constructor methods forString:
or forString:ignoreCase: (which is what the convenience methods
above will do).

Here we send matchesIn: to collect all the matches found in a string:

[] octal |

octal := '8r[0-9A-F]+' asRegex.
octal matchesIn: '8r52 = 161r2A’
>>> an OrderedCollection('8r52"')

[ hex |

hex := '16r[0-9A-F]+' asRegexIgnoringCase.
hex matchesIn: '8r52 = 16r2A'

| >>> an OrderedCollection('16r2A"')

[T hex |

hex := RxMatcher forString: '16r[0-9A-Fa-f]+' ignoreCase: true.
hex matchesIn: '8r52 = 16r2A'

| >>> an OrderedCollection('16r2A")

Matching

A matcher understands these messages (all of them return true to indicate
successful match or search, and false otherwise):

341



Regular expressions in Pharo

matches: aString — true if the whole argument string (aString) matches.

"\w+' asRegex matches: 'Krazy'
>>> true

matchesPrefix: aString — true if some prefix of the argument string (not
necessarily the whole string) matches.

"\w+' asRegex matchesPrefix: 'Ignatz hates Krazy'
>>> true

search: aString — Search the string for the first occurrence of a matching
substring. Note that the first two methods only try matching from the very
beginning of the string. Using the above example with a matcher for a+, this
method would answer success given a string 'baaa', while the previous two
would fail.

'\b[a-z]+\b' asRegex search: 'Ignatz hates Krazy'
>>> true "finds 'hates'"

The matcher also stores the outcome of the last match attempt and can re-
port it: lastResult answers a Boolean: the outcome of the most recent
match attempt. If no matches were attempted, the answer is unspecified.

| number

number := '\d+' asRegex.

number search: 'Ignatz throws 5 bricks'.
number lastResult

>>> true

matchesStream:, matchesStreamPrefix: and searchStream: are analo-
gous to the above three messages, but takes streams as their argument.

| ignatz names |

ignatz := ReadStream on: 'Ignatz throws bricks at Krazy'.
names := '\<[A-Z][a-z]+\>' asRegex.

names matchesStreamPrefix: ignatz

>>> true

Subexpression matches

After a successful match attempt, you can query which part of the original
string has matched which part of the regex. A subexpression is a parenthe-
sized part of a regular expression, or the whole expression. When a regular
expression is compiled, its subexpressions are assigned indices starting from
1, depth-first, left-to-right.

For example, the regex ((\d+)\s*(\w+)) has four subexpressions, including
itself.

342



15.3 Regex API

1: ((\d+)\s*(\w+)) "the complete expression"

2: (\d+)\s*(\w+) "top parenthesized subexpression”
3: \d+ "first leaf subexpression"
4 \w+ "second leaf subexpression”

The highest valid index is equal to 1 plus the number of matching parenthe-
ses. (So, 1 is always a valid index, even if there are no parenthesized subex-
pressions.)

After a successful match, the matcher can report what part of the original
string matched what subexpression. It understands these messages:

subexpressionCount answers the total number of subexpressions: the high-
est value that can be used as a subexpression index with this matcher. This
value is available immediately after initialization and never changes.

subexpression: takes a valid index as its argument, and may be sent only
after a successful match attempt. The method answers a substring of the
original string the corresponding subexpression has matched to.

subBeginning: and subEnd: answer the positions within the argument
string or stream where the given subexpression match has started and ended,
respectively.

[ items |

items := '((\d+)\s*(\w+))' asRegex.

items search: 'Ignatz throws 1 brick at Krazy'.
items subexpressionCount

>>> 4

items subexpression: 1
>>> '1 brick' "complete expression"

items subexpression: 2
>>> '1 brick' "top subexpression”

items subexpression: 3
>>> "1 "first leaf subexpression"

items subexpression: 4
>>> 'brick’ "second leaf subexpression"

[ items subBeginning: 3
>>> 14

[ items subEnd: 3
>>> 15

[ items subBeginning: &
>>> 16

[ items subEnd: 4
>>> 21

343



Regular expressions in Pharo

As a more elaborate example, the following piece of code uses a MMM DD,
YYYY date format recognizer to convert a date to a three-element array with
year, month, and day strings:

[ | date result |
date :=
"(Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|SeplOct|Nov|Dec)\s+(\d\d?)\s*,\s*19(\d\d)"
asRegex.
result := (date matches: 'Aug 6, 1996')
ifTrue: [{ (date subexpression: &) .
(date subexpression: 2) .
(date subexpression: 3) } 1]
ifFalse: ['no match'].
result
>>> #('96' 'Aug' '6')

Enumeration and Replacement

The String enumeration and replacement protocols that we saw earlier
in this section are actually implemented by the matcher. RxMatcher im-
plements the following methods for iterating over matches within strings:
matchesIn:,matchesIn:do:, matchesIn:collect:, copy:replacing-
MatchesWith: and copy:translatingMatchesUsing:.

