
Manage Your Code with Git and

Iceberg

Guillermo Polito and Stéphane Ducasse with Allex Oliveira

May 16, 2024

Copyright 2017 by Guillermo Polito and Stéphane Ducasse with Allex Oliveira.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: to copy, distribute and transmit the work,

• to Remix: to adapt the work,

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Illustrations iv

1 Preamble 1

2 Getting Started with Git 3

2.1 Creating a Repository . 4

2.2 git clone . 5

2.3 Making changes: How does git track my changes? 6

2.4 Commiting your changes . 9

2.5 Synchronizing with your Remote Repository 11

2.6 Overview . 15

2.7 Exercises . 15

3 Understanding Git 17

3.1 Some git Internals . 17

3.2 Understanding Detached HEAD . 21

3.3 Merging history lines . 22

3.4 Commit in workflow . 25

3.5 Creating new history lines with branches 26

3.6 Interacting with Remote Repositories . 29

3.7 Exercises . 34

4 Practical Git Scenarios 37

4.1 Before commit little helpers . 37

4.2 Exploring the History . 38

4.3 Discarding your Local Committed Changes 40

4.4 Ignoring Files . 41

4.5 Commiting a File Filtered out by the .gitignore 42

4.6 Getting out of Detached HEAD . 42

4.7 Accessing your Repository through SSH . 42

4.8 Rewriting the History . 43

4.9 How to Overwrite/Modify Commits . 44

4.10 Conclusion . 46

i

Contents

5 Publishing your first Pharo project with Iceberg 47

5.1 For the impatient . 47

5.2 Basic Architecture . 48

5.3 Create a new project on GitHub . 48

5.4 [Optional] SSH setup: Tell Iceberg to use your keys 48

5.5 Iceberg Repositories browser . 50

5.6 Add a new project to Iceberg . 50

5.7 Repair to the rescue . 52

5.8 Create project metadata . 53

5.9 Add and commit your package using the Working copy browser 55

5.10 Conclusion . 57

6 Configure your project nicely 59

6.1 What if I did not create a remote repository 60

6.2 Configuring automatically Pharo to commit in HTTPS/SSH 62

6.3 Defining a BaselineOf . 62

6.4 Loading from an existing repository . 63

6.5 [Optional] Add a nice .gitignore file . 64

6.6 Going further: Understanding the architecture 65

6.7 Conclusion . 65

7 Empowering your projects 67

7.1 Adding Travis integration . 67

7.2 On windows . 68

7.3 Adding badges . 68

7.4 Conclusion . 69

8 Contributing to Pharo 71

8.1 In a nutshell . 71

8.2 Step 0: Setting up the development environment 72

8.3 Fork the Pharo repository . 72

8.4 Setup Iceberg . 72

8.5 Step 1. Setting up your repository . 73

8.6 Step 2: Work on your image and push your change 75

8.7 Step 3: Follow your pull request . 76

8.8 Step 4: Once your pull request is integrated 76

8.9 Why you do not need to resync your fork with the pharo repo? 76

8.10 Update your Pharo fork using the command line 77

8.11 The following script can be put in a ==.st== in your preferences folder

(see below how to find it) and it will automatically configure Iceberg to

connect to your accounts. 77

8.12 Conclusion . 77

ii

Contents

9 Tips and Tricks 79

9.1 How to use SSH keys . 79

9.2 Configuring automatically Pharo to commit in HTTPS/SSH 80

9.3 How to contribute back to a project . 81

9.4 How to distribute your changes in different branches 81

10 Iceberg Glossary 83

10.1 Git . 83

10.2 Iceberg . 85

Bibliography 87

iii

Illustrations

2-1 A repository as a timeline of changes. 3

2-2 Creating a new repository on Github. 4

2-3 Repository page for a project called test in GitHub. 5

2-4 Basic git architecture: You change the files in your working copy, commit

changes to local repository and synchronize your local repository with

remote ones. 5

2-5 Getting the HTTPS url of your repository from GitHub. 6

2-6 Push is an operation that sends commits from your local repository to a

remote repository. 13

2-7 Overview of git basic operations: add, commit, pull and push (+ extra

fetch and merge). 15

3-1 git repository structure: the working copy, the repository, and the

remote repositories. 18

3-2 Graph of commits. 19

3-3 git references: a reference refers to a commit. HEAD to a branch and

tags are special fixed references. 20

3-4 Detached HEAD after checking out a tag: HEAD refers to a commit and

not a branch anymore. 22

3-5 Merging the history with a merge commit. 23

3-6 Commit is an operation that stores things from your working copy into

your local repository. 25

3-7 History graph after our first commit. 26

3-8 History graph after our second commit . 26

3-9 History lines can be branched from a commit. 27

3-10 A new branch points by default to the same commit as the current branch. . 27

3-11 Divergent history. 29

3-12 Fetch is an operation that brings things from a remote into your local

repository. Merge will join the remote history with your current history

and update your working copy. Pull will do both of them. 32

3-13 Push is an operation that sends commits from your local repository to a

remote repository. 33

4-1 Example of SourceTree’s commit graph view. 39

4-2 Example of Github’s commit graph view. 40

iv

Illustrations

5-1 A distributed versioning system. 48

5-2 Create a new project on GitHub. 49

5-3 Use Custom SSH keys settings. 49

5-4 Iceberg Repositories browser on a fresh image indicates that if you want

to version modifications to Pharo itself you will have to tell Iceberg where

the Pharo clone is located. But you do not care. 50

5-5 Cloning a project hosted on GitHub via SSH. 51

5-6 Cloning a project hosted on GitHub via HTTPS. 51

5-7 Just after cloning an empty project, Iceberg reports that the project is

missing information. 52

5-8 Adding a project with some contents shows that the project is not loaded

- not that it is not found. 52

5-9 Create project metadata action and explanation. 53

5-10 Showing where the metadata will be saved and the format encodings. . . . 54

5-11 Adding a src repository for code storage. 54

5-12 Resulting situation with a src folder. 54

5-13 Details of metadata commit. 55

5-14 Adding a package to your project using the Working copy browser. 55

5-15 Iceberg indicates that your package has unsaved changes – indeed you

just added your package. 56

5-16 When you commit changes, Iceberg shows you the code about to be

committed and you can chose the code entities that will effectively be saved. 56

5-17 Once changes committed, Iceberg reflects that your project is in sync

with the code in your local repository. 56

5-18 Publishing your committed changes. 57

6-1 Creating a local repository without pre-existing remote repository. 59

6-2 Opening the repository browser let you add and browse branches as well

as remote repositories. 60

6-3 Adding a remote using the Repository browser of your project (SSH version). 61

6-4 Adding a remote using the Repository browser of your project (HTTP version). 61

6-5 Once you pushed you changes to the remote repository. 61

6-6 Added the baseline package to your project using the Working copy browser. 63

6-7 Architecture. 66

8-1 A fresh Pharo image by default indicates that it does not find the clone of

Pharo. 73

8-2 Repairing the Pharo project. 74

8-3 Solving the detached working copy situation. 75

8-4 Checking your pull request. 76

8-5 Command Line. 78

9-1 Checkout choices. 82

v

CHA P T E R 1
Preamble

Git is the defacto standard distributed source versioning system. Even though
Pharo got its own distributed versioning system during more than 12 years.
It lacked the maturity of git and one key features: branches. This is why since
Pharo 6.0 it was clear that Pharo needed to have support for git. Pharo started
to support git since Pharo 6.0. Pharo 7.0 saw a major version since all its code
and development migrated to git.

However managing Pharo with git is not just a matter of saving code into files
and versioning. Any fool can do that in one afternoon. Pharo has a power-
ful reflective layer and execution change the objects that represent code it-
self. Therefore Pharo as a living system can be in a different state than the
file checkouted from a git repository. From this we can imagine many com-
plex scenarios that even smart programmers would have headaches to under-
stand.

Therefore the Pharo consortium (E. Lorenzano, N. Passerini, G. Polito and P.
Tesone) developed an advanced tool to help managing the live programming
aspect of Pharo and the static perspective that file-based versioning systems
such git have of the reality. Iceberg not only supports the management of
large projects (such as Pharo itself with more than 600 packages and a couple
of thousand classes) but it helps us (the developers) to understand the situa-
tion between our image, the files on our disc and the multiple branches and
remote repositories that the git model offers. It offers strategies to address
problems we may face.

Iceberg is a tool to manage git projects from Pharo. It makes the experience
of managing code really smooth. A major effort went into the version of Ice-
berg present in Pharo 7.0. We are using the version of Iceberg available in
Pharo 8.0.

1

Preamble

This document is under writing but we decided to release before its comple-
tion because managing code can be a large topic when we start to discuss
workflow and process.

The book is structured for now in two main parts

1. Understanding from the command-line

2. Managing Pharo code with Iceberg.

The authors want to thank Sean de Nigris, Quentin Ducasse and Stefan Egger-
mont for the reviews and copy-edit of the early version. We also thank Peter
Uhnak for his first blog on publishing Pharo code on Github. We thank Iona
Thomas for the enhancements of Iceberg.

2

CHA P T E R2
Getting Started with Git

In this chapter we introduce the basics of git and Version Control Systems
(VCSs) through guided examples. We first start by setting up a repository
in a remote server and then load it in our own machine. We then show how
we can inspect the state of our repository and save our files into it. Once
our changes are saved, we show how we can push our changes to our remote
repository in a distant server.

This chapter will assume you have git already installed in your machine, and
that you’re using a *nix operating system.

Moreover, you will see that we will approach git with the command-line.
Don’t be afraid if you’ve never used it before, it is not as difficult as it may
seem and you will get used to it. There is always a first time! Also, we promise
you that everything you learn in here can be applied to, and will actually help
you better understand, non command-line tools.

t1 t2 t3 t4 t5

first version

added a file

new directory

modified file
...

Figure 2-1 A repository as a timeline of changes.

3

Getting Started with Git

2.1 Creating a Repository

A git repository is a store of files and directories. The big difference between
a git repository and a simple filesystem is that the changes we make are
stored as events, like a timeline (Figure 2-1). Git not only stores such a time-
line but also allows us to query it, undo some of its changes, and so on.

Before working with such a history/repository we need to set it up. Fortu-
nately, setting up a git repository is much lightweight than setting up a
database repository. Though there are many different ways to create a git
repository, we will start with a simple solution to be up and running as fast as
possible. We will study other ways to setup repositories in Chapter 3.

Let’s proceed to create a repository in an online hosting service such as GitHub
or GitLab. On GitHub use the New Repository action. Figure 2-2 shows the kind
of form GitHub provides to its users to create a new repository.

Figure 2-2 Creating a new repository on Github.

Following the form/wizard will eventually get you a running repository on-
line. You will be most probably then redirected to your repository page. Fig-
ure 2-3 shows how such a page looks like in GitHub.

We are almost set to work from the command line now. However, we need to
set-up our mind around a couple of extra concepts. The repository we just
created does not exist in our machine. Actually, it is stored in some server
maintained by GitHub/GitLab. To interact with this repository we will need a
network connection. We will call this repository, living in a remote server, a
remote repository.

4

2.2 git clone

Figure 2-3 Repository page for a project called test in GitHub.

2.2 git clone

Git, constrastingly to other VCSs, is a distributed VCS. This has a lot of con-
sequences in the way we work, that we will study in detail in Chapter 3. For
now, you will have to remember only one thing: instead of being connected
all the time to our remote repository, we will work on the repository on your
machine (called a local repository). Eventually, we will synchronize the state
between our local repository with the remote one (Figure 2-4). This is what
makes possible the disconnected or off-line workflow that people often praise
in git.

github.com
Your PC

local
repository

remote
repository

Working Copy

remoteCommit

Figure 2-4 Basic git architecture: You change the files in your working copy, com-

mit changes to local repository and synchronize your local repository with remote

ones.

Making a local copy of a remote repository is such a common task that git
has a dedicated command for it, the git clone [url] command. The git
clone command receives as argument the URL of our repository, that we can
get from our repository page. You will see that your repository page will of-
fer you different URL options, the most used being SSH and HTTPS urls. We
will use in this chapter HTTPS URLs because they have an easier setup, but
for those readers that are curious, Section ?? compares SSH and HTTPS, and
Section 4.7 shows how to setup your SSH environment.

5

Getting Started with Git

To obtain the HTTPS URL of your repository, go to your repository’s page and
look for it under the clone/HTTPS options. As an example, Figure 2-5 illus-
trates how to get such url from a GitHub project page.

Figure 2-5 Getting the HTTPS url of your repository from GitHub.

Copy that url and use type your command as in:

$ git clone [url]
Cloning into '[your_project_name]'...
remote: Counting objects: 11082, done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 11082 (delta 2), reused 6 (delta 2), pack-reused 11076
Receiving objects: 100% (11082/11082), 4.35 MiB | 1.22 MiB/s, done.
Resolving deltas: 100% (4063/4063), done.
Checking connectivity... done.

When the command finishes, git is done creating a directory named as your
repository (your_project_name). We will call this directory the working di-
rectory as it is where we will work and interact with our repository. The
working directory, with all the files and directories it contains, is managed
by git and linked to our repository. Do not worry, there is nothing else you
need to do to keep this link, git will automatically track your changes for
you.

You are now ready to go and start working on your project.

2.3 Making changes: How does git track my changes?

Let’s now dive in our working directory and start making changes to it. We’ll
for example create a file called project.txt, then open it with a text editor
and add some lines to it.

