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Part I

Manage your code with Iceberg





Illustrations

The authors want to thank Sean de Nigris and Stefan Eggermont for the re-
views and copy-edit for the early version.
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CHA P T E R 1
Publishing your first project

In this chapter we explain how you can publish your project on github us-
ing Iceberg. We do not explain concepts like commit, push/pull, merging, or
cloning. We thank Peter Uhnak for his first blog on publishing Pharo code on
Github.

As git is distributed versioning system, you need a local clone of the repos-
itory. This is to this local repository that your changes will be commited to
before being pushed to remote repositories. In general you commit to your
local clone, and from there you push to remote repositories like github or
gitlab, or that of your company. Iceberg will do all the operations and more
for you.

1.1 For the impatient

If you do not want to read anything, here is the executive summary.

• Create a project on github or any git-based platform.

• Configure Iceberg to use custom ssh keys

• Open Iceberg.

• Add a project (chose clone from ...).

• Optionally, in the cloned repository, create a directory named src on
your file system using either the FileList or your command line.

• Open your project and add your packages (It is always good to add a
baseline).

• Commit your project.
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Publishing your first project

• Push it to your remote repository.

You are done. Now we can explain calmly.

1.2 Iceberg setup

To be able to commit to your git project, you will need to set up valid creden-
tials in your system. In case you use SSH (the default way), you will need to
make sure those keys are available to your github account and also that the
shell adds them for smoother communication with the server.

In case SSH is not setup (and you will notice as soon as you try to clone a
project or commit a change to one), you can add SSH keys by following these
steps (on Windows, if you want a nice command line environment, install
*http://mingw.org/wiki/msys):

Generating a key pair

To do this, execute the command:

ssh-keygen -t rsa

It will generate a private and a public key (on a unix-based installation in
the directory .ssh). You should copy your id_rsa.pub key to your github
account. Keep the keys in a safe place.

On Windows, you can follow instructions on how to generate your keys at
http://guides.beanstalkapp.com/version-control/git-on-windows.html#installing-ssh-keys.

Adding the key to your ssh

In linux, execute in your shell:

ssh-add ~/.ssh/id_rsa

In OSX, execute in your shell:

ssh-add -K ~/.ssh/id_rsa

For both OSX and linux you can add such lines to your .bash_profile (or
the one corresponding to your shell installation such as .zshrc) so they are
automatically executed on each new shell session.

Tell Pharo to use your keys

Go to settings browser, search for ”Use custom SSH keys” and enter your
data there as shown in Figure 1-1).

Alternatively, you can execute the following expressions in your image play-
ground or add them to your Pharo system preference file:
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1.3 Create a new project on github

Figure 1-1 Use Custom SSH keys settings.

Figure 1-2 Create a new project.

IceCredentialsProvider useCustomSsh: true.
IceCredentialsProvider sshCredentials

publicKey: 'path\to\ssh\id_rsa.pub';
privateKey: 'path\to\ssh\id_rsa'

Note Pro Tip: this can be used too in case you have a non-default key
file. You just need to replace id_rsa with your file name.

1.3 Create a new project on github

Figure 1-2 shows the creation of a project on Github.
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Publishing your first project

Figure 1-3 Cloning new project.

1.4 Add a new project to Iceberg

The first step is then to add a project to Iceberg:

• Press the ’+’ button to the right of the Iceberg main window.

• Select the source of your project. In our example, since you did not
clone your project yet, choose the github option.

Figure 1-3 shows that we are cloning the repository we just created. We spec-
ify the owner, project, and physical location where the local clone and git
working copy will be on your disk.

Iceberg has now added your project to its list of managed projects and cloned
an empty repository to your disk. You will see the status of your project, as
in figure 1-4

Here is a breakdown of what you are seeing:

• MyCoolProjectWithPharo has a star and is green. This usually means
that you have changes which haven’t been committed yet, but may also
happen in unrelated edge cases like this one. Don’t worry about this
for now.

• The Status of the project is ’No Project Found’ and this is more impor-
tant. This is normal since the project is empty. Iceberg cannot find its
metadata. We will fix this soon.
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1.5 [Optional but strongly suggested] Adding a src directory

Figure 1-4 Just after cloning an empty project.

Figure 1-5 Adding an src folder to a repository.

1.5 [Optional but strongly suggested] Adding a src direc-

tory

Some developers like to group all their code in a directory named src and
this is a nice practice. We strongly suggest that you follow it. You can go
to your filesystem and create one in your repository. You can also use the
Pharo FileList Browser to do it as shown in Figure 1-5.