[| seuss awords |

seuss := 'The cat in the hat is back'.
aWords := '\<(["aeiou]l[a]l)+\>' asRegex. "match words with 'a' in
them"

aWords matchesIn: seuss
| >>> an OrderedCollection('cat' 'hat' 'back')

[ awords matchesIn: seuss collect: [:each | each asUppercase ]
| >>> an OrderedCollection('CAT' 'HAT' 'BACK')

[ aWords copy: seuss replacingMatchesWith: 'grinch'
>>> 'The grinch in the grinch is grinch'

[ awords copy: seuss translatingMatchesUsing: [ :each | each
asUppercase ]
>>> 'The CAT in the HAT is BACK'

There are also the following methods for iterating over matches within streams:
matchesOnStream:, matchesOnStream:do:, matchesOnStream:collect:,
copyStream:to:replacingMatchesWith: and copyStream:to:translat-
ingMatchesUsing:.

Error Handling

Several exceptions may be raised by RxParser when building regexes. The
exceptions have the common parent RegexError. You may use the usual

344



15.4 Implementation Notes by Vassili Bykov

Smalltalk exception handling mechanism to catch and handle them.

* RegexSyntaxError is raised if a syntax error is detected while parsing
a

* regex RegexCompilationError is raised if an error is detected while

+ building a matcher RegexMatchingError is raised if an error occurs
while

+ matching (for example, if a bad selector was specified using ' : <selec-
tor>:"'

+ syntax, or because of the matcher’s internal error).

['+' asRegex] on: RegexError do: [:ex | * ex printString ]
>>> 'RegexSyntaxError: nullable closure'’

15.4 Implementation Notes by Vassili Bykov

What to look at first. In 90% of the cases, the method String>>matches-
Regex: is all you need to access the package.

RxParser accepts a string or a stream of characters with a regular expres-
sion, and produces a syntax tree corresponding to the expression. The tree is
made of instances of Rxs+ classes.

RxMatcher accepts a syntax tree of a regular expression built by the parser
and compiles it into a matcher: a structure made of instances of Rxm* classes.
The RxMatcher instance can test whether a string or a positionable stream of
characters matches the original regular expression, or it can search a string
or a stream for substrings matching the expression. After a match is found,
the matcher can report a specific string that matched the whole expression,
or any parenthesized subexpression of it. All other classes support the same
functionality and are used by RxParser, RxMatcher, or both.

Caveats The matcher is similar in spirit, but not in design to Henry Spencer’s
original regular expression implementation in C. The focus is on simplicity,
not on efficiency. I didn’t optimize or profile anything. The matcher passes

H. Spencer’s test suite (see test suite protocol), with quite a few extra tests
added, so chances are good there are not too many bugs. But watch out any-
way.

Acknowledgments Since the first release of the matcher, thanks to the in-
put from several fellow Smalltalkers, I became convinced a native Smalltalk
regular expression matcher was worth the effort to keep it alive. For the ad-
vice and encouragement that made this release possible, I want to thank: Fe-
lix Hack, Eliot Miranda, Robb Shecter, David N. Smith, Francis Wolinski and

345



15.5

Regular expressions in Pharo

anyone whom I haven’t yet met or heard from, but who agrees this has not
been a complete waste of time.

Chapter Summary

Regular expressions are an essential tool for manipulating strings in a triv-
ial way. This chapter presented the Regex package for Pharo. The essential
points of this chapter are:

346

For simple matching, just send matchesRegex: to a string

When performance matters, send asRegex to the string representing
the regex, and reuse the resulting matcher for multiple matches

Subexpression of a matching regex may be easily retrieved to an arbi-
trary depth

A matching regex can also replace or translate subexpressions in a new
copy of the string matched

An enumeration interface is provided to access all matches of a certain
regular expression

Regexes work with streams as well as with strings.



16.1

CHAPTER I 6

Classes and metaclasses

As we saw in preceding chapters, in Pharo, everything is an object, and every
object is an instance of a class. Classes are no exception: classes are objects,
and class objects are instances of other classes. This object model captures
the essence of object-oriented programming, and is lean, simple, elegant and
uniform. However, the implications of this uniformity may confuse newcom-
ers.