$ cd your_project_name
$ touch project.txt
...

After some time working, we can use the ls command to check the files in my
directory.

6

2.3 Making changes: How does git track my changes?

$ ls
project.txt README.md

And then the cat command to check their contents from the command line.

$ cat project.txt
Done
- created the repository
- ==git== clone
- created this file

To do
- commit this file
- push it to my remote repository

$ cat README.md
#My Project

This project is an example ==git== repository used to learn ==git==.
Check the project.txt file for information about pending tasks.

Basically, we have modified some files, but we have done no git at all. What
does git know about these files at this point?

git does Nothing without your Permission

A new important thing to grasp about git at this point is that it will do noth-
ing until we explicitly ask it to do it. In this sense, git is not any kind of repos-
itory but a transactional repository. All changes we do in our working direc-
tory are not stored by git automatically. Instead, we need to explicitly store
them using a commit command, as we do with transactional database to store
any data.

The transactional aspect means also that:

• while we do not commit, we can easily rollback our changes;

• the other side of the coin, until we commit all our changes are in a tran-
sient state, and we may lose them.

We will see more of this explicitness applied in other cases in the course of this
book. Sometimes it may seem that git is just dumb, and that it cannot guess
what we want to do when it is obvious. However, the case is that git has so
many possibilities that not guessing is the healthier decision in most cases.
Especially when considering destructive operations that may make you lose
hours of work.

git status

We can then turn our question around: Does git know something about
these files? Git indeed tracks our files to know what should be saved and what

7

Getting Started with Git

should not. We can use this information to see what are actually the changes
that happened while we were working. The git status command produces
a list of the current changes.

$ git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working

directory)

modified: README.md

Untracked files:
(use "git add <file>..." to include in what will be committed)

project.txt

no changes added to commit (use "git add" and/or "git commit -a")

Reading the output of git status we can see that it lists several informa-
tion:

• Changes not staged for commit. Lists the modified files that git al-
ready knows.

• Untracked Files. Lists the files that are in the working directory but
were never added under the control of git.

Also, git status shows some hints about possible commands that we may
use next such as git add or git checkout.

git and directories

You may have observed a curious behaviour with directories. If you create an
empty directory and then use the git status command, you’ll notice the di-
rectory is not listed at all. It even looks like the directory is being completely
ignored. For example, if we try adding an empty directory into a new reposi-
tory git will actually say working tree clean as if there were no changes at all.

$ mkdir emptyDirectory
$ git status
On branch master
nothing to commit, working tree clean

Indeed, git does not manage empty directories but only files. Directories
are only modelled as paths to get to files. No extra information is tracked for
them. In other words, we cannot just store directories into git. And in case
we want to do it for some reason, we need to put files into them.

8

2.4 Commiting your changes

2.4 Commiting your changes

We would like now to save our changes in our git repository. This way, if any-
thing happens, we can always recover our work up to this point. We have
said before that the operation of saving our work in the repository is called
a commit. If we try the git commit command we will see this is not as direct
as expected.

$git commit
On branch master

Initial commit

Untracked files:
README.md
project.txt

nothing added to commit but untracked files present

If we read Git’s message, we will notice that though it has correctly identi-
fied that we have new files, git is asking us to add them before it can commit
them.

The Groceries Metaphore

To make it simple, you can see this whole tracking story as going to the su-
permarket. Imagine you make your grocery list and go to the supermarket.
To get our groceries and take them home, we need first to go look for them,
put them in our shopping cart, and then go and pay for them. An extra ser-
vice may propose to take your grocery list and do the groceries for you. But
such an extra service requires that you make a list up-front.

Same apply with git, the default behavior of git is not to commit all the
changes. Partly because Git’s philosophy is to ask the user explicitly what to
do, which in this case is translated to asking what to commit. Instead, git
requires us to add the files we want to commit to a list of added files, also
called in git terminology the staging area, and equivalent to your shopping
list. Once our staging area is full with the changes we want to commit, we can
commit such changes using the git commit command.

A first commit

Adding changes to your staging area is done through the git add [file]
command. Let’s proceed to add our changes and see what is the status of our
repository afterwards.

9

Getting Started with Git

$ git add README.md
$ git add project.txt
$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified: README.md
new file: project.txt

Now git says that our two new files are listed as ”to be committed”. Let’s
now proceed to save our changes in the repository with the git commit -m
"[message]" command. The message used as argument of this command is
a piece of text that we can use to explain the contents of the changes, or the
intention of our changes.

$ git commit -m "first version"
[master a93c016] first version
2 files changed, 12 insertions(+), 1 deletion(-)
create mode 100644 project.txt

If we check the status of our repository after the commit is done, we see that
it has changed. There is nothing to commit:

$ git status
On branch master
nothing to commit, working directory clean

Add then commit, all over again

If we repeat the process and we change one of our existing files, we will see
something interesting. Commiting our changes in a file we added before re-
quires that we do a git add [file] and git commit again on the same file,
even if git already knew about it.

$ cat project.txt
Done
- created the repository
- ==git== clone
- created this file
- commit this file

To do
- push it to my remote repository

$ git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working

directory)

10

2.5 Synchronizing with your Remote Repository

modified: project.txt

no changes added to commit (use "git add" and/or "git commit -a")

This is because even if on the surface git seems to manage files, it actu-
ally manages changes to those files. Technically speaking, the changes we
have done are new changes, so we have to tell git we are interested in those
changes.

$ git add project.txt
$ git commit -m "Commit is not in ToDo anymore"
[master e14a09f] Commit is not in ToDo anymore
1 file changed, 1 insertion(+), 1 deletion(-)

2.5 Synchronizing with your Remote Repository

So far we have worked only on the local repository residing in our machine.
This means that mostly all of git features are available without requiring
any internet connection, making it suitable for working off-line (think on
working on the train or with a constrained connection!). However, working
off-line is a two-edged sword: all your changes are also captive in your ma-
chine. While your changes are in your machine, nobody else can contribute
or collaborate to them. Moreover, losing your machine would mean losing
all your changes too. Keeping your changes safe means to synchronize them
from time to time with your remote repository.

git’s metaphore for remote synchronization is based on the ideas of pulling
and pushing changes between repositories.git takes the perspective that we
are located in our local repository. We bring other’s changes by pulling them
from remote repositories to our local repository. We send our changes by
pushing them from our local repositories to one or many remote repositories.

Getting Remote Changes with git pull

Before being able to share our commits in some external server, we need be-
fore to update our repository to avoid them being de-synchronized. While
you can always try to share your commits by directly pushing (see Section
3.6), you will see with experience that git favors pulling before pushing. This
is, among others, because in your local repository you have complete control
to do whatever manipulation you want, what is especially important to solve
mistakes and merge conflicts. You cannot do the same in your remote reposi-
tory.

In our example pulling does not seem really necessary because you are the
only person modifying your repository. No new changes happened in the re-
mote repository in the meantime. However, let’s imagine that you have done

11

Getting Started with Git

a modification in this same repository from another machine or even a dif-
ferent clone in the same machine (which are totally feasible scenarii). In that
case, you would like to update your local repository with those new changes.

Updating our repository is done through the git pull command. Pulling
will update our database and then update our files.

$ git pull
remote: Counting objects: 2, done.
remote: Compressing objects: 100% (1/1), done.
remote: Total 2 (delta 1), reused 2 (delta 1), pack-reused 0
Unpacking objects: 100% (2/2), done.
From https://github.com/guillep/test

1656797..a2dbd8b master -> origin/master
Updating 1656797..a2dbd8b
Fast-forward
newfile | 0
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 newfile

A Bit on Merging

We will see in detail in Section 3.6 that git pull performs two different op-
erations: a fetch and a merge. The fetch lookups new commits in remote
repositories. The merge, studied in detail in Section 3.3, takes the state in
the remote repository and your local repository and tries to make a single
version of of that. Three different scenarii can actually happen from a pull
operation, which will be:

• Fast-forward: the updates were applied without needing a merge.

• Automatic Merge: the updates were applied without conflicts. git had
to do a merge commit and will ask you for a commit message.

• Merge Conflict: The changes you did and incoming changes affect
some common files. In this case git does not know what version to
keep (or even if a mixture is possible) and asks you to solve it manually
before doing a new commit.

Once the merge is resolved, your working copy is updated with the new ver-
sion of your repository. Luckily for us, fast-forward and automatic merges are
the simplest and more common ones. They require almost no manual inter-
action other than introducing a message.

Sending your Changes with git push

The final step in our git journey is to share our changes to the world. Such
sharing is done by pushing commits to a remote repository, as shown in Fig-
ure 3-13. To push, you need to use the git command git push [remote]

12

2.5 Synchronizing with your Remote Repository

[remote_branch]. This command will send the commits pointed from your
your current branch to the remote [remote] in the branch [remote_branch].

$ git push origin master
Counting objects: 3, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 271 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To git@github.com:[your_username]/[your_repo_name].git

b6dcc3f..f269295 master -> temp

github.com

Your PC

local
repository

remote
repositoryWorking Copy remote

push

commit

Figure 2-6 Push is an operation that sends commits from your local repository to

a remote repository.

A Branch’s Upstream

We can omit the destination branch and remote from the command, relying
on git default values. By default a git push operation will push to the so
called branch’s upstream. A branch’s upstream is a configuration specifying
a pair (remote, branch) where we should push by default that branch. When
we clone a repository, the default branch comes with an already configured
upstream. We can interrogate git for the branch’s upstream with the super
verbose flag in the branch command, i.e., git branch -vv, where we can see
for example that ourmaster branch’s upstream is origin/master, while our
development branch has no upstream.

$ git branch -vv # doubly verbose!
development 1656797 This commit adds a new feature
master f269295 [origin/master] First commit

When a branch has no upstream, a push operation will by default fail with a
git error. Git will ask us to set an upstream, or otherwise specify explicitly a
pair remote/branch for each push.

13

Getting Started with Git

$ git push
fatal: The current branch test has no upstream branch.
To push the current branch and set the remote as upstream, use

==git== push --set-upstream origin test

$ git push --set-upstream origin test
Counting objects: 3, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 271 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To git@github.com:[your_username]/[your_repo_name].git

b6dcc3f..f269295 master -> test

Pushes can get Rejected

In some scenarii gitmay reject our pushes, so they are not saved to the re-
mote repository. In general git rejects changes when the remote repository
has diverged from ours. Of course a rejection may also happen when we don’t
have write permissions in the remote repository. The typical error shows
something like the following:

$ git push
To git@github.com:guillep/test.git
! [rejected] master -> master (fetch first)
error: failed to push some refs to

'git@github.com:[your_username]/[your_repo_name].git'
hint: Updates were rejected because the remote contains work that

you do
hint: not have locally. This is usually caused by another repository

pushing
hint: to the same ref. You may want to first integrate the remote

changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for

details.

As the error message says, the remote has changes that we do not have lo-
cally. In other words, our push has been rejected because otherwise we would
have overwritten the remote changes. Instead, we need to take the remote
changes andmix and match them with our changes, by applying a pull (Section
??) and a merge (3.3). After the pull, our repository will have our outgoing
changes, but no more incoming changes, and so our push will not be rejected

14

2.6 Overview

2.6 Overview

In this chapter we have studied the basic operations of git. We have seen
that a new repository starts in your local machine with a git clone that cre-
ates a working copy directory. Changes in our working copy are tracked by
git automatically and we can query the tracking using git status. We can
then proceed to operate on our changes as illustrated in 2-7.

github.com
Your PC

local
repository

remote
repository

Working Copy

fetch
merge

pull

pushadd
+

commit

Figure 2-7 Overview of git basic operations: add, commit, pull and push (+

extra fetch and merge).

We have seen that:

• git add tells git about files to track for commit.

• git commit finishes a transaction and stores our changes in a commit.

• git pull synchronizes a remote repository with our local repository
by doing first a fetch and then a merge. Different merge scenarios may
happen, in which some of them cause conflicts that have to be manu-
ally resolved.

• git push sends our changes to a remote repository. A push can get
rejected.

2.7 Exercises

1. Exercise 1. Create an account in your preferred git repository hosting
service, create there a repository and clone it. Then, check its history
from the command line. How many commits are there in the reposi-
tory? Tip: there is a difference if you checked the ”create README.md
file” checkbox while creating a repository.

2. Exercise 2. Create a file, a file inside a directory and an empty direc-
tory. Commit them (remember, git add, git commit). What can you
see there? How does gitmanage directories?

15

Getting Started with Git

3. Exercise 3. If you’re on a unix system (linux/osx), try changing your
file’s permissions and check git status. How does git treat file per-
missions? Commit your changes and check the log. What can you ob-
serve?

4. Exercise 4. Push now your changes to your remote repository. Then,
clone your repository again in another directory. Tip: try checking the
help of the clone command git clone -h. Did git save all your files,
directories and even permissions?

5. Exercise 5. Go back to your first repository, add a new file, commit it
and push it. Then go back to the second repository and pull. Inspect
the history in both repositories: Is it the same?

6. Exercise 6. Check your online repository on your hosting service. Can
you see the same state as in your local repositories? Go over the dif-
ferent tools offered by the hosting, they usually give some idea of the
activity of the project, try to understand what they are for.

16

CHA P T E R3
Understanding Git

Before going on with the reproducibility concerns that brought you here to
read this chapter and even before continuing with practical git commands,
we will dive a bit into git concepts.

3.1 Some git Internals

Understanding a bit how git works is useful when doing some more compli-
cated stuff such as merging and branching. If you already know what is a git
commit, a git reference and how the graph of git objects is managed, you
can skip this section.