1.6 Repair to the rescue

Iceberg is a smart tool that tries to help you fix the problems you may en-
counter while working with Git. As a general principle, each time you get
a status with red text (such as ”No Project Found” or ”Detached Working
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Publishing your first project

Figure 1-6 Create project metadata action and explanation.

Copy”), you should ask Iceberg to fix it using the Repair command.

Iceberg cannot solve all situations automatically, but it will propose and ex-
plain possible repair actions. The actions are ranked from most to least prob-
able. Each action will explain the situation and the consequence of the pro-
posed action. It is always a good idea to read them.

Figure 1-6 shows the ”Create project metadata” action and its explanation.

1.7 Create project metadata

When you choose to create the project metadata, Iceberg shows you the
filesystem of your project as well as the repository format as shown in Figure
1-7. Tonel is the preferred format for Pharo projects. It has been designed to
be Windows and file system friendly. Change it only if you know what you’re
doing!

After accepting the project details, Iceberg shows you the files that you will
be committing as shown in Figure 1-8

Once you have committed the metadata, Iceberg shows you that your project
has been repaired but is not loaded as shown in Figure 1-9. This is normal
since we haven’t added any packages to our project yet. Your local reposi-
tory is ready, so let’s do that now.

1.8 Adding and commiting your package

Once your project contains Iceberg metadata, Iceberg will be able to manage
it easily. Double click on your project and add a package by pressing the +
(Add Package) button as shown by Figure 1-10.
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Figure 1-7 Showing where the metadata will be saved and the format encodings.

Figure 1-8 Details of metadata commit.



Publishing your first project

Figure 1-9 The package is clean, metadata are saved, but it is not loaded.

Figure 1-10 Adding a package to your project.

Again, Iceberg shows that your package contains changes that are not com-
mitted using the green color and the * in front of the package name.

Now you are left with two actions:

• Commit the changes to your local repository using the Commit button.
Iceberg will reflect this change by removing the * and the changing the
color.

You can commit several times if needed.

• Publish your changes from your local directory to your remote reposi-
tory using the Push button.

When you push your changes, Iceberg will show you all the commits awaiting
publication and will push them to your remote repository as shown in Figure
1-11. The figure shows the commits we are about to make to add a baseline,
which will allow you to easily load your project in other images.
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1.9 Defining a BaselineOf

Figure 1-11 Publishing your committed changes.

1.9 Defining a BaselineOf

A BaselineOf is a description of a project’s architecture. You will express
the dependencies between your packages and other projects so that all the
dependent projects are loaded without the user having to understand and
bother about them. A baseline is expressed as a subclass of BaselineOf and
packaged in a package named 'BaselineOfXXX' (where ’XXX’ is the name of
your project).

So if you have no dependencies, you can have something like this.

BaselineOf subclass: #BaselineOfMyCoolProjectWithPharo
...
package: 'BaselineOfMyCoolProjectWithPharo'

BaselineOfMyCoolProjectWithPharo >> baseline: spec
<baseline>
spec
for: #common
do: [ spec package: 'BMyCoolProjectWithPharo'.

spec group: 'default' with: #('FileDialog') ]

Once you have defined your baseline, you should add it to your project as
shown in Figure 1-12. Now, commit it and push your changes to your remote
repository.

The online baseline documentation is available at: https://github.com/pharo-open-documentation/

pharo-wiki/blob/master/General/Baselines.md.
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Publishing your first project

Figure 1-12 With a Baseline.

1.10 Loading from an existing repository

If you already have a repository, and you just want to load it into Pharo,
there are two ways to go about it. The first is as we did above. You can select
a package and manually load it.

The second makes use of Metacello. However, this will only work if you have
already created a BaselineOf. In this case, you can just do:

Metacello new
baseline: 'MyCoolFirstProjectWithPharo';
repository: 'github://Ducasse/MyCoolProjectWithPharo';
load

For projects with metadata, like the one we just created, that’s it. However,
if you are loading a project without metadata, you must add the code sub-
folder to the end of the repository string i.e. ’github://Ducasse/MyCoolPro-
jectWithPharo/src’.

1.11 [Optional] Add a nice .gitignore file

Iceberg automatically manages such files.