Note that you do not need to fully understand the implications of this uni-
formity to program fluently in Pharo. Nevertheless, the goal of this chapter
is twofold: (1) go as deep as possible and (2) show that there is nothing com-
plex, magic or special here: just simple rules applied uniformly. By following
these rules you can always understand why the situation is the way that it is.

Rules for classes and metaclasses

The Pharo object model is based on a limited number of concepts applied
uniformly. To refresh your memory, here are the rules of the object model
that we explored in Chapter : The Pharo Object Model.

Rule 1 Everything is an object.

Rule 2 Every object is an instance of a class.

Rule 3 Every class has a superclass.

Rule 4 Everything happens by sending messages.
Rule 5 Method lookup follows the inheritance chain.

As we mentioned in the introduction to this chapter, a consequence of Rule
1 is that classes are objects too, so Rule 2 tells us that classes must also be in-

347



Classes and metaclasses

.=~ [Collection]< ...
* | Until you
find the
p Sequenceable | method.
Collection [<
Ordered

SortedCollection R PR Then look in™
/ Collection . |the superclass.

/ [SortedCollection |
! A\

Key
instance-of ——PP
message send ————>>

/ / First look in the repy 77 >
¥ . |class of the object. lookup >

class _s—>[a SortedCollection| .-

Figure 16-1 Sending the message class to a sorted collection

stances of classes. The class of a class is called a metaclass. A metaclass is cre-
ated automatically for you whenever you create a class. Most of the time you
do not need to care or think about metaclasses. However, every time that
you use the browser to browse the class side of a class, it is helpful to recall
that you are actually browsing a different class. A class and its metaclass are
two separate classes, even though the former is an instance of the latter.

To properly explain classes and metaclasses, we need to extend the rules
from Chapter : The Pharo Object Model with the following additional rules.

Rule 6 Every class is an instance of a metaclass.

Rule 7 The metaclass hierarchy parallels the class hierarchy.
Rule 8 Every metaclass inherits from Class and Behavior.

Rule 9 Every metaclass is an instance of Metaclass.

Rule 10 The metaclass of Metaclass is an instance of Metaclass.
Together, these 10 rules complete Pharo’s object model.

We will first briefly revisit the 5 rules from Chapter : The Pharo Object Model
with a small example. Then we will take a closer look at the new rules, using
the same example.

16.2 Revisiting the Pharo object model

Rule 1. Since everything is an object, an ordered collection in Pharo is also
an object.

348



16.3 Every class is an instance of a metaclass

OrderedCollection withAll: #(4 5 6 1 2 3)
>>> an OrderedCollection(4 5 6 1 2 3)

Rule 2. Every object is an instance of a class. The class of an ordered collec-
tion is the class OrderedCollection:

(OrderedCollection withAll: #(4 5 6 1 2 3)) class
>>> OrderedCollection

Rule 3. Every class has a superclass. The superclass of OrderedCollection
is SequenceableCollection and the superclass of SequenceableCollec-
tionis Collection:

[ orderedCollection superclass
| >>> SequenceableCollection

>Sequenceab1eCollection superclass
>>> Collection

[ collection superclass
| >>> Object

Let us take an example. When we send the message asSortedCollection,
we convert the ordered collection into a sorted collection. We verify simply
as follows:

(OrderedCollection withAll: #(4 5 6 1 2 3)) asSortedCollection class
>>> SortedCollection

Rule 4. Everything happens by sending messagess, so we can deduce that
withAll: is a message to OrderedCollection and asSortedCollection
are messages sent to the ordered collection instance, and superclassis a
message to OrderedCollection and SequenceableCollection, and Col-
lection. The receiver in each case is an object, since everything is an object,
but some of these objects are also classes.

Rule 5. Method lookup follows the inheritance chain, so when we send the
message class to the result of (OrderedCollection withAll: #(4 5 6 1
2 3)) asSortedCollection, the message is handled when the correspond-
ing method is found in the class Object, as shown in Figure 16-1.

16.3 Every class is an instance of a metaclass

As we mentioned earlier in Section 16.1, classes whose instances are them-
selves classes are called metaclasses.

Metaclasses are implicit

Metaclasses are automatically created when you define a class. We say that
they are implicit since as a programmer you never have to worry about them.

349



Classes and metaclasses

Object class

|OrderedCollection class |

[OrderedCollection| >

[SortedCollection class |

[aSortedCollection ]*‘»| SortedCollection r"»

—

Key
instance-of —pp

Figure 16-2 The metaclasses of SortedCollection and its superclasses
(elided).

An implicit metaclass is created for each class you create, so each metaclass
has only a single instance.