Dissecting a git Repository

Before starting explaining what is a commit, what is a branch, and so on, let’s
start easy by understanding the parts that compose our git repository. When
you create a git repository as we did in the last section, or you clone an old
repository that already has some files in it, you will find that there is more
than meets the eye. A git repository has usually three core collaborating
components: the working copy, the repository, and the remote reposito-
ries. You can see an schematics on Figure 3-1.

What you usually see in your disk when you clone is not actually the git
repository but the working copy. The working copy is the directory where
your files are, where you work and apply modifications. It is called a working
copy because what you see is actually a copy of what is in the repository. The
working copy is a write-able copy: you can freely modify it, break it, add new
things or remove them.

17

Understanding Git

github.com
Your PC

local
repository

remote
repository

Working Copy

remote

Figure 3-1 git repository structure: the working copy, the repository, and the

remote repositories.

Actually, you can do whatever change you want in your working copy: git
will not take it into account, at least not automatically. Once your changes are
ready, you have to commit them into your repository to store them in your
repository. A commit will take your changes, freeze them, and store them in
the local database. Just for the curious ones, the local database (also known
as the BLOB in the git jargon) is stored inside your working copy, in a hid-
den directory called .git.

The commits you create from your changes live only inside your machine by
default. If you want to share your commits with others, or to import commits
from some fellow colleague, you have to interact with a remote repository
(also called just remote). A remote is a distant git repository that you will
synchronize with your local one from time to time. This is where the famous
pull and push come into play!.

Of course, this is an utterly simplified scenario. You could have a repository
without a working copy. And your repository may have many remotes to syn-
chronize with. But we will get into more complex stuff early on, no need to
rush now.

A history-aware transactional database?

As we explained before, we usually work on the working copy, modifying our
files and directories. Once we finished some work, we can freeze it and store
it in the repository. That’s what we call a commit.

From this perspective, a git repository works as a transactional database.
You are working on the changes of your disk, but they will not be effectively
applied until you finish your transaction. Doing your transaction is per-
formed, as in the database world, using the commit command. The result
of this transaction is to create a new commit object in the git repository.
This commit object will contain an id (usually a hash such as 7ba52e5) plus
all changes we wanted to apply.

18

3.1 Some git Internals

git will store your last changes but also remember the entire history of changes
you did. It keeps a list of all changes you did so you can do some nice stuff like
for example:

• come back in time to recover some old changes,

• trace the changes in a file to see who (and why!) did a change, or

• analyze your repository and do some archeology, to see how your project
evolved.

It’s a just graph of commits

The history of commits we explained before is not stored in a list form but
in a graph form. A commit is a node connected to other commits by parent-
hood. A commit is said to be parent of another commit if it is the exact pre-
vious version. In other words, when we create a new commit, the parent of
our new commit is the previous commit. A commit is said to be an ancestor of
another commit if it preceeds it in history. Moreover, a commit can have one
or many parents, and many commits can have the same commit as parent.

Labels:

b8bfed7

7ba52e5

35ac17f

a4153b1

b01aba4

parent

Figure 3-2 Graph of commits.

For instance, take a look at the schema of a typical commit graph represented
in Figure 3-2.

• Commit a4153b1 is the first commit in the graph, with no parents. A
commit with no parents represents the first commit in a repository,
when no previous history was available.

• Commit 35ac17f’s parent is a4153b1 and commit 7ba52e5’s parent is
35ac17f.

19

Understanding Git

• Commit b01aba4’s parent is also a4153b1.

• Commit b8bfed7 has two parents: 7ba52e5 and b01aba4.

You may be asking yourself how can we arrive to such a situation. In short,
a commit that is parent of many commits is creating an alternative history
line: it is the result of a branch operation. Likewise, a commit that has many
parents is joining two histories: it is the result of amerge operation.

Naming commits with references

You probably noticed that referring to commits by their id is awkward. Com-
mit ids are generated automatically as hashes that avoid duplications as
much as possible. However, they are not handy to work on a daily basis since
they are hard to remember and type.

To solve this, git provides a second kind of objects: git references. A git
reference is like a label that you put on a commit, to be able to identify that
commit by a much simpler name afterwards. For example, you can name a
commit as release 1.0 or you can name it as current development commit.

b8bfed7

7ba52e5

35ac17f

a4153b1

b01aba4 feature_branch

master_branch

v1.0	<tag>

HEAD

parent

reference
Labels:

Figure 3-3 git references: a reference refers to a commit. HEAD to a branch

and tags are special fixed references.

As we show in Figure 3-3, there are two main kinds of references in Git:

• tags: tags are fixed labels that once created are not meant to be re-
moved or moved. They are useful for doing releases: people will expect
that a release does not change, otherwise they cannot depend on it.

• branches: branches are transferable labels that can be moved from
commit to commit. They are used to maintain the different history
lines of your project.

20

3.2 Understanding Detached HEAD

Another special reference, called HEAD is internally used by git to know
what is our current working branch. HEAD usually refers to a branch, not di-
rectly a commit. While it would look like an implementation detail, knowing
that HEAD is there can save you many headaches as we will see later.

What you should see is that master, development are just references too.

Now that you have built some strong conceptual gitmuscles, we can con-
tinue in the next sections with some practical Git. Do not hesitate to come
back to these sections to refresh some of the basics. As with any sport or dis-
cipline, understanding and practicing the basics is really important, since
everything else is based on them.

3.2 Understanding Detached HEAD

When your project is in a stable state, it is often good to freeze it and put a
name to that version. That way, other users can load the frozen version using
that well-known name, and also be sure that version will not change. Freez-
ing a version is particularly useful to reproduce a piece of sofware. A frozen
version can be reloaded exactly as it is right now but in some point in the fu-
ture. Thus, software that depends on a frozen version can also benefit from
its stability.

In git, releasing is done via tags. A tag is a label that we put on a particular
commit to be able to find it easily later on, so remember to put short, read-
able names to them. One particular consideration about tags is that they are
not meant to be modified, although you will find in Git’s documentation that
you have special operations (that we do not recommend) to do that.

To create a tag, use the command git tag giving as argument a name for the
tag and a descriptive message. Usual tag names use semantic version conven-
tions, prefixed with a v. For example version 1 would be v1.0.0.

$ git tag -a v1.0.0 -m "First stable release"

You can afterwards list all your tags using the git tag command without
arguments:

$ git tag
v0.1.1-alpha
v1.0.0

Finally, if you want to recover the code that you tagged at some point, you can
use the checkout command with the name of your tag.

$ git checkout v1.0.0
Note: checking out 'v1.0.0'.

You are in 'detached HEAD' state. You can look around, make
experimental changes and commit them, and you can discard any

21

Understanding Git

commits you make in this state without impacting any branches by
performing another checkout.

If you want to create a new branch to retain commits you create, you
may do so (now or later) by using -b with the checkout command
again. Example:

git checkout -b <new-branch-name>

HEAD is now at 0c0e5ff... Adding a title

When checking out a tag, git tells you that we are in detached HEAD state.
And that whatever commit we do in this state will be lost unless we create a
branch. What happened here is that the checkout command modified the
HEAD reference to point to the commit pointed by the tag, instead of a branch.
Figure 3-4 shows the commit graph for this particular case.

37adf4e

master

HEAD

0c0e5ff

v1.0.0

parent

reference
Labels:

Figure 3-4 Detached HEAD after checking out a tag: HEAD refers to a commit

and not a branch anymore.

When you are in a detached HEAD, if you want to save your modification, you
should check out an existing branch using git checkout .

3.3 Merging history lines

The most complicated part of git is not branching or commiting, but merg-
ing. In our time-travel time-line metaphore we said that branching is equiv-
alent to open new time-lines. Merging is the equivalent to join them into a
single history.

The concept behind merging is not difficult. Using the same idea of graph of
commits that we used before, a merge can be represented as a commit that
has several parents, thus joining several histories. Figure 3-5 illustrates such
a merge commit.

22

3.3 Merging history lines

37adf4e

master

0c0e5ff

development

b894b84 dc4a3e7

parent

reference
Labels:

2dae910

Figure 3-5 Merging the history with a merge commit.

However, as you see also in the picture, a merge commit will be referenced
by one of the branches but not both. In other words, a merge operation means
that a first branch will be merged into a second one. Thus the first one will remain
intact. To perform a merge we need to checkout the branch that will host the
changes, and then use the merge command with a branch name as argument.
The following example shows how we can merge the development branch
into the master branch.

$ git checkout master
...
$ git merge development
[Merge made by the 'recursive' strategy.
...
1 file changed, 0 insertions(+), 0 deletions(-)
...]

Managing Conflicts

When merging different history lines, things can go wrong if both history
lines modified the same file or ressource. Such a problem is also called a con-
flict.

To understand the issue, let’s generate a conflict on purpose. We can create
two branches called future-1 and future-2 adding each the same file but
with different contents:

$ git checkout -b future-1
$ echo "I'm in future-1" > conflicting.txt
$ git add conflicting.txt
$ git commit -m "Maybe will cause a conflict"

23

Understanding Git

Let's go back to master and redo the same in another branch
$ git checkout master

$ git checkout -b future-2
$ echo "I'm in future-2" > conflicting.txt
$ git add conflicting.txt
$ git commit -m "I'm sure it will cause a conflict!"

And then trigger a conflict when trying to merge:

We are in future-2 so we will try to merge future-1
$ git merge future-1
Auto-merging conflicting.txt
CONFLICT (add/add): Merge conflict in conflicting.txt
Automatic merge failed; fix conflicts and then commit the result.

We see that as soon as we merge, git tries to automatically merge the file
conflicting.txt. It detects however a merge conflict that does not allow it
to continue. If we check Git’s status, you will now see:

$ git status
On branch future-2
You have unmerged paths.
(fix conflicts and run "git commit")

Unmerged paths:
(use "git add <file>..." to mark resolution)

both added: conflicting.txt

no changes added to commit (use "git add" and/or "git commit -a")

git tells us that conflicting.txt is not merged and that we should fix it.
To continue working, we should resolve such a conflict, telling git what ver-
sion we want to keep. Several solutions work: either we keep the version we
had in future-2, we keep the version incoming from future-1, or we keep a
can manually resolve the conflict and keep whatever version we want.

The easiest, non-thinking, way to merge is to open the conflicting file and
resolve the conflict. For example, if we open our conflicting.txt file with a
text editor we will see:

<<<<<<< HEAD
I'm in future-2
=======
I'm in future-1
>>>>>>> future-1

gitmodified our file adding some <<<<<<<, >>>>>>> and =======markers
in our file. What this markers delimit is the conflicts git found. As the first
line says, the first region (what is between the <<<<<<< and the =======)

24

3.4 Commit in workflow

corresponds at the version that was in HEAD (i.e., future-2). As the last line
says, the last region (what is between the ======= and the >>>>>>>) corre-
sponds to the version that was in future-1.

To resolve the conflict, you should:

• remove all the special markers

• keep only the version you want (or edit it to be different)

• add and commit the conflicting file

For example, let’s say we wanted to keep the version in future-2, we can edit
the file leaving only

I'm in future-2

and then commit the resolved conflict:

$ git add conflicting.txt
$ git commit -m "Resolve conflict"

3.4 Commit in workflow

Commiting means that we are going to move some content from our working
copy to our local repository, as it is shown in Figure 5-1.

github.com
Your PC

local
repository

remote
repository

Working Copy

remoteCommit

Figure 3-6 Commit is an operation that stores things from your working copy

into your local repository.

What the commit command is doing behind is to create a new node in our
history graph. Moreover, it will update the master branch label to point to
this new commit. The commit graph in this case will look as in Figure 3-7.

If we repeat the process, i.e., we apply a change to one of our files, add and
commit our commit graph will change again. A new commit with a new com-
mit id will be created having as parent our previous commit. The master
branch label will be updated and point to this new commit. The commit graph
in this case will look as in Figure 3-8. Notice how our old commit is still there,
but it’s accessible as the parent of our new commit.

25

Understanding Git

37adf4e master HEAD

reference
Labels:

Figure 3-7 History graph after our first commit.

$ git add README.md
$ git commit -m "Adding a title"
[master 0c0e5ff] Adding a title
1 file changed, 1 insertion(+)

37adf4e

master HEAD0c0e5ff

parent

reference
Labels:

Figure 3-8 History graph after our second commit

3.5 Creating new history lines with branches

Branches in git represent different histories. As in one of science fiction
time-travel theories, git branching is equivalent to take one moment in time
have several alternative time-lines from there. Figure 3-9 illustrates the idea,
showing that you can have two different futures from commit 0c0e5ff.

By default, a git repository will include a single branch, calledmaster. Most
people only need a single branch to work. However, it may be useful to split
work in several branches as we will see later. You can ask git for the branches
in the repository using the command git branch -v.

$ git branch -v
* master 0c0e5ff Adding a title

This command shows all branches in the repository, one per line. Then, for

26

3.5 Creating new history lines with branches

37adf4e

master

0c0e5ff

development

b894b84 dc4a3e7

parent

reference
Labels:

Figure 3-9 History lines can be branched from a commit.

each branch it shows what commit it points, and the comment on that com-
mit.

Creating a new branch

To create a new branch, we can use the command git branch [branch_name]
giving as argument the new branch name. This will create a new branch from
our current commit, the one that can be resolved from HEAD. Figure 3-10
shows what happens in the graph view.