# For Pharo 70 and up
# http://www.pharo.org
# Since Pharo 70 all the community is moving to git.

# image, changes and sources
*.changes
*.sources
*.image

# Pharo Debug log file and launcher metadata
PharoDebug.log
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1.11 [Optional] Add a nice .gitignore file

pharo.version
meta-inf.ston

# Since Pharo 70, all local cache files for Monticello package
cache, playground, epicea... are under the pharo-local

/pharo-local

# Metacello-github cache
/github-cache
github-*.zip
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CHA P T E R2
Empowering your projects

Now that you can save your code on github in a breeze, you can take advan-
tage of services to automate actions, for example using Travis.

2.1 Adding Travis integration

By adding two simple files, you can have the tests of your project automat-
ically run after each commit with travis. You need to enable travis in your
github repository. Check your travis account.

You should also add the two following files: .travis.yml and .smalltalk.ston
in the top level of your repository.

.travis.yml

language: smalltalk
sudo: false
os:

- linux
smalltalk:

- Pharo-7.0

.smalltalk.ston
SmalltalkCISpec {

#loading : [
SCIMetacelloLoadSpec {

#baseline : 'MyCoolProjectWithPharo',
#directory : src',
#platforms : [ #pharo ]

}
]
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}

If you’ve done everything right, Travis will pick up the changes and will start
testing and building it… and you’re done, congratulations!

2.2 On windows

If you want to make sure that your code runs on windows, you should use the
Appveyor service and add the appveyor.yml file.

environment:
CYG_ROOT: C:\cygwin
CYG_BASH: C:\cygwin\bin\bash
CYG_CACHE: C:\cygwin\var\cache\setup
CYG_EXE: C:\cygwin\setup-x86.exe
CYG_MIRROR: http://cygwin.mirror.constant.com
SCI_RUN: /cygdrive/c/smalltalkCI-master/run.sh
matrix:
- SMALLTALK: Pharo-6.1
- SMALLTALK: Pharo-7.0

platform:
- x86

install:
- '%CYG_EXE% -dgnqNO -R "%CYG_ROOT%" -s "%CYG_MIRROR%" -l

"%CYG_CACHE%" -P unzip'
- ps: Start-FileDownload

"https://github.com/hpi-swa/smalltalkCI/archive/master.zip"
"C:\smalltalkCI.zip"

- 7z x C:\smalltalkCI.zip -oC:\ -y > NULL

build: false

test_script:
- '%CYG_BASH% -lc "cd $APPVEYOR_BUILD_FOLDER; exec 0</dev/null;

$SCI_RUN"'

2.3 Adding badges

With CI happily running, you can add a badge to your readme that will show
the current status of your project. Here is the badge of the Containers-Stack
project where we also enabled the coveralls.io test coverage service.

# Containers-Stack
A dead stupid stack implementation, but one fully working :)
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2.3 Adding badges

[![Build
Status](https://travis-ci.com/Ducasse/Containers-Stack.svg?branch=master)]

(https://travis-ci.com/Ducasse/Containers-Stack)
[![Coverage

Status](https://coveralls.io/repos/github//Ducasse/Containers-Stack/badge.svg?branch=master)]
(https://coveralls.io/github//Ducasse/Containers-Stack?branch=master)
[![License](https://img.shields.io/badge/license-MIT-blue.svg)]()
[![Pharo

version](https://img.shields.io/badge/Pharo-7.0-%23aac9ff.svg)]
(https://pharo.org/download)
[![Pharo

version](https://img.shields.io/badge/Pharo-8.0-%23aac9ff.svg)]
(https://pharo.org/download)

## Installation
The following script installs Containers-Stack in Pharo.

```smalltalk
Metacello new

baseline: 'ContainersStack';
repository: 'github://Ducasse/Containers-Stack/src';
load.

```

To obtain the necessary link, click on the badge in your Travis project overview
and select one of the options. You can insert the markdown code directly
into your README.md.
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CHA P T E R3
Understanding the architecture

3.1 Glimpse at the architecture

As git is distributed versioning, you will need a local clone of your repository.
You commit to your local clone, and from there you push to remote reposito-
ries like github.

Figure 3-1 shows the architecture of the system.

• You have your code in the Pharo image.

• Pharo is acting as a working copy (it contains the contents of the git
local repository).

• Iceberg manages the publication of your code to the git working copy
and the git local repository.

• Iceberg manages the publication of your code to remote repositories.

• Iceberg manages the resynchronisation of your image with the git local
repository, git remote repositories and the git working copy.
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Figure 3-1 Create a new project.



CHA P T E R4
Iceberg Glossary

Git is complicated. Git with (Pharo) images is even more complicated. This
page introduces the vocabulary used by Iceberg. Part of this vocabulary is
Git vocabulary, part of it is Github’s vocabulary, part of it is introduced by
Iceberg.