Whereas ordinary classes are named, metaclasses are anonymous. However,
we can always refer to them through the class that is their instance. The
class of SortedCollection, for instance, is SortedCollection class,and
the class of Object is Object class:

SortedCollection class
>>> SortedCollection class

Object class
>>> Object class

In fact metaclasses are not truly anonymous, their name is deduced from the
one of their single instance.

SortedCollection class name
>>> 'SortedCollection class'

Figure 16-2 shows how each class is an instance of its metaclass. Note that
we only skip SequenceableCollection and Collection from the figures
and explanation due to space constraints. Their absence does not change the
overall meaning.

Querying Metaclasses

The fact that classes are also objects makes it easy for us to query them by
sending messages. Let’s have a look:

OrderedCollection subclasses
>>> {SortedCollection . ObjectFinalizerCollection .
WeakOrderedCollection . OCLiterallList . GLMMultiValue}

SortedCollection subclasses
>>> #()

350



16.4 The metaclass hierarchy parallels the class hierarchy

Object class
zr

|OrderedCollection class |

[OrderedCollection| >

[SortedCollection class ]

[a_ SortedCollection ]"'»| SortedCollection

—

Key
instance-of —pp

Figure 16-3 The metaclass hierarchy parallels the class hierarchy (elided).

[ sortedCollection allSuperclasses
>>> an OrderedCollection(OrderedCollection SequenceableCollection
Collection Object ProtoObject)

[ SortedCollection instVarNames
| >>> #('sortBlock')

[ SortedCollection allInstVarNames
| >>> #('array' 'firstIndex' 'lastIndex' 'sortBlock')

[ sortedCollection selectors

>>> #(#indexForInserting: #sort:to: #addAll: #reSort #sortBlock:
#copyEmpty #addFirst: #insert:before: #defaultSort:to: #median
#at:put: #add: #= #collect: #flatCollect: #sort: #join:
#sortBlock)

The metaclass hierarchy parallels the class hierarchy

Rule 7 says that the superclass of a metaclass cannot be an arbitrary class: it
is constrained to be the metaclass of the superclass of the metaclass’s unique
instance.

SortedCollection class superclass
>>> OrderedCollection class

{SortedCollection superclass class

>>> OrderedCollection class

This is what we mean by the metaclass hierarchy being parallel to the class
hierarchy. Figure 16-3 shows how this works in the SortedCollection hier-
archy.

SortedCollection class
>>> SortedCollection class

SortedCollection class superclass
>>> OrderedCollection class

351



Classes and metaclasses

_ Object class
Object A
- Collection class <~
Then look in the
superclass, and so
on,until you find the

, Collection

Sequenceable | |,cthod.
Sequenceable Collection class |<:
Collection A

withAll: #(4 5 6 1 2 3);

e O ..
Ordered Collection class

Collection

. . o Key
: T instance-of ——P P>
H S
\ First look in the™ gessage send >
X ply
class of the object.

anOrderedCollection looku >

Figure 16-4 Message lookup for classes is the same as for ordinary objects.

SortedCollection class superclass superclass
>>> SequenceableCollection class

SortedCollection class superclass superclass superclass superclass
>>> Object class

Uniformity between Classes and Objects

It is interesting to step back a moment and realize that there is no differ-
ence between sending a message to an object and to a class. In both cases the
search for the corresponding method starts in the class of the receiver, and
proceeds up the inheritance chain.

Thus, messages sent to classes must follow the metaclass inheritance chain.
Consider, for example, the method withAl1l:, which is implemented on the
class side of Collection. When we send the message withAll: to the class
OrderedCollection, then it is looked up the same way as any other mes-
sage. The lookup starts in OrderedCollection class (since it starts in the
class of the receiver and the receiver is OrderedCollection), and proceeds
up the metaclass hierarchy until it is found in Collection class (see Figure
16-4). It returns a new instance of OrderedCollection.

OrderedCollection withAll: #(4 56 1 2 3)
>>> an OrderedCollection (4 56 1 2 3)

Only one method lookup

Thus we see that there is one uniform kind of method lookup in Pharo. Classes
are just objects, and behave like any other objects. Classes have the power to
create new instances only because classes happen to respond to the message
new, and because the method for new knows how to create new instances.