$ git branch development

37adf4e

master0c0e5ff

development

HEAD

parent

reference
Labels:

Figure 3-10 A new branch points by default to the same commit as the current

branch.

However, as we see in the graph view, creating a new branch does not modify
HEAD. Indeed, our current branch/commit did not move. We will observe the
same in the command line, if we ask the list of branches. The branch master

27

Understanding Git

is marked with a star, indicating it is the actual branch. And both branches
point to the same commit.

$ git branch -v
* master 0c0e5ff Adding a title
development 0c0e5ff Adding a title

To start working on our new branch, we just need to use the same checkout
command we used for tags.

$ git checkout development
Switched to branch 'development'

Or alternatively, we could have created our branch using the checkout -b
command, which performs a git branch and a git checkout one after the
other. Useful since these operations are usually done together most of the
time.

Instead of branch and then checkout
$ git checkout -b development
Switched to branch 'development'

Then, doing some work and creating a commit will only modify our current
branch and leave master as it was before.

$ touch somefile
$ git add somefile
$ git commit -m "added somefile"
[development b894b84] added somefile
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 somefile
$ git branch -v

master 0c0e5ff Adding a title
* development b894b84 added somefile

Diverging history

Now that we have done some work in a branch, we can make our branches
diverge. We only need to checkout another branch, existing or new, and start
working from there.

$ git checkout master
Switched to branch 'master'
$ touch someotherfile
$ git add someotherfile
$ git commit -m "added someotherfile"
[master dc4a3e7] added someotherfile
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 someotherfile
$ git branch -v
* master dc4a3e7 added someotherfile
development b894b84 added somefile

28

3.6 Interacting with Remote Repositories

This change will create two different history lines, as shown in Figure 3-11.
One history line represented by the master branch, and another history line
represented by the development branch.

37adf4e

master

0c0e5ff

development

b894b84 dc4a3e7

parent

reference
Labels:

Figure 3-11 Divergent history.

3.6 Interacting with Remote Repositories

So far we have worked only on the repository that resides locally in our ma-
chine. This means that mostly all of git features are available without re-
quiring an internet connection, making it suitable for working off-line. How-
ever, working off-line is a two-edged sword: all your changes are captive in
your machine. While your changes are in your machine, nobody else can con-
tribute or collaborate to them. Moreover, losing your machine would mean
losing all your changes too.

Keeping your changes safe means to synchronize them from time to time
with a remote repository. A remote repository is a copy of your local reposi-
tory that is stored remotely, that is, in somewhere else’s machine. This could
be, for example, in your company’s or university’s server, the cloud, etc.

In this section we will see how to interact with remotes, how to configure
them, and how to synchronize our local repository with them.

git Remotes

A git remote is a git server that is hosted in some machine other than ours.
Usually, a remote will be hosted by some company like GitHub or GitLab, but
it can be hosted also within our own company/university/research labora-
tory. Actually, we have already worked with a remote without knowing it,
when we have cloned our repository in Section 2.2. The code we used in that
moment was:

$ git clone git@github.com:[your_username]/[your_repo_name].git

29

Understanding Git

Which can be generalized as:

$ git clone [remote]

Once created, we can interrogate our repository for its remotes using the
command git remote -v. We will then observe that git created automati-
cally a remote named origin pointing to the location that we just cloned.

$ git remote -v
origin git@github.com:[your_username]/[your_repo_name].git (fetch)
origin git@github.com:[your_username]/[your_repo_name].git (push)

This first means that git allows us to assign a name to avoid using urls all the
way. In addition, we can see that git differentiates remotes used for fetching
from those used for pushing. Those differences are important for more ad-
vanced git configuration, that we will not cover in this chapter.

Adding and Removing Remotes

For advanced scenarios, when we need more than the default origin remote,
we will need to use different remotes. All git commands interacting with a
remote repository will have a variant accepting a remote repository as argu-
ment, as we will see later. In those cases, we can specify the remote’s url on
each of those commands to interact with the desired remote.

However, to avoid copy-pasting different remote urls all the time, git pro-
vides us with the possibility of configuring new named remotes such as ori-
gin. The drawback of such an approach is that our list of remotes will need
to be maintained from time to time, for example, if urls become invalid or
our repository moves. In such cases, we will want to modify or remove old
remotes to keep avoid errors or mistakes.

To create a new named remote we can execute the command git remote
add [remote_name] [url].

$ git remote add someRemote [url]
$ git remote -v
origin git@github.com:[your_username]/[your_repo_name].git (fetch)
origin git@github.com:[your_username]/[your_repo_name].git (push)
someRemote [url] (fetch)
someRemote [url] (push)

Existing remotes can then be renamed using the git remote rename [old_name]
[new_name]. And in case the remote name you wanted to rename does not
exist, git will answer you with a fatal error.

$ git remote rename someRemote company_remote
$ git remote rename non_existent newname
fatal: No such remote: non_existent

30

3.6 Interacting with Remote Repositories

Existing remotes can then be renamed using the git remote rename [old_name]
[new_name]. And in case the remote name you wanted to rename does not
exist, git will answer you with a falta error.

$ git remote rename someRemote company_remote
$ git remote rename non_existent newname
fatal: No such remote: non_existent

Finally, to remove an existing named remote you can use the git remote
remove [remote_name]. And in case the remote name you wanted to re-
name does not exist, git will answer you with a falta error.

$ git remote remove company_remote
$ git remote remove non_existent
fatal: No such remote: non_existent

Update your repository: Fetching and Pulling

Before being able to share our commits in some external server, we need be-
fore to update our repository to avoid them being out of synchronization.
While you can always try to share your commits by pushing (see Section 3.6),
you will see with experience that git favors pulling before pushing. This is,
among others, because in your local repository you can do whatever manip-
ulation you want to solve mistakes and merge conflicts, while you cannot do
the same in your remote repository.

Concretely, when using git you have to have a state of mind where:

1. . you update your repository

2. . you fix locally whatever existing conflict between your work and the
remote work

3. . you then publish your changes.

Actually, our recommended workflow has one more step before updating:
commit. If you try to update when your working copy is dirty, updating can
destroy your changes. Instead, if you commit before doing an update, your
changes will be safely stored in the database. You’ll be able to do any ex-
pert manipulation with your changes once they are in the repository. As
we said before, a git repository is no other than a database. It is a database
that stores commits and references to those commits. And to update this
database, we require two basic operations:

• fetch. Bring the commits and references from a remote repository to
your local repository without affecting your own.

• merge. Merge the remote references with your own references, the
same operation explained in Section 3.3.

In addition, the pull operation does both fetch and merge in a single opera-
tion (Figure 3-12).

31

Understanding Git

Fetching is done through the git fetch [remote] command, where we can
specify both a remote url or a remote name as remote. Or, if we don’t spec-
ify a remote, git will by default fetch from whatever remote is specified as
origin. Executing a fetch will show an output like the following:

$ git fetch [remote_name]
remote: Counting objects: 79, done.
remote: Compressing objects: 100% (23/23), done.
remote: Total 79 (delta 52), reused 74 (delta 52), pack-reused 4
Unpacking objects: 100% (79/79), done.
From git://github.com/[project_owner]/[your_repo_name]

6b52ae6..5c53245 development -> [remote_name]/development
* [new branch] issue/876 -> [remote_name]/issue/876
* [new tag] v1.0 -> v1.0

Indeed, fetch will bring some objects (e.g., commits) to our repository, bring
new branches and so on, but it will not update any of your branches or tags.
We can then procceed to merge our local branch with the one in the remote
by doing a normal merge operation but indicating a remote branch (that is, a
branch prefixed by its remote name). Of course, as any merge operation, this
can incurr into a conflict, that we should fix locally before continuing.

github.com

Your PC

local
repository

remote
repositoryWorking Copy remote

fetch

merge

pull

Figure 3-12 Fetch is an operation that brings things from a remote into your lo-

cal repository. Merge will join the remote history with your current history and

update your working copy. Pull will do both of them.

$ git merge [remote_name]/master
[Merge made by the 'recursive' strategy.
...
1 file changed, 10 insertions(+), 1 deletions(-)
...]

These both operations could have been replaced by a git pull [remote_name]
[branch_name] command. Pulling will fetch all commits from the branch
named [branch_name] in the remote [remote_name] and then merge those
commits with your current branch.

32

3.6 Interacting with Remote Repositories

Share your commits: Pushing

The final step in our git journey is to share our changes to the world. Such
sharing is done by pushing commits to a remote repository, as shown in Fig-
ure 3-13. To push, you need to use the git command git push [remote]
[remote_branch]. This command will send the commits pointed from your
your current branch to the remote [remote] in the branch [remote_branch].

$ git push origin temp
Counting objects: 3, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 271 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To git@github.com:[your_username]/[your_repo_name].git

b6dcc3f..f269295 master -> temp

github.com

Your PC

local
repository

remote
repositoryWorking Copy remote

push

commit

Figure 3-13 Push is an operation that sends commits from your local repository

to a remote repository.

To avoid specifying the remote and destination branch on every push (which
may be a bit verbose), you can avoid those parameters and rely on git default
values. By default the git push operation will try to push to the branch’s
upstream. A branch’s upstream is the per-branch configuration saying to
which remote/branch pair it should push by default. When we clone a repos-
itory, the default branch comes with an already configured upstream. We can
interrogate git for the branch’s upstreams with the super verbose flag in the
branch command, i.e., git branch -vv, where we can see for example that
ourmaster branch’s upstream is origin/master, while our development
branch has no upstream.

$ git branch -vv # doubly verbose!
development 1656797 This commit adds a new feature
master f269295 [origin/master] First commit

On the other side, when a branch has no upstream, a push operation will by
default fail with a git error.git will ask us to set an upstream, or otherwise

33

Understanding Git

specify a pair remote/branch for each push.

$ git push
fatal: The current branch test has no upstream branch.
To push the current branch and set the remote as upstream, use

git push --set-upstream origin test

$ git push --set-upstream origin test
Counting objects: 3, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 271 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To git@github.com:[your_username]/[your_repo_name].git

b6dcc3f..f269295 master -> test

Finally, another thing may happen while pushing: gitmay reject our changes.

$ git push
To git@github.com:guillep/test.git
! [rejected] master -> master (fetch first)
error: failed to push some refs to

'git@github.com:[your_username]/[your_repo_name].git'
hint: Updates were rejected because the remote contains work that

you do
hint: not have locally. This is usually caused by another repository

pushing
hint: to the same ref. You may want to first integrate the remote

changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for

details.

As the error message says, the remote has changes that we do not have lo-
cally, so we need to update our repository first. This can be solved with a pull
and a merge.

3.7 Exercises

1. Exercise 1. Get a repository with many commits and checkout the par-
ent of the current commit. This will put you in ”Detached HEAD” state.
Solve it using a new branch.

2. Exercise 2. Try to merge your previous branch into your new branch.
What kind of merge is it?

3. Exercise 3. Repeat the scenario of the first exercise, apply a change
to your one of your files and commit it. Try to merge your previous
branch into your new branch. What kind of merge is it?

34

3.7 Exercises

4. Exercise 4. Create a new online repository and push your changes into
it.

5. Exercise 5. What is the smaller set of steps you could imagine to create
a conflict?

35

CHA P T E R 4
Practical Git Scenarios

In this chapter we will show some git features that can help you in your daily
use of git.

4.1 Before commit little helpers

You may add too fast a file to your staging area or index. Or you may want to
discard the changes you did to your working copy to get back in the situation
where no changes were made. The two problems can be handled as follows.

Remove Files from the Staging Area

It may happen that you went too fast and added a file to your staging area
(remember the groceries’ list) and that you changed your mind and do not
want to add it anymore. Your file is not committed so a simple reset will do
the job. You can either remove single files or everything.

$ git reset HEAD file
Or everything
$ git reset HEAD .

Getting back your file as in your local repository

Another common scenario is that you modified a file of your working copy
and your realize that it would be better to drop the changes and get back the
file that is versioned in your local repository. Simply checkouting again will
fix your problem

$ git checkout file

37

Practical Git Scenarios

4.2 Exploring the History

The git log Command

The commit graphs we have shown so far are not evident at all while when
we use the git status command. There is however a way to ask git about
them using the git log command.

$ git log
commit 0c0e5ff55b56fe8eabc1661a1da64b41f9d74472
Author: Guille Polito <guillermopolito@gmail.com>
Date: Wed Mar 21 15:37:32 2018 +0100

Adding a title

commit 37adf4eaa945cbd7460991f88bff5aa902db06ce
Author: Guille Polito <guillermopolito@gmail.com>
Date: Wed Mar 21 14:02:43 2018 +0100

first version

git log prints the list of commits in order of parenthood. The one on the
top is the most recent commit, our last commit. The one below is its parent,
and so on. As you can see, each commit has an id, the author name, the times-
tamp and its message.

To display a more compact version (commit ids + message) of the log use

git log --oneline

We can also ask git what are the changes introduced in a particular commit
using the command git show.

$ git show 0c0e5ff55b56fe8eabc1661a1da64b41f9d74472
commit 0c0e5ff55b56fe8eabc1661a1da64b41f9d74472
Author: Guille Polito <guillermopolito@gmail.com>
Date: Wed Mar 21 15:37:32 2018 +0100

Adding a title

diff --==git== a/README.md b/README.md
index e69de29..cad05f1 100644
--- a/README.md
+++ b/README.md
@@ -0,0 +1 @@
+! a title
\ No newline at end of file

That will give us the commit description as in git log plus a (not so read-
able) diff of the modified files showing the inserted, modified and deleted

38

4.2 Exploring the History

lines. More advanced graphical tools are able to read this description and
show a more user-friendly diff.