352



16.5

16.5 Every metaclass inherits from Class and Behavior

% - O Inspector on an OrderedCollection [6 items] (456 123) ¢ 2 + | * - O Inspectoron an OrderedCollection class (OrderedCollec Gz~
an OrderedCollection [6 items] (456123) # @ | anorderedCollection class (OrderedCollection) 2 Q
Items  Raw  Meta Ri... De... Con... AllRef AllRef... Methods ' Meta
Variable Value Variable value
{3 self an OrderedCollection [6 items] (456 123) © self OrderedCollection
» {}amay an Array [6items] (456123) » 1 category #Collections-Sequenceable'
» I firstindex 1 » [} classPool a Dictionary [0 items] ()
» T lastindex 6 » [ environment a SystemDictionary [5815 items] (lots of globals)
» I format 65539
» © instanceVariables nil
"an OrderedCollection(4 5 6 1 2 3)" » © layout aFixedLayout
self » © localselectors nil
» {} methodDict aMethodDictionary [61 items] (#add:->Ordered!
» 1 name #0rderedCollection

"orderedCollection"
self

Figure 16-5 Classes are objects too.

Normally, non-class objects do not understand this message, but if you have
a good reason to do so, there is nothing stopping you from adding a new
method to a non-metaclass.

Inspecting objects and classes
Since classes are objects, we can also inspect them.

Inspect OrderedCollection withAll: #(4 5 6 1 2 3) and OrderedCol-
lection.

Notice that in one case you are inspecting an instance of OrderedCollec-
tion and in the other case the OrderedCollection class itself. This can be
a bit confusing, because the title bar of the inspector names the class of the
object being inspected.

The inspector on OrderedCollection allows you to see the superclass, in-
stance variables, method dictionary, and so on, of the OrderedCollection
class, as shown in Figure 16-5.

Every metaclass inherits from Class and Behavior

Every metaclass is a kind of a class (a class with a single instance), hence
inherits from Class. Class in turn inherits from its superclasses, Class-
Description and Behavior. Since everything in Pharo is an object, these
classes all inherit eventually from Object. We can see the complete picture
in Figure 16-6.

Where is new defined?

To understand the importance of the fact that metaclasses inherit from Class
and Behavior, it helps to ask where new is defined and how it is found. When

353



Classes and metaclasses

|ClassDescription ]
A

»» Object class

A\

4
| Collection class |

[Sequenceable Collection —»»|Sequenceable Collection class |

[OrderedCollection|——»|OrderedCollection class |

[SortedCollection }_’——»l SortedCollection class]

Key
instance-of —ppp

a SortedCollection (1 23 4 5 6)

Figure 16-6 Metaclasses inherit from Class and Behavior.

the message new is sent to a class, it is looked up in its metaclass chain and
ultimately in its superclasses Class, ClassDescription and Behavior as
shown in Figure 16-7.

The question Where is new defined? is crucial. new is first defined in the class
Behavior, and it can be redefined in its subclasses, including any of the
metaclass of the classes we define, when this is necessary. Now when a mes-
sage new is sent to a class it is looked up, as usual, in the metaclass of this
class, continuing up the superclass chain right up to the class Behavior, if it
has not been redefined along the way.

Note that the result of sending SortedCollection new is an instance of
SortedCollection and not of Behavior, even though the method is looked
up in the class Behavior! new always returns an instance of self, the class
that receives the message, even if it is implemented in another class.

SortedCollection new class
>>> SortedCollection "not Behavior!"

Common mistake. A common mistake is to look for new in the superclass of
the receiving class. The same holds for new:, the standard message to create
an object of a given size. For example, Array new: 4 creates an array of 4
elements. You will not find this method defined in Array or any of its super-
classes. Instead you should look in Array class and its superclasses, since
that is where the lookup will start (See Figure 16-7).

354



16.5 Every metaclass inherits from Class and Behavior

"""""""""""" (Behavior]< ..
< .
[ClassDescription|]< -
a SortedCollection (1 23 45 6) R

'

! N ;

| [

; Object Object class J< .. N
' A\ A ;
Collection Collection class [<' S N
| 2 g |

[SortedCollection class]
7

SortedCollection

Key
instance-of
message send ———=>>

new

Figure 16-7 new is an ordinary message looked up in the metaclass chain.

Responsibilities of Behavior, ClassDescription, and Class

Behavior provides the minimum state necessary for objects that have in-
stances, which includes a superclass link, a method dictionary and the class
format. The class format is an integer that encodes the pointer/non-pointer
distinction, compact/non-compact class distinction, and basic size of in-
stances. Behavior inherits from Object, so it, and all of its subclasses, can
behave like objects.

Behavior is also the basic interface to the compiler. It provides methods

for creating a method dictionary, compiling methods, creating instances
(i.e.,, new, basicNew, new:, and basicNew:), manipulating the class hierar-
chy (i.e., superclass:, addSubclass:), accessing methods (i.e., selectors,
allSelectors, compiledMethodAt :), accessing instances and variables (i.e.,
alllInstances, instVarNames...), accessing the class hierarchy (i.e., super-
class, subclasses) and querying (i.e., hasMethods, includesSelector,
canUnderstand:, inheritsFrom:, isVariable).

ClassDescription is an abstract class that provides facilities needed by

its two direct subclasses, Class and Metaclass. ClassDescription adds

a number of facilities to the base provided by Behavior: named instance
variables, the categorization of methods into protocols, the maintenance of
change sets and the logging of changes, and most of the mechanisms needed
for filing out changes.

Class represents the common behaviour of all classes. It provides a class
name, compilation methods, method storage, and instance variables. It pro-

355



16.6

Classes and metaclasses

Behavior
—

[ClassDescription |
A W

b
Object |— »» Object class
A\

Al
Collection Collection class Metaclass

[Sequenceable Collection |—»»{Sequenceable Collection class ]

[OrderedCollection|——»»{OrderedCollection class]

[SortedCollection ——»»|SortedCollection class |

—

a SortedCollection (1 23 4 5 6) instanceos

Figure 16-8 Every metaclass is a Metaclass.

vides a concrete representation for class variable names and shared pool
variables (addClassVarName:, addSharedPool:, initialize). Since a meta-
class is a class for its sole instance (i.e., the non-meta class), all metaclasses
ultimately inherit from Class (as shown by Figure 16-9).

Every metaclass is an instance of Metaclass

One question left is since metaclasses are objects too, they should be in-
stances of another class, but which one? Metaclasses are objects too; they are
instances of the class Metaclass as shown in Figure 16-8. The instances of
class Metaclass are the anonymous metaclasses, each of which has exactly
one instance, which is a class.

Metaclass represents common metaclass behaviour. It provides methods
for instance creation (subclassOf :), creating initialized instances of the
metaclass’s sole instance, initialization of class variables, metaclass instance,
method compilation, and class information (inheritance links, instance vari-
ables, etc.).

The metaclass of Metaclass is an instance of Meta-
class
The final question to be answered is: what is the class of Metaclass class?

The answer is simple: it is a metaclass, so it must be an instance of Meta-
class, just like all the other metaclasses in the system (see Figure 16-9).

356



16.7 The metaclass of Metaclass is an instance of Metaclass

Behavior class

Behavior
A\

[ClassDescription class ]«

ClassDescription
7 Class class

Metaclass class

Object class

Collectlon class Metaclass
Collectlon

|Sequenceablecollect|on [oe| SequenceabIeCoIIecnon class \

[OrderedCollection }——»IOrderedCollectlon class

A
SortedCollection |SortedCoIIect|on class instance-of —»

a SortedCollection (123 45 6)

Figure 16-9 All metaclasses are instances of the class Metaclass, even the
metaclass of Metaclass.

Listing 16-10 The class hierarchy

[ Collection superclass
| >>> Object

Listing 16-11 The parallel metaclass hierarchy
[ Collection class superclass

>>> Object class

[[[testcase=true

Object class superclass superclass

>>> Class "NB: skip ProtoObject class"

Figure 16-9 shows how all metaclasses are instances of Metaclass, including
the metaclass of Metaclass itself. If you compare Figures 16-8 and 16-9 you
will see how the metaclass hierarchy perfectly mirrors the class hierarchy,
all the way up to Object class.

The following examples show us how we can query the class hierarchy to
demonstrate that Figure 16-9 is correct. (Actually, you will see that we told
a white lie — Object class superclass --> ProtoObject class,not
Class. In Pharo, we must go one superclass higher to reach Class.)

Class superclass
>>> ClassDescription

357



16.8

Classes and metaclasses

Listing 16-12 Instances of Metaclass

[ collection class class
| >>> Metaclass

Listing 16-13 Metaclass class is a Metaclass

[ Metaclass class class
| >>> Metaclass

ClassDescription superclass
>>> Behavior

[ Behavior superclass
>>> Object

EObject class class
| >>> Metaclass

[ Behavior class class
>>> Metaclass

[ Metaclass superclass
| >>> ClassDescription

Chapter summary

This chapter gave an in-depth look into the uniform object model, and a
more thorough explanation of how classes are organized. If you get lost or
confused, you should always remember that message passing is the key: you
look for the method in the class of the receiver. This works on any receiver.
If the method is not found in the class of the receiver, it is looked up in its
superclasses.

+ Every class is an instance of a metaclass. Metaclasses are implicit. A
metaclass is created automatically when you create the class that is its
sole instance. A metaclass is simply a class whose unique instance is a
class.