Accessing the History Graph

Git’s log provides a more graphish view on the terminal using some cute ascii
art. This view can be accesses through the git log --graph --oneline
--all command. Here is an example of this view for a more complex project.
In this view, stars represent the commits with their ids and commit messages,
and lines represent the parenthood relationships.

$ git log --graph --oneline --all
* 4eb8446 Documenting
* e5a3e2e Add tests
* 680a79a Some other
| * ed4854f Merge pull request #1137
| |\
| | * 9e30e37 Some feature
| * | ba7f65c Merge pull request #1138
| |\ \
| | * | 31a40c4 Some Enhancement
| | |/
| * | 2d4698d Merge pull request #1139
| |\ \
| | * | 20c0ff4 Some fix
| | |/
| * | ae3ec45 Merge pull request #1136

However, we are not always in the mood of using the terminal, or of wanting
to decode what was done in ascii art. There are tools that are more suitable
to explore the history of a project, usually providing some nice graphical ca-
pabilities. This is the case of tools such as SourceTree (Figure 4-1) or Github’s
network view (Figure 4-2).

Figure 4-1 Example of SourceTree’s commit graph view.

39

Practical Git Scenarios

Figure 4-2 Example of Github’s commit graph view.

4.3 Discarding your Local Committed Changes

It comes the time for every woman/man to make mistakes and want to dis-
card them. Doing so may be dangerous, since once discarded you will not able
to recover your changes. It is however possible to instruct git to do so. For
it, there are two git comments that will perform the task for you and when
combined they will completely discard every dirty file and directory in your
repository:git reset and git clean. commit_id is the commit where you
want to be.

$ git reset --hard <commit_id>
$ git clean -df

The -d option removes untracked directories in addition to untracked files,
while the -f option is a shortcut --force, forcing the corresponding dele-
tions.

If you want to just revert the last commit you can also use

$ git reset --hard HEAD~1
$ git clean -df

The reason for needing two commands instead of one relies on the fact that
git has several staging areas (such as the ones used to keep the tracked files),
which we usually would like to clean when we discard the repository. Of course,
experienced readers may search why they would need both in Git’s documen-
tation.

40

4.4 Ignoring Files

4.4 Ignoring Files

Many times we will find that we do not want to commit some files that are in
our repository’s directory. This is mostly the case of generated or automati-
cally downloaded files. For example, imagine you have a C project and some
makefiles to compile it, generating a binary library. While it would be good to
store the result of compilation from time to time, storing it in a git reposi-
tory (or SVN, or Bazar) may be a cause of headaches. First, as you will see in
3, this may be a cause for conflicts. Second, since we should be able to gener-
ated such binary library from the sources, having the already compiled result
in the repository does not add so much value.

This same ideas can be used to ignore any kind of generated file. For example,
pdfs generated by document generation tools, meta-data files generated by
IDEs and tools (e.g., Eclipse), compiled libraries (e.g., dll, so, or dylib files).

In such cases, we can tell git to ignore cetain files using the .gitignore file.
The .gitignore file is an optional text file that we can write in the root of
our repository with a list of file paths to ignore.

Example of .gitignore file

Lines starting with hashtags are comments

A file name will ignore that file
someignoredfile.txt

A file name will ignore that file
someignoredfile.txt

A file pattern will ignore all pdf files
*.pdf

Once your file is ready, you have to add it and commit it to git to make it take
effect.

$ git add .gitignore
$ git commit -m "Added gitignore"

From this moment on, all listed files will be ignored by git add and git
status. And you will be able to perform further commands to add ”all but
ignored files”:

$ git add .

If a file or a file type is tracked but you want git to ignore its changes after-
ward, adding it to .gitignore file will not make the job i.e. git will continue
to track it. To avoid keeping track of it in the future, but secure it locally in
your working directory, it must be removed from the tracking list using ==git
rm –cached <file> (.<file_type>)==. Nevertheless, be aware that the file is still
present in the past history!

41

Practical Git Scenarios

4.5 Commiting a File Filtered out by the .gitignore

For certain workflow, it is better to filter out certain files such as generated
pdf but from time to time you may want to version a file that would not be
because its extension or folder is listed in the .gitignore file. You can still
commit such a such without having to touch the .gitignore file. You can
use the --force option of the add command.

$ git add -f that.pdf
$ git commit -m "that file is still important"

4.6 Getting out of Detached HEAD

Detached head means no other than ”HEAD is not pointing to a branch”. Be-
ing in a detached HEAD state is not bad in itself, but it may provoke loss of
changes. As a matter of fact, any commit that is not properly referenced by
another commit or by another git reference (tag, branch) may be garbage
collected.

git will not forbid you to commit in this state, but any new commit you cre-
ate will only reachable if you remember the commit hash. To get out of det-
tached HEAD, the easiest solution is to checkout a branch, as we will see in
the next section. Checking out a branch will set HEAD to point to a branch
instead of a commit, saving you some HEADaches.

4.7 Accessing your Repository through SSH

To be able to access your repository from your local machine, you need to
setup your credentials. Think it this way: you need to tell the server who you
are on every interaction you have with it. Otherwise, Github will reject any
operation against your repository. Such a setup requires the creation and
uploading of SSH keys.

An SSH key works as a lock: a key is actually a pair of a public and a private
key. The private key is meant to reside in your machine and not be published
at all. A public key is meant to be shared with others to prove your identity.
Whenever you want to prove your identity, SSH will exchange messages en-
crypted with your public key, and see if you are able to decrypt it using your
private key.

To create an SSH key, in *nix systems you can simply type in your terminal

$ ssh-keygen -t rsa -b 4096 -C "your_email@some_domain.com"

Follow the instructions in your terminal such as setting the location for your
key pair (usually it is $HOME/.ssh) and the passphrase (a kind of password).
Finally, you’ll end up with your public/private pair on the selected location.
It is now time to upload it to Github.

42

4.8 Rewriting the History

Connect yourself to your Github settings and go to the ”SSH and GPG keys”
menu. Import there the contents of your public key file. You should be now
able to use your repository.

4.8 Rewriting the History

Many times it happens that we accidentally commit something wrong. Maybe
we wanted to commit more or less things, maybe a completely different con-
tent, or we did a mistake in the commit’s message. In these cases, we can
rewrite Git’s history, e.g, undo our current commit and go back to the pre-
vious commit, or rewrite the current commit with some new properties.

Be careful! Rewriting the history can have severe consequences. Imagine that
the commit you want to undo was already pushed. This means that somebody
else could have pulled this commit into her/his repository. If we undo this
already published commit, we are making everybody else’s repositories obso-
lete! This can be indeed problematic depending on the number of users the
project has, and their knowledge on git to be able to solve this issue.

Undo a commit using git reset --hard

To undo the last commit, it is as easy as:

$ git reset --hard HEAD~1

git reset --hard [commitish]makes your current branch point to [com-
mitish]. HEAD is your current head, and you can read ~1 as ”minus one”. In
other words, HEAD~1 is head minus one, which boils down to the parent of
head, our previous commit.

You can use this same trick to rewrite the history in any other way, since you
can use any commitish expression to reset. For example, HEAD~17means
17 versions before head, or someBranch~4means four commits before the
branch someBranch.

Update a Commit’s Message using git commit --amend

To change our current commit’s message you can use the following com-
mand:

$ git commit --amend -m "New commit message"

Or, if you don’t use the -m option, a text editor will be prompt so you can edit
a commit message.

$ git commit --amend

You can use the same trick not only to modify a commit’s message but to
modify your entire commit. Actually, just adding new things with git add

43

Practical Git Scenarios

before an --amend will replace the current commit with a new commit merg-
ing the previous commit changes with what you just added.

4.9 How to Overwrite/Modify Commits

WARNING: It is highly not recommended to rewrite the history of a repo es-
pecially when part of it has already been pushed to a remote. Modifying the
history will most likely break the history shared by the different collabora-
tors and you may deal with an inextricable merge conflict.

Change the last Commit

Imagine you have just committed your changes and have not pushed them
yet, but

1. you are not satified with the commit message

$ git log --oneline
$ git commit --amend -m "Updated commit message"
$ git log --oneline

1. you forgot to save some modification or to add some files before com-
mitting. Then make your changes and use

$ git commit -a --amend --no-edit

Merge two commits

First, it is worth repeating that you must think twice before modifying the
history of the repo. Now, assume that you have not pushed the corresponding
commits. Merging two consecutive commits is a way to work with a cleaner
tree. Consider you want to merge commits ”Intermediate” and ”Old”

$ git log --oneline

eae7846 New
71c0c64 Intermediate
f039832 Old
cca92f1 Even older

Then, you can interactively -i focus on the last three HEAD~3 commit.

$ git rebase -i HEAD~3

pick f039832 Old
pick 71c0c64 Intermidiate
pick eae7846 New

44

4.9 How to Overwrite/Modify Commits

Observe that the commits are displayed in the reversed order. Now you can
squash the commit ”Intermediate” into its parent commit ”Old”

pick f039832 Old
squash 71c0c64 Intermidiate
pick eae7846 New

And set the message e.g. ”Merge intermediate + old” attached to the single.

This is a combination of 2 commits.
This is the 1st commit message:

Old

This is the commit message #2:

Intermediate

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.

$ git log --oneline

eae7846 New
651375a Merge intermediate + old
cca92f1 Even older

Note that the commit id has changed

Pushing Rewritten History

As soon as the history we have rewritten was never pushed before, we can
continue working normally and pushing our changes then without prob-
lems. However, if we have already pushed the commit we want to undo, this
means that we are potentially impacting all users of our repository. Because
of the problems it can pose to other people, pushing a rewritten history is
not a completely favoured by git. Better said, it is not allowed by default and
you’ll be warned about it:

$ git push
To git@github.com:REPOSITORY_OWNER/YOUR_REPOSITORY.git
! [rejected] YOUR_BRANCH -> YOUR_BRANCH (non-fast-forward)
error: failed to push some refs to

'git@github.com:REPOSITORY_OWNER/YOUR_REPOSITORY.git'
hint: Updates were rejected because the tip of your current branch

is behind
hint: its remote counterpart. Integrate the remote changes (e.g.
hint: '==git== pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in '==git== push --help'

for details.

45

Practical Git Scenarios

With this message gitmeans that you should not blindly overwrite the his-
tory. Also, it suggests to pull changes from the remote repository. However,
doing that will bring back to our repository the history we wanted to undo!
What we want to do is to impose our current (undone) state in the remote
repository. To do that, we need to force the push using the git push --force
or the git push -f option.

$==git== push -f
Total 0 (delta 0), reused 0 (delta 0)
To git@github.com:REPOSITORY_OWNER/YOUR_REPOSITORY.git
+ a1713f3...6e0c7bf YOUR_BRANCH -> YOUR_BRANCH (forced update)

4.10 Conclusion

This chapter presented some operations that may help you. As a general
principle avoid rewriting history because you may lose changes and get into
unrecovable state.

46

CHA P T E R 5
Publishing your first Pharo

project with Iceberg

In this chapter, we explain how you can publish your project on GitHub using
Iceberg. We do not explain basic concepts like commit, push/pull, merging,
or cloning.

A strong precondition before reading this chapter is that you must be able to
publish from the command line to the git hosting service that you want to
use. If you cannot do not expect Iceberg to fix it magically for you. Let us get
started.

5.1 For the impatient

If you do not want to read everything, here is the executive summary.

• Create a project on GitHub or any git-based platform.

• [Optional] Configure Iceberg to use custom SSH keys.

• Add a project in Iceberg.

– Optionally but strongly recommended, in the cloned repository,
create a directory named src on your file system. This is a good
convention.

• In Iceberg, open your project and add your packages.

• Commit to your project.

• [Optional] Add a baseline to ease loading your project.

• Push your change to your remote repository.

47

Publishing your first Pharo project with Iceberg

You are done. Now we can explain calmly.

5.2 Basic Architecture

As git is a distributed versioning system, you need a local clone of the repos-
itory and a working copy. Your working copy and local repository are usually
on your machine. This is to this local repository that your changes will be
committed to before being pushed to remote repositories (Figure 5-1). We
will see in the next Chapter that the situation is a bit more complex and that
Iceberg is hiding the extra complexity for us.

github.com
Your PC

repository github
repository

Working Copy

remoteCommit

Figure 5-1 A distributed versioning system.

5.3 Create a new project on GitHub

While you can save locally first and then later create a remote repository, in
this chapter we first create a new project on GitHub. Figure 5-2 shows the
creation of a project on GitHub. The order does not matter. What is different
is that you should use different options when addin a repository to Iceberg as
we will show later.

5.4 [Optional] SSH setup: Tell Iceberg to use your keys

To be able to commit to your git project, you should either use HTTPS or
you will need to set up valid credentials in your system. In case you use SSH
(the default way), you will need to make sure those keys are available to your
GitHub account and also that the shell adds them for smoother communi-
cation with the server. See the Chapter 9 Tips and Tricks for some help with
setting up your ssh keys.

Go to settings browser, search for ”Use custom SSH keys” and enter your data
there as shown in Figure 5-3).

48

5.4 [Optional] SSH setup: Tell Iceberg to use your keys

Figure 5-2 Create a new project on GitHub.

Figure 5-3 Use Custom SSH keys settings.