+ The metaclass hierarchy parallels the class hierarchy. Method lookup
for classes parallels method lookup for ordinary objects, and follows
the metaclass’s superclass chain.

+ Every metaclass inherits from Class and Behavior. Every class isa
Class. Since metaclasses are classes too, they must also inherit from
Class. Behavior provides behaviour common to all entities that have
instances.

+ Every metaclass is an instance of Metaclass. ClassDescription pro-
vides everything that is common to Class and Metaclass.

358



16.8 Chapter summary

+ The metaclass of Metaclass is an instance of Metaclass. The instance-
of relation forms a closed loop, so Metaclass class class isMeta-
class.

359






	Illustrations
	Preface
	What is Pharo?
	Who should read this book?
	A word of advice
	An open book
	The Pharo community
	Examples and exercises
	Acknowledgments
	Hyper special acknowledgments

	A quick tour of Pharo
	Installing Pharo
	Downloading Pharo
	Installing Pharo

	Pharo: File Components
	Image/Changes Pair
	Common Setup

	Launching Pharo
	Launching Pharo Via the Command Line

	Pharo Launcher
	The World Menu
	Interacting with Pharo

	Sending Messages
	Saving, Quitting and Restarting a Pharo Session
	Playgrounds and Transcripts
	Keyboard Shortcuts
	Doing vs. Printing
	Inspect
	Other Operations

	The System Browser
	Opening the System Browser on a Given Method
	Navigating Using the System Browser

	Finding Classes
	Using the Message browse
	Using CMD-b to Browse
	Using Spotter
	Navigating Results
	Using 'Find class' in System Browser
	Using the Finder


	Finding Methods
	Spotter
	With Finder
	Finding Methods Using Examples
	Trying Finder

	Defining a New Method
	Defining a New Test Method
	Running Your Test Method
	Implementing the Tested Method
	Coding in the Debugger


	Chapter Summary

	A first application
	The Lights Out game
	Creating a new Package
	Defining the class LOCell
	Creating a new class
	About comments
	On categories vs. packages

	Adding methods to a class
	Inspecting an object
	Defining the class LOGame
	Class creation
	Initializing our game
	Taking advantage of the debugger
	Studying the initialize method

	Organizing methods into protocols
	Finishing the game
	Let's try our code
	Saving and sharing Pharo code
	Saving plain code
	Monticello packages
	Monticello Browser

	Saving and loading code with Monticello
	SmalltalkHub: a Github for Pharo

	Chapter summary

	Syntax in a nutshell
	Syntactic elements
	Pseudo-variables
	Message sends
	Method syntax
	Block syntax
	Conditionals and loops in a nutshell
	Some conditionals
	Some loops
	High-order iterators

	Primitives and pragmas
	Chapter summary

	Understanding message syntax
	Identifying messages
	Message structure

	Three types of messages
	Unary messages
	Binary messages
	Keyword messages

	Message composition
	Unary > Binary > Keywords
	Parentheses first
	From left to right
	Arithmetic inconsistencies

	Hints for identifying keyword messages
	Parentheses or not?
	Precedence hints

	When to use [ ] or ( )

	Expression sequences
	Cascaded messages
	Chapter summary

	The Pharo object model
	The rules of the model
	Everything is an Object
	Every object is an instance of a class
	Instance structure and behavior
	Instance variables
	Instance encapsulation example

	Methods

	The instance side and the class side
	Class methods
	Class instance variables
	Example: Class instance variables and subclasses
	Example: Defining a Singleton


	Every class has a superclass
	Abstract methods and abstract classes
	Example: the abstract class Magnitude

	Traits

	Everything happens by sending messages
	Method lookup follows the inheritance chain
	Method lookup
	Returning self
	Overriding and extension
	Self sends and super sends
	How do self sends differ from super sends?
	Stepping back

	Message not understood

	Shared variables
	Global variables
	Other useful global variables
	Using globals in your code

	Class variables
	Class initialization

	Pool variables

	Internal object implementation note
	Chapter summary

	Some of the key tools of the Pharo environment
	Pharo environment overview
	Window groups
	Themes and icon sets

	The main code browser
	Navigating the code space
	Opening a new browser window
	Message senders
	Message implementors
	Method inheritance and overriding
	Hierarchy view
	Finding variable references
	Bytecode source
	Refactorings

	Browser menus
	Browsing programmatically

	The inspector
	The debugger
	The process browser
	Finding methods
	Chapter summary

	Sharing code and source control
	Packages: groups of classes and methods
	Accessing packages
	Basic Monticello
	The package-cache
	Adding repositories
	Browsing versions
	Creating a package
	Committing a package

	Introducing a change

	Source control
	Versions of a method
	Change sets and the changesorter

	The File List Browser
	In Pharo, you can't lose code
	How to get your code back

	Chapter summary

	SUnit
	Introduction
	Why testing is important
	What makes a good test?
	SUnit by example
	Step 1: Create the test class
	Step 2: Initialize the test context
	Step 3: write some test methods
	Step 4: Run the tests
	Step 5: Interpret the results

	The SUnit cookbook
	Other assertions
	Running a single test
	Running all the tests in a test class
	Must I subclass TestCase?