Alternatively, you can execute the following expressions in your image play-
ground or add them to your Pharo system preference file (See Menu System
item startup):

IceCredentialsProvider useCustomSsh: true.
IceCredentialsProvider sshCredentials

publicKey: 'path\to\ssh\id_rsa.pub';
privateKey: 'path\to\ssh\id_rsa'

Pro Tip: This can be used too in case you have a non-default key file. You just
need to replace id_rsa with your file name.

49

Publishing your first Pharo project with Iceberg

5.5 Iceberg Repositories browser

Figure 5-4 shows the top-level Iceberg pane. It shows that for now you do not
have defined nor loaded any project. It shows the Pharo project and indicates
that it could not find its local repository by displaying ’Local repository miss-
ing’.

First, you do not have to worry about the Pharo project or repository if you
do not want to contribute to Pharo. So just go ahead. Now if you want to un-
derstand what is happening here is the explanation. The Pharo system does
not have any idea where it should look for the git repository corresponding
to the source of the classes it contains. Indeed, the image you are executing
may have been built somewhere, patched or not many times. Now Pharo is
fully operational without having a local repository. You can browse system
classes and methods because Pharo has its own internal source management.
This warning indicates that if you want to version Pharo system code using
git then you should indicate to the system where the clone and working
copy are located on your local machine. So if you do not plan to modify and
version the Pharo system code, you do not have to worry.

Figure 5-4 Iceberg Repositories browser on a fresh image indicates that if you

want to version modifications to Pharo itself you will have to tell Iceberg where

the Pharo clone is located. But you do not care.

5.6 Add a new project to Iceberg

The first step is then to add a project to Iceberg:

• Press the ’+’ button to the right of the Iceberg main window.

• Select the source of your project. In our example, since you did not
clone your project yet, choose the GitHub option.

Notice that you can either use SSH (Figure 5-5) or HTTPS (Figure 5-6).

50

5.6 Add a new project to Iceberg

Figure 5-5 and 5-6) instruct Iceberg to clone the repository we just created on
GitHub. We specify the owner, project, and physical location where the local
clone and git working copy will be on your disk.

Figure 5-5 Cloning a project hosted on GitHub via SSH.

Figure 5-6 Cloning a project hosted on GitHub via HTTPS.

Iceberg has now added your project to its list of managed projects and cloned
an empty repository to your disk. You will see the status of your project, as in
Figure 5-7. Here is a breakdown of what you are seeing:

• MyCoolProjectWithPharo has a star and is green. This usually means
that you have changes which haven’t been committed yet, but may also
happen in unrelated edge cases like this one. Don’t worry about this for
now.

• The Status of the project is ’No Project Found’ and this is more impor-
tant. This is normal since the project is empty. Iceberg cannot find its

51

Publishing your first Pharo project with Iceberg

metadata. We will fix this soon.

Figure 5-7 Just after cloning an empty project, Iceberg reports that the project is

missing information.

Later on, when you will have committed changes to your project and you
want to load it in another image, when you clone again, you will see that Ice-
berg reports that the project is not loaded as shown in Figure 5-8.

Figure 5-8 Adding a project with some contents shows that the project is not

loaded - not that it is not found.

5.7 Repair to the rescue

Iceberg is a smart tool that tries to help you fix the problems you may en-
counter while working with git. As a general principle, each time you get
a status with red text (such as ”No Project Found” or ”Detached Working
Copy”), you should ask Iceberg to fix it using the Repair command.

Iceberg cannot solve all situations automatically, but it will propose and ex-
plain possible repair actions. The actions are ranked from most to least likely
to be right one. Each action has a displayed explanation of the situation and
the consequences of using it. It is always a good idea to read them. Setting
your repository the right way makes it extremely hard to lose any piece of

52

5.8 Create project metadata

code with Iceberg and Pharo is general since Pharo contains its own copy of
the code.

Figure 5-9 Create project metadata action and explanation.

5.8 Create project metadata

Iceberg reported that it could not find the project because some metadata
were missing such as the format of the code encodings and the example lo-
cation inside the repository. When we activate the repair command we get
Figure 5-9. It shows the ”Create project metadata” action and its explanation.

When you choose to create the project metadata, Iceberg shows you the filesys-
tem of your project as well as the repository format as shown in Figure 5-10.
Tonel is the preferred format for Pharo projects. It has been designed to be
Windows and file system friendly. Change it only if you know what you are
doing!

Before accepting the changes, it is a good idea to add a source (src) folder
to your repository. Do that by pressing the + icon. You will be prompted to
specify the folder for code as shown in Figure 5-11. Iceberg will show you the
exact structure of your project as shown in Figure 5-12.

After accepting the project details, Iceberg shows you the files that you will
be committing as shown in Figure 5-13

Once you have committed the metadata, Iceberg shows you that your project
has been repaired but is not loaded as shown in Figure 5-8. This is normal
since we haven’t added any packages to our project yet. You can optionally
push your changes to your remote repository.

Your local repository is ready, let’s move on to the next part.

53

Figure 5-10 Showing where the metadata will be saved and the format encod-

ings.

Figure 5-11 Adding a src repository for code storage.

Figure 5-12 Resulting situation with a src folder.

5.9 Add and commit your package using the Working copy browser

Figure 5-13 Details of metadata commit.

5.9 Add and commit your package using theWorking copy

browser

Once your project contains Iceberg metadata, Iceberg will be able to manage
it easily. Double click on your project to bring aWorking copy browser for your
project. It lists all the packages that compose your project. Right now you
have none. Add a package by pressing the + (Add Package) iconic button as
shown by Figure 5-14.

Figure 5-14 Adding a package to your project using the Working copy browser.

Again, Iceberg shows that your package contains changes that are not com-
mitted using the green color and the star in front of the package name as
shown in Figure 5-15.

55

Publishing your first Pharo project with Iceberg

Figure 5-15 Iceberg indicates that your package has unsaved changes – indeed

you just added your package.

Commit the changes

Commit the changes to your local repository using the Commit button as
shown in Figure 5-16. Iceberg lets you choose the changed entities you want
to commit. Here this is not needed but this is an important feature. Iceberg
will show the result of the commit action by removing the star and changing
the color. It now shows that the code in the image is in sync with your local
repository as shown by Figure 5-17. You can commit several times if needed.

Figure 5-16 When you commit changes, Iceberg shows you the code about to be

committed and you can chose the code entities that will effectively be saved.

Figure 5-17 Once changes committed, Iceberg reflects that your project is in sync

with the code in your local repository.

56

5.10 Conclusion

Publish your changes to your remote

Now you are nearly done. Publish your changes from your local directory
to your remote repository using the Push button. You may be prompted for
credentials if you used HTTPS.

When you push your changes, Iceberg will show you all the commits awaiting
publication and will push them to your remote repository as shown in Figure
5-18. The figure shows the commits we are about to make to add a baseline,
which will allow you to easily load your project in other images.

Figure 5-18 Publishing your committed changes.

Now you are basically done.

5.10 Conclusion

You now know the essential aspects of managing your code with GitHub. Ice-
berg has been designed to guide you so please listen to it unless you really
know what you are doing. You are now ready to use services offered around
GitHub to improve your code control and quality!

57

CHA P T E R6
Configure your project nicely

Versioning code is just the first part of making sure that you and others can
reload your code. In this chapter we describe how to define a baseline, a
project map that you will use to define dependencies within your project and
dependencies to other projects. We also show how to add a good .gitignore
file. In the next chapter, we will show how to configure your project to get
more out of the services offered within the GitHub ecosystem such as Travis-
ci to execute automatically your tests.

We start by showing you how you can commit your code if you did not create
your remote repository first.

Figure 6-1 Creating a local repository without pre-existing remote repository.

59

Configure your project nicely

6.1 What if I did not create a remote repository

In the previous chapter, we started by creating a remote repository on GitHub.
Then we asked Iceberg to add a project by cloning it from GitHub. Now you
may ask yourself about the process to publish first your project locally with-
out a pre-existing repository. This is actually simple.

Create a new repository.

When you add a new repository use the ’New repository’ option as shown in
6-1.

Add a remote.

If you want to commit to a remote repository, you will have to add it using
the Repository browser. You can access this browser through the associated
menu item or the icon. The Repository browser gives you access to the git
repositories associated with your project: you can access, manage branches
and also add or remove remote repositories. Figure 6-3 shows the repository
browser on our project.

Figure 6-2 Opening the repository browser let you add and browse branches as

well as remote repositories.

Pressing on the ’Add remote’ iconic button adds a remote by filling the needed
information that you can find in your GitHub project. Figure 6-3 shows it for
the sample project using SSH and Figure 6-4 for HTTPS.

Push to the remote.

Now you can push your changes and versions to the remote repository using
the Push iconic button. Once you have pushed you can see that you have one
remote as shown in Figure 6-5.

60

Figure 6-3 Adding a remote using the Repository browser of your project (SSH

version).

Figure 6-4 Adding a remote using the Repository browser of your project (HTTP

version).

Figure 6-5 Once you pushed you changes to the remote repository.

Configure your project nicely

6.2 Configuring automatically Pharo to commit in HTTP-

S/SSH

With recent version of github, you should use a token to connect using HTTPS
to be able to commit to your repository. Now you can configure Pharo to
store your token as well your github account authentification using startup
preferences.

In addition you can configure Pharo to point to your private and public SSH
key as follows:

StartupPreferencesLoader default executeAtomicItems: {
StartupAction

name: 'Logo'
code: [PolymorphSystemSettings showDesktopLogo: false] .

StartupAction
name: 'Git Settings'
code: [

Iceberg enableMetacelloIntegration: true.
IceCredentialStore current

storeCredential: (IcePlaintextCredentials new
username: 'xxJohnDoe';
password: 'xxJohnDoePassword';
host: 'github.com';
yourself).

IceCredentialsProvider sshCredentials
username: 'git';
publicKey: 'Path to your public rsa.pub file (public

key)';
privateKey: 'Path to your private rsa file (private

key)'.
IceCredentialStore current

storeCredential: (IceTokenCredentials new
username: 'xxJohnDoe';
token: 'magictoken here ';
yourself)

forHostname: 'github.com'.
].

}

You should place this file in the preference folder that depends on your OS.
You can find this place by using the Startupmenu. Note that you can config-
ure this for all or one specific version of Pharo.

6.3 Defining a BaselineOf

A baseline is a description of the architecture of a project. You will express
the dependencies between your packages and other projects so that all the

62

6.4 Loading from an existing repository

dependent projects are loaded without the user having to understand them
or the links between them.

A baseline is expressed as a subclass of BaselineOf and packaged in a pack-
age named 'BaselineOfXXX' (where ’XXX’ is the name of your project). So if
you have no dependencies, you can have something like this.

BaselineOf subclass: #BaselineOfMyCoolProjectWithPharo
...
package: 'BaselineOfMyCoolProjectWithPharo'

BaselineOfMyCoolProjectWithPharo >> baseline: spec
<baseline>
spec

for: #common
do: [spec package: 'MyCoolProjectWithPharo']

Once you have defined your baseline, you should add its package to your
project using the working copy browser as explained in the previous chapter.
You should obtain the following situation shown in Figure 6-6. Now, commit
it and push your changes to your remote repository.

Figure 6-6 Added the baseline package to your project using the Working copy

browser.

A more elaborated web resource about baseline possibility is available at:
https://github.com/pharo-open-documentation/pharo-wiki/.

6.4 Loading from an existing repository

Once you have a repository you committed code to and would like to load it
into a new Pharo image, there are two ways to work this out.

63

https://github.com/pharo-open-documentation/pharo-wiki/
https://github.com/pharo-open-documentation/pharo-wiki/

Configure your project nicely

Manual load.

• Add the project as explained in the first chapter

• Open the working copy browser by double-clicking on the project line
in the repositories browser.

• Select a package and manually load it.

Scripting the load.

The second way is to make use of Metacello. However, this will only work if
you have already created a BaselineOf. In this case, you can just execute the
following snippet:

Metacello new
baseline: 'MyCoolProjectWithPharo';
repository: 'github://Ducasse/MyCoolProjectWithPharo/src';
load

For projects with metadata, like the one we just created, that’s it. Notice that
we not only mention the GitHub pass but also added the code folder (here
src).

6.5 [Optional] Add a nice .gitignore file

Iceberg automatically manages files such as .gitignore.

For Pharo 70 and up
http://www.pharo.org
Since Pharo 70 all the community is moving to git.

image, changes and sources
*.changes
*.sources
*.image

Pharo Debug log file and launcher metadata
PharoDebug.log
pharo.version
meta-inf.ston

Since Pharo 70, all local cache files for Monticello package
cache, playground, epicea... are under the pharo-local

/pharo-local

Metacello-github cache
/github-cache
github-*.zip

64

6.6 Going further: Understanding the architecture

6.6 Going further: Understanding the architecture

As git is a distributed versioning system, you need a local clone of your repos-
itory. In general, you edit your working copy located on your hard drive and
you commit to your local clone, and from there you push to remote reposi-
tories like GitHub. We explain here the specificity of managing Pharo with
git.

When coding in Pharo, you should understand that you are not directly edit-
ing your local working copy, you are modifying objects that represent classes
and methods that are living in the Pharo environment. Therefore it is like
you have a double working copy: Pharo itself and the git working copy.

When you use git command lines, you have to understand that there is the
code in the image and the code in the working copy (and your local clone).To
update your image, you first have to update your git working copy and then
load code from the working copy to the image. To save your code you have to
save the code to files, add them to your git working copy and commit them to
your clone.

Now the interesting part is that Iceberg manages all this for you transpar-
ently. All the synchronization between these two working copies is done be-
hind the scene.

Figure 6-7 shows the architecture of the system.

• You have your code in the Pharo image.

• Pharo is acting as a working copy (it contains the contents of the local
git repository).

• Iceberg manages the publication of your code to the git working copy
and the git local repository.

• Iceberg manages the publication of your code to remote repositories.

• Iceberg manages the re-synchronization of your image with the git
local repository, git remote repositories and the git working copy.

6.7 Conclusion

We show how to package your code correctly. It will help you to reload it and
use the services that we will present in the next chapter.

65

Figure 6-7 Architecture.

CHA P T E R 7
Empowering your projects

Now that you can save your code on GitHub in a breeze, you can take advan-
tage of services to automate actions. For example, to execute tests using
Travis) or AppVeyor for Windows.

7.1 Adding Travis integration

By adding two simple files, you can have the tests of your project automat-
ically run after each commit with Travis. You need to enable Travis in your
GitHub repository. Since Travis is changing its policy and work tightly in re-
lation with GitHub you might have a better time checking on their respective
websites.

You should also add the two following files: .travis.yml and .smalltalk.ston
in the top level of your repository.

.travis.yml

language: smalltalk
sudo: false
os:

- linux
smalltalk:

- Pharo-7.0

.smalltalk.ston
SmalltalkCISpec {

#loading : [
SCIMetacelloLoadSpec {

#baseline : 'MyCoolProjectWithPharo',
#directory : src',

67

http://www.travis-ci.com
https://www.appveyor.com

Empowering your projects

#platforms : [#pharo]
}

]
}

If you have done everything right, Travis will pick up the changes and will
start testing and building your project… and you are done, congratulations!

7.2 On windows

If you want to make sure that your code runs on Windows, you should use the
Appveyor service and add the appveyor.yml file.

environment:
CYG_ROOT: C:\cygwin
CYG_BASH: C:\cygwin\bin\bash
CYG_CACHE: C:\cygwin\var\cache\setup
CYG_EXE: C:\cygwin\setup-x86.exe
CYG_MIRROR: http://cygwin.mirror.constant.com
SCI_RUN: /cygdrive/c/smalltalkCI-master/run.sh
matrix:

- SMALLTALK: Pharo-6.1
- SMALLTALK: Pharo-7.0

platform:
- x86

install:
- '%CYG_EXE% -dgnqNO -R "%CYG_ROOT%" -s "%CYG_MIRROR%" -l

"%CYG_CACHE%" -P unzip'
- ps: Start-FileDownload

"https://GitHub.com/hpi-swa/smalltalkCI/archive/master.zip"
"C:\smalltalkCI.zip"

- 7z x C:\smalltalkCI.zip -oC:\ -y > NULL

build: false

test_script:
- '%CYG_BASH% -lc "cd $APPVEYOR_BUILD_FOLDER; exec 0</dev/null;

$SCI_RUN"'

7.3 Adding badges

With CI happily running, you can add a badge to your README that will show
the current status of your project. Here is the badge of the Containers-Stack
project where we also enabled the coveralls.io test coverage service.

68

7.4 Conclusion

Containers-Stack
A dead stupid stack implementation, but one fully working :)

[![Build
Status](https://travis-ci.com/Ducasse/Containers-Stack.svg?branch=master)]

(https://travis-ci.com/Ducasse/Containers-Stack)
[![Coverage

Status](https://coveralls.io/repos/GitHub//Ducasse/Containers-Stack/badge.svg?branch=master)]
(https://coveralls.io/GitHub//Ducasse/Containers-Stack?branch=master)
[![License](https://img.shields.io/badge/license-MIT-blue.svg)]()
[![Pharo

version](https://img.shields.io/badge/Pharo-7.0-%23aac9ff.svg)]
(https://pharo.org/download)
[![Pharo

version](https://img.shields.io/badge/Pharo-8.0-%23aac9ff.svg)]
(https://pharo.org/download)

Installation
The following script installs Containers-Stack in Pharo.

Metacello new baseline: ’ContainersStack’; repository: ’GitHub://Ducasse/Containers-
Stack/src’; load.

To obtain the necessary link, click on the badge in your Travis project overview
and select one of the options. You can insert the markdown code directly into
your README.md.

7.4 Conclusion

With a continuous integration setup, you make sure that you can run your
software on different platforms. In addition, you make sure that you will be
able to smoothly load your code and that any additions or modifications you
just did is not disrupting the whole project. Other services such as coveralls
are available for Pharo.

69

CHA P T E R8
Contributing to Pharo

Pharo itself is hosted on GitHub under http://www.github.com/pharo-project/.
All the development of the core system is done via this code repository. You
can contribute to Pharo itself by fixing some issues. The official and unique
way of submitting code is by doing a Pull Request from your fork to the official
repository.

You can see the issues on the Pharo Github repository: http://www.github.com/pharo-
project/pharo/issues.

8.1 In a nutshell

The general process is summarised by the following steps:

1. Download the latest version (this is important since I will make sure
that you do not have to resync your fork).

2. Use repair (it will fetch some commits and make sure that your local
repository is in sync with the remotes).

3. Use repair (and create a branch – let us called it Bottom-123 – that will
point to the commits of your image).

4. Create a new branch for the issue you want to work on.

5. Code, then commit, then push to YOUR fork

6. Issue a PullRequest from your fork to Pharo

7. Check out your Bottom-123 branch and you can restart step 5

71

http://www.github.com/pharo-project/
http://www.github.com/pharo-project/
http://www.github.com/pharo-project/pharo/issues
http://www.github.com/pharo-project/pharo/issues
http://www.github.com/pharo-project/pharo/issues
http://www.github.com/pharo-project/pharo/issues

Contributing to Pharo

8.2 Step 0: Setting up the development environment

Download and launch the latest Pharo version:

The recommended way to download Pharo is to use the Pharo launcher, which
you can get from Pharo download’s page. Pro tip: If you’re on Windows and
you want a nice command line environment, install msys else you can try the
following patterned expression:

curl https://get.pharo.org/[32/64]/[version]+vm | bash
./pharo-ui Pharo.image

If you don’t have a command line environment, you can download both image
and vmmanually from the following links for example: http://files.pharo.org/get-
files/120/

Browse the file server and find the files that suit your environment.

8.3 Fork the Pharo repository

All changes you’ll make will be versioned in your own fork of the Pharo repos-
itory. Then, from your fork you’ll be able to issue pull requests to Pharo,
where they will be reviewed, and luckily, integrated.

Go to Pharo GitHub’s repository and click on the fork button on the top right.
Yes, this means that you’ll need a github account to contribute to Pharo, yes.

8.4 Setup Iceberg

To be able to contribute to Pharo, you need a Pharo git repository.

You will need to set a valid set of credentials in your system to be able to
work with Pharo. In case you use SSH (the default way), you will need to make
sure those keys are available but you can start by using HTTPS since this is
easier. In case they are not (and you will notice as soon as you try to clone
a project or commit a change into one), you can add them following these
steps:

Linux setting credentials

Execute in your shell:

ssh-add ~/.ssh/id_rsa

OSX setting credentials

Execute in your shell:

ssh-add -K ~/.ssh/id_rsa

72

[http://files.pharo.org/get-files/120/
http://files.pharo.org/get-files/120/
[http://files.pharo.org/get-files/120/
http://files.pharo.org/get-files/120/

8.5 Step 1. Setting up your repository

Both for OSX and Linux you can add such lines in your .bash_profile (or
the one corresponding to your shell installation) so they are automatically
executed on each new shell session.

Windows setting credentials

Windows is more complicated, you may need to generate a pair of keys (that
needs to be uploaded to your account on Git Hub). Please check online re-
sources for the current Windows version you are using.

Pharo side settings

Then you need to go to Setting browser, search for ”Use custom SSH keys”
and complete your data there.

Alternatively, you can execute in your image playground:

IceCredentialsProvider useCustomSsh: true.
IceCredentialsProvider sshCredentials

publicKey: 'path\to\ssh\id_rsa.pub';
privateKey: 'path\to\ssh\id_rsa'

Pro Tip: this can be used too in case you have a non default key file, you just
need to replace ”id_rsa” with your file name.

8.5 Step 1. Setting up your repository

A fresh Pharo image comes with a pre-configured Pharo repository. Now this
repository is in state ”Local Repository Missing”. You can develop with the
image without problem now if you want to send some enhancements to Pharo
you will not be able to do it. Indeed the message Local Repository Missing
means that the image does not find a Pharo clone in your disk.

Figure 8-1 A fresh Pharo image by default indicates that it does not find the

clone of Pharo.

73

Contributing to Pharo

Repairing local repository missing.

To solve this situation, you need to rebind your repository with a clone on
your disk. Indeed even if you can browse the system class code, the image
does not know where its repository is. The repair menu item/button will pro-
pose you some solutions.

Figure 8-2 Repairing the Pharo project.

And clicking on the Repair repositorymenu will show you the repair view,
showing an explanation of the current situation and some proposed solu-
tions:

• Locate this repository in your file system: if you have already cloned
your pharo fork repository on your disk you can simply point to it.
Pharo will synchronize it as explained in the next steps.

• Clone again this repository: you can clone again your Pharo fork from
GitHub to your local disc. Again your fork may be desynchronized from
the actual Pharo version but Iceberg will manage it too.

So depending on the action you chose: you can then choose to search in your
disk for an existing clone or to clone your forked Pharo repository.

Solving fetch required.

Once the repository is associated with its a clone, it will check the repository
status and most probably you’ll find out that your repository is in Fetch re-
quired state. Indeed ”Fetch required” means that your image was built from
a commit that cannot be found in your repository. In other words, we need to
update your repository, doing a fetch it will update your repository.

To solve again, launch the repair action again. Usually, if you already have all
your remotes correctly configured, doing a fetch will put you in a Detached
Working Copy state. Pro Tip: Instead of doing a simple fetch (second option
of the repair) it is quite powerful to create a branch (first option), give it a
name like sync, bottom... This branch is pointing to the point where your
repository and image are in sync and this is super useful to be able to check-

74

8.6 Step 2: Work on your image and push your change

out it later when you want to do multiple PRs on different and unrelated is-
sues. This way you can go back to a sync state in one click and be super pro-
ductive.

Solving the Detached Working Copy.

Detached Working Copymeans that the image commit does not correspond
with the repository commit (more details of it in the Glossary). At this point,
we need to synchronize both to be able to work.

Most of the time, the easier thing to do in this case is to just create a new
branch as suggested in the Pro Tip before. If you plan to only fix on issue and
you already know which issue you’ll be working on, you can create a branch
using the ”New branch from issue” option. Otherwise, a nice alternative is to
create a temporary branch like temp/synch that you can later on remove.

Figure 8-3 Solving the detached working copy situation.

8.6 Step 2: Work on your image and push your change

Pick up or create an issue and fix it. Once you have modifications in your im-
age, it’s time to push those changes to your fork and make a pull request from
your fork to the main Pharo repository. To do that, we enforce the following
process:

• you create a local branch for the issue,

• you issue a pull request of that issue to the main Pharo development
branch.

75

Contributing to Pharo

Once you have done and committed all your work, you need to push it and
create a pull request. Right click on the repository and go to the Github plu-
gin menu item.

Select the option Create pull request and select as target branch Psssharo’s
development branch.

And issue the pull request! Pro Tip: If your PR fixes the issue, you can put a
keyword ”fixes #IssueNumber” in the description to automatically close the
issue on merge.

8.7 Step 3: Follow your pull request

If you go to github, you’ll see your pull request open and that some checks
are running. Note that if your PR fails because of test failing or you want to
integrate feedback provided by reviewed, it is super simple: just continue
to commit in your branch. Your Pull Request will be updated with your new
changes. This is always a cool feeling, so enjoy it.

Figure 8-4 Checking your pull request.

8.8 Step 4: Once your pull request is integrated

Some cleanups are required:

• remove your branch from your fork

• close the issue (this is done automatically if your PR contained ”fixes
#numberOfIssue”)

8.9 Why you do not need to resync your fork with the pharo

repo?

No, you do not need to explicitly resync your fork. Why? Because when you
push your commits, you push also the Pharo commits. But let us look at it in
details:

76

8.10 Update your Pharo fork using the command line

• When you download an image (imagine that this image contains the
code of commit3 and that Pharo’ repository is at commit5), the repair
action will fetch all the commits (up to 5) and put them in your local
repository.

• When you create your bottom branch (the branch that points to the sit-
uation of your image when you downloaded) and later a child branch
containing your fixes (call it myfix), it implies that when you commit
your myfix branch, all the commits from myfixes and then from com-
mit3 down to the common ancestor between your fork and your local
repository will be pushed back to your fork.

So if you downloaded the latest image (imagine for commit6 and that the
pharo repository is at commit6 - yes this is the latest image!) when you push
your branch (which here is a child of commit6), automatically all the commits
(6 down to the common ancestors between your local repo to your fork) will
be pushed to your fork. So your fork will be in sync with Pharo’s one.

So each time you work and push to your fork from the latest image, your fork
gets updated!

8.10 Update your Pharo fork using the command line

You can also update your Pharo fork using the command line in 6 commands.
You need to have a git command line interface installed:

$ git clone https://github.com/YOUR-USER-NAME/pharo.git
$ cd Pharo
$ git remote add pharo https://github.com/pharo-project/pharo.git
$ git fetch pharo
$ git pull pharo Pharo8.0
$ git push origin Pharo8.0

You can see the results in Figure 8-5.