	The SUnit framework
	TestCase
	TestSuite
	TestResult
	TestResource
	Exercise

	Advanced features of SUnit
	Assertion description strings
	Using assert:equals:
	Logging support
	Skipping tests

	Continuing after a failure
	SUnit implementation
	Running one test
	Running a TestSuite

	A piece of advices on testing
	Self-contained tests
	Do not over-test
	Feathers' Rules for Unit tests
	Unit Tests vs. Acceptance Tests
	Black's Rule of Testing

	Chapter summary

	Basic classes
	Object
	Printing
	Identity and equality
	Class membership
	Copying
	Debugging
	Error handling
	Testing
	Initialize

	Numbers
	Magnitude
	Number
	Float
	Fraction
	Integer

	Characters
	Strings
	Booleans
	Chapter summary
	Collections
	Introduction
	The varieties of collections
	Collection implementations
	Examples of key classes
	Array
	OrderedCollection
	Interval
	Dictionary
	Set
	SortedCollection
	String

	Collection iterators
	Iterating (do:)
	Dictionaries

	Collecting results (collect:)
	Selecting and rejecting elements
	Identifying an element with detect:
	Accumulating results with inject:into:
	Other messages

	Some hints for using collections
	Chapter summary

	Streams
	Two sequences of elements
	Streams vs. collections
	Streaming over collections
	Reading collections
	Positioning
	Testing

	Writing to collections
	About String Concatenation

	Reading and writing at the same time

	Using streams for file access
	Creating file streams
	Binary streams

	Chapter summary

	Morphic
	The history of Morphic
	Manipulating morphs
	Composing morphs
	Creating and drawing your own morphs
	Interaction and animation
	Mouse events
	Keyboard events
	Morphic animations

	Interactors
	Drag-and-drop
	A complete example
	More about the canvas
	Chapter summary

	Seaside by example
	Why do we need Seaside?
	Getting started
	The Seaside community
	Installing Seaside using the one-click experience image
	Starting the Seaside server
	The Seaside welcome page
	Single components
	Multiple components

	Seaside components
	State backtracking and the Counter application

	Rendering HTML
	Rendering the Counter
	From Counter to MultiCounter
	More about rendering HTML
	Using brushes
	Forms

	CSS: Cascading style sheets
	Managing control flow
	Call and answer
	Convenience methods
	Tasks
	Transactions

	A complete tutorial example
	A quick look at AJAX
	Hints

	Chapter summary

	Reflection
	Introspection
	Accessing instance variables
	Querying classes and interfaces
	Code metrics

	Browsing code
	Classes, method dictionaries and methods
	Browsing environments
	Accessing the run-time context
	Method contexts
	Intelligent breakpoints

	Intercepting messages not understood
	Lightweight proxies
	Generating missing methods

	Objects as method wrappers
	Using method wrappers to perform test coverage

	Pragmas
	Chapter summary

	Regular expressions in Pharo
	Tutorial example — generating a site map
	Accessing the web directory
	Pattern matching HTML files
	Caching the regex
	Accessing web pages
	String substitutions
	Extracting regex matches
	More string substitutions
	Generating the site map

	Regex syntax
	Character classes
	Special character classes
	Matching boundaries

	Regex API
	Matching prefixes and ignoring case
	Enumeration interface
	Replacement and translation
	Lower-level interface
	The Matcher
	Matching
	Subexpression matches
	Enumeration and Replacement
	Error Handling

	Implementation Notes by Vassili Bykov
	Chapter Summary

	Classes and metaclasses
	Rules for classes and metaclasses
	Revisiting the Pharo object model
	Every class is an instance of a metaclass
	Metaclasses are implicit
	Querying Metaclasses


	The metaclass hierarchy parallels the class hierarchy
	Uniformity between Classes and Objects
	Only one method lookup
	Inspecting objects and classes


	Every metaclass inherits from Class and Behavior
	Where is new defined?
	Responsibilities of Behavior, ClassDescription, and Class


	Every metaclass is an instance of Metaclass
	The metaclass of Metaclass is an instance of Metaclass
	Chapter summary