8.11 The following script can be put in a ==.st== in your pref-

erences folder (see below how to find it) and it will au-

tomatically configure Iceberg to connect to your ac-

counts.

8.12 Conclusion

Now you know how to update a branch from your repository and can happily
continue to improve Pharo.

77

Figure 8-5 Command Line.

CHA P T E R9
Tips and Tricks

This chapter contains some simple recipe-oriented frequently asked ques-
tions. If you have some more please send them to us or even better, present a
Pull Request.

9.1 How to use SSH keys

In case SSH is not set up (and you will notice as soon as you try to clone a
project or commit a change to one), there are some simple basic points to
be able to use SSH with github.

You can add SSH keys by following these steps (on Windows, if you want a
nice command line environment, install http://mingw.org/wiki/msys):

Generate a key pair

To do this, execute the command:

ssh-keygen -t rsa

It will generate a private and a public key (on a unix-based installation in the
directory .ssh). You should copy your id_rsa.pub key to your github ac-
count. Keep the keys in a safe place.

On Windows, follow instructions on how to generate your keys for your given
version of Windows.

Add the key to your ssh agent

In linux, execute in your shell:

79

http://mingw.org/wiki/msys
http://mingw.org/wiki/msys

Tips and Tricks

ssh-add ~/.ssh/id_rsa

In OSX, execute in your shell:

ssh-add -K ~/.ssh/id_rsa

For both OSX and linux you can add such lines to your .bash_profile (or
the one corresponding to your shell installation such as .zshrc) so they are
automatically executed on each new shell session.

9.2 Configuring automatically Pharo to commit in HTTP-

S/SSH

With recent version of github, you should use a token to connect using HTTPS
to be able to commit to your repository. Now you can configure Pharo to
store your token as well your github account authentification using startup
preferences.

In addition you can configure Pharo to point to your private and public SSH
key as follows:

StartupPreferencesLoader default executeAtomicItems: {
StartupAction

name: 'Logo'
code: [PolymorphSystemSettings showDesktopLogo: false] .

StartupAction
name: 'Git Settings'
code: [

Iceberg enableMetacelloIntegration: true.
IceCredentialStore current

storeCredential: (IcePlaintextCredentials new
username: 'xxJohnDoe';
password: 'xxJohnDoePassword';
host: 'github.com';
yourself).

IceCredentialsProvider sshCredentials
username: 'git';
publicKey: 'Path to your public rsa.pub file (public

key)';
privateKey: 'Path to your private rsa file (private

key)'.
IceCredentialStore current

storeCredential: (IceTokenCredentials new
username: 'xxJohnDoe';
token: 'magictoken here ';
yourself)

forHostname: 'github.com'.
].

}

80

9.3 How to contribute back to a project

You should place this file in the preference folder that depends on your OS.
You can find this place by using the Startupmenu. Note that you can config-
ure this for all or one specific version of Pharo.

9.3 How to contribute back to a project

You cloned a project from a Github repository and you don’t have any write
permissions. You made some changes, and you’d like to send a pull-request to
it. What is the ”Iceberg way” of doing it?

Manually you can fork the project on Github, add a remote to the local repo,
push the changes to this new remote and then create the pull request on
Github.

With Iceberg you can do the same since Iceberg follows the git way:

1. Create fork on Github

2. Add a repository for this project to Iceberg (Repositories context menu
then ”Repository” and then "+ Repository"

3. Create an issue branch with Iceberg (Repositories context menu then
GitHub then Create new branch for issue).

4. Commit your changes with Iceberg.

5. Push your change to your fork from Iceberg.

6. Create pull request from Iceberg (Repositories context menu then GitHub
then Create Pull Request)

9.4 How to distribute your changes in different branches

With Iceberg we can chose the packages, classes or methods when we save.
Imagine that you are in branch odd and you codem1, m2, m3, m4. Then later
you realize too late that it would be great to extract m2 and m4 in another
branch because you would like to merge it in another branch called even.

To commit changes into different branches, you must change your branch.
Because a commit always modifies the current branch.

When you change a branch, there is first a preview. In the preview, you have a
diff and you have a combo-box to select a checkout strategy:

• The default checkout strategy is to reload the packages, this will over-
ride any local changes you had.

• The last one is to not load any packages: in other words, change the
branch but do not touch my image.

So one way to do save your changes in separate branch is to:

81

Tips and Tricks

Figure 9-1 Checkout choices.

1. Commit in branch odd by selecting a subset of changes

2. Change to branch even using the ”Do not checkout” strategy

3. Commit in branch even a subset of changes

82

CHA P T E R 10
Iceberg Glossary

Git is complicated. Git with (Pharo) images is even more complicated. This
page introduces the vocabulary used by Iceberg. Part of this vocabulary is
Git vocabulary, part of it is Github’s vocabulary, part of it is introduced by
Iceberg.

10.1 Git

Disk Working Copy (Git)

It is important not to confuse the code on your disk with the one of the repos-
itory itself. The repository (a kind of database) has a lot more information,
such as known branches, history of commits, remote repositories, the git in-
dex and much more. Normally this information is kept in a directory named
.git. The files that you see on your disk and that you edit are just a working
copy of the contents in the repository.

The git index (Git)

The index is an intermediate structure which is used to select the contents
that are going to be committed.

So, to commit changes to your local repository, two actions are needed:

1. git add someFileOrDirectory will add someFileOrDirectory to
the index.

2. git commit will create a new commit out of the contents of the index,
which will be added to your local repository and to the current branch.

83

Iceberg Glossary

When using Iceberg, you normally do not need to think about the index, Ice-
berg will handle it for you. However, you might need to be aware that the
index is part of the git repository, so if you have other tools working with the
same repository there might be conflicts between them.

Local and remote repositories (Git)

To work with Git you always need a local repository (which is different from
the code you see on your disk, that is not the repository, that is just your
working copy). Remember that the local repository is a kind of a code database.

Most frequently your local repository will be related with one remote reposi-
tory which is called origin and will be the default target for pull and push.

Upstream (Git)

The upstream of a branch is a remote branch which is the default source
when you pull and the default target when you push. Most probably it is a
branch with the same name in your origin remote repository.

Commit-ish (Git)

A commit-ish is a reference that specifies a commit. Git command line tools
usually accept several ways of specifying a commit, such as a branch or tag
name, a SHA1 commit id, and several fatality-like combinations of symbols
such as HEAD^, @{u} or master\~2.

The following table contains examples for each commit-ish expression. A
complete description of the ways to specify a commit (and other git objects)
can be found here.

--
| Format | Examples
--
| 1. <sha1> |

dae86e1950b1277e545cee180551750029cfe735
| 2. <describeOutput> | v1.7.4.2-679-g3bee7fb
| 3. <refname> | master, heads/master, refs/heads/master
| 4. <refname>@{<date>} | master@{yesterday}, HEAD@{5 minutes

ago}
| 5. <refname>@{<n>} | master@{1}
| 6. @{<n>} | @{1}
| 7. @{-<n>} | @{-1}
| 8. <refname>@{upstream} | master@{upstream}, @{u}
| 9. <rev>^ | HEAD^, v1.5.1^0
| 10. <rev>~<n> | master~3
| 11. <rev>^{<type>} | v0.99.8^{commit}
| 12. <rev>^{} | v0.99.8^{}
| 13. <rev>^{/<text>} | HEAD^{/fix nasty bug}

84

https://mirrors.edge.kernel.org/pub/software/scm/git/docs/gitrevisions.html#_specifying_revisions

10.2 Iceberg

| 14. :/<text> | :/fix nasty bug
--

10.2 Iceberg

Iceberg Working Copy (Iceberg)

Iceberg also includes an object called the working copy that is not quite the
same as Git’s working copy. Iceberg’s working copy represents the code loaded
in the Pharo image, with the loaded commit and the packages.

Local Repository Missing (Iceberg)

The Local Repository Missing status is shown by iceberg when a project in
the image does not find its repository on disk. This happens most probably
because you have downloaded an image that somebody else created, or you
deleted/moved a git repository in your disk. Most of the times this status is
not shown because iceberg automatically manages disk repositories.

To recover from this status, you need to update your repository by cloning a
new git repository or by configuring an existing repository on disk.

Fetch required. Unknown ... (Iceberg)

The Fetch required status is shown by Iceberg when a project in the image
was loaded from a commit that cannot be found in its local repository. This
happens most probably because you’ve downloaded an image that somebody
else created, and/or your repository on disk is not up to date.

To recover from this status, you need to fetch from remotes to try to find
the missing commit. It may happen that the missing commit is not in one
of your configured remotes (even that nobody ever pushed it). In that case,
the easiest solution is to discard your image changes and checkout an existing
branch/commit.

Detached Working Copy (Iceberg)

The Detached working Copy status is shown by Iceberg when a project in the
image was loaded from a commit does not correspond with the current com-
mit on disk. This happens most probably because you’ve modified your repos-
itory from the command line.

To recover from this status, you need to align your repository with your work-
ing copy. Either you can

1. discard your image changes and load the repository commit,

2. checkout a new branch pointing to your working copy commit or

85

Iceberg Glossary

3. merge what is in the image into the current branch.

Detached HEAD (Git)

The Detached HEAD status means that the current repository on disk is not
working on a branch but on a commit. From a git stand-point you can commit
and continue working but your changes may get lost as the commit is not
pointed to by any branch. From an Iceberg stand-point, we forbid commit in
this state to avoid difficult to understand and repair situations. To recover
from this status, you need to checkout a (new or existing) branch.

86

Bibliography

87

	Illustrations
	Preamble
	Getting Started with Git
	Creating a Repository
	git clone
	Making changes: How does git track my changes?
	git does Nothing without your Permission
	git status
	git and directories

	Commiting your changes
	The Groceries Metaphore
	A first commit
	Add then commit, all over again

	Synchronizing with your Remote Repository
	Getting Remote Changes with git pull
	A Bit on Merging
	Sending your Changes with git push
	A Branch's Upstream
	Pushes can get Rejected

	Overview
	Exercises

	Understanding Git
	Some git Internals
	Dissecting a git Repository
	A history-aware transactional database?
	It's a just graph of commits
	Naming commits with references

	Understanding Detached HEAD
	Merging history lines
	Managing Conflicts

	Commit in workflow
	Creating new history lines with branches
	Creating a new branch
	Diverging history

	Interacting with Remote Repositories
	git Remotes
	Adding and Removing Remotes
	Update your repository: Fetching and Pulling
	Share your commits: Pushing

	Exercises

	Practical Git Scenarios
	Before commit little helpers
	Remove Files from the Staging Area
	Getting back your file as in your local repository

	Exploring the History
	The git log Command
	Accessing the History Graph

	Discarding your Local Committed Changes
	Ignoring Files
	Commiting a File Filtered out by the .gitignore
	Getting out of Detached HEAD
	Accessing your Repository through SSH
	Rewriting the History
	Undo a commit using git reset –hard
	Update a Commit's Message using git commit –amend

	How to Overwrite/Modify Commits
	Change the last Commit
	Merge two commits
	Pushing Rewritten History

	Conclusion

	Publishing your first Pharo project with Iceberg
	For the impatient
	Basic Architecture
	Create a new project on GitHub
	[Optional] SSH setup: Tell Iceberg to use your keys
	Iceberg Repositories browser
	Add a new project to Iceberg
	Repair to the rescue
	Create project metadata
	Add and commit your package using the Working copy browser
	Commit the changes
	Publish your changes to your remote

	Conclusion

	Configure your project nicely
	What if I did not create a remote repository
	Create a new repository.
	Add a remote.
	Push to the remote.

	Configuring automatically Pharo to commit in HTTPS/SSH
	Defining a BaselineOf
	Loading from an existing repository
	Manual load.
	Scripting the load.

	[Optional] Add a nice .gitignore file
	Going further: Understanding the architecture
	Conclusion

	Empowering your projects
	Adding Travis integration
	On windows
	Adding badges
	Conclusion

	Contributing to Pharo
	In a nutshell
	Step 0: Setting up the development environment
	Fork the Pharo repository
	Setup Iceberg
	Linux setting credentials
	OSX setting credentials
	Windows setting credentials
	Pharo side settings

	Step 1. Setting up your repository
	Repairing local repository missing.
	Solving fetch required.
	Solving the Detached Working Copy.

	Step 2: Work on your image and push your change
	Step 3: Follow your pull request
	Step 4: Once your pull request is integrated
	Why you do not need to resync your fork with the pharo repo?
	Update your Pharo fork using the command line
	The following script can be put in a ==.st== in your preferences folder (see below how to find it) and it will automatically configure Iceberg to connect to your accounts.
	Conclusion

	Tips and Tricks
	How to use SSH keys
	Generate a key pair
	Add the key to your ssh agent

	Configuring automatically Pharo to commit in HTTPS/SSH
	How to contribute back to a project
	How to distribute your changes in different branches

	Iceberg Glossary
	Git
	Disk Working Copy (Git)
	The git index (Git)
	Local and remote repositories (Git)
	Upstream (Git)
	Commit-ish (Git)

	Iceberg
	Iceberg Working Copy (Iceberg)
	Local Repository Missing (Iceberg)
	Fetch required. Unknown ... (Iceberg)
	Detached Working Copy (Iceberg)
	Detached HEAD (Git)

	Bibliography