4.1 Git

Disk Working Copy (Git)

It is important not to confuse the code on your disk with the one of the repos-
itory itself. The repository (a kind of database) has a lot more information,
such as known branches, history of commits, remote repositories, the git in-
dex and much more. Normally this information is kept in a directory named
.git. The files that you see on your disk and that you edit are just a working
copy of the contents in the repository.

The git index (Git)

The index is an intermediate structure which is used to select the contents
that are going to be committed.

So, to commit changes to your local repository, two actions are needed:

1. git add someFileOrDirectory will add someFileOrDirectory to the
index.

2. git commit will create a new commit out of the contents of the index,
which will be added to your local repository and to the current branch.
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When using iceberg, you normally do not need to think about the index, Ice-
berg will handle it for you. Still, you might need to be aware that the index
is part of the git repository, so if you have other tools working with the same
repository there might be conflicts between them.

Local and remote repositories (Git)

To work with Git you always need a local repository (which is different from
the code you see on your disk, that is not the repository, that is just your
working copy). Remember that the local repository is a kind of database (for
code).

Most frequently your local repository will be related with one remote reposi-
tory which is called origin and will be the default target for pull and push.

Upstream (Git)

The upstream of a branch is a remote branch which is the default source
when you pull and the default target when you push. Most probably it is a
branch with the same name in your origin remote repository.

Commit-ish (Git)

A commit-ish is a reference that specifies a commit. Git command line tools
usually accept several ways of specifying a commit, such as a branch or tag
name, a SHA1 commit id, and several fatality-like combinations of symbols
such as HEAD^, @{u} or master~2.

The following table contains examples for each commit-ish expression. A
complete description of the ways to specify a commit (and other git objects)
can be found at https://mirrors.edge.kernel.org/pub/software/scm/git/docs/

gitrevisions.html#_specifying_revisions.

----------------------------------------------------------------------
| Format | Examples
----------------------------------------------------------------------
| 1. <sha1> |

dae86e1950b1277e545cee180551750029cfe735
| 2. <describeOutput> | v1.7.4.2-679-g3bee7fb
| 3. <refname> | master, heads/master, refs/heads/master
| 4. <refname>@{<date>} | master@{yesterday}, HEAD@{5 minutes

ago}
| 5. <refname>@{<n>} | master@{1}
| 6. @{<n>} | @{1}
| 7. @{-<n>} | @{-1}
| 8. <refname>@{upstream} | master@{upstream}, @{u}
| 9. <rev>^ | HEAD^, v1.5.1^0
| 10. <rev>~<n> | master~3
| 11. <rev>^{<type>} | v0.99.8^{commit}
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4.2 Iceberg

| 12. <rev>^{} | v0.99.8^{}
| 13. <rev>^{/<text>} | HEAD^{/fix nasty bug}
| 14. :/<text> | :/fix nasty bug
----------------------------------------------------------------------

4.2 Iceberg

Iceberg Working Copy (Iceberg)

Iceberg also includes an object called the working copy that is not quite the
same as Git’s working copy. Iceberg’s working copy represents the code
loaded in the Pharo image, with the loaded commit and the packages.

Local Repository Missing (Iceberg)

The Local Repository Missing status is shown by iceberg when a project in
the image does not find its repository on disk. This happens most probably
because you’ve downloaded an image that somebody else created, or you
deleted/moved a git repository in your disk. Most of the times this status is
not shown because iceberg automatically manages disk repositories.

To recover from this status, you need to update your repository by cloning a
new git repository or by configuring an existing repository on disk.

Fetch required. Unknown ... (Iceberg)

The Fetch required status is shown by Iceberg when a project in the image
was loaded from a commit that cannot be found in its local repository. This
happens most probably because you’ve downloaded an image that somebody
else created, and/or your repository on disk is not up to date.

To recover from this status, you need to fetch from remotes to try to find
the missing commit. It may happen that the missing commit is not in one of
your configured remotes (even that nobody ever pushed it). In that case, the
easiest solution is to discard your image changes and checkout an existing
branch/commit.

Detached Working Copy (Iceberg)

The Detached working Copy status is shown by Iceberg when a project in
the image was loaded from a commit does not correspond with the current
commit on disk. This happens most probably because you’ve modified your
repository from the command line.

To recover from this status, you need to align your repository with your
working copy. Either you can

1. discard your image changes and load the repository commit,
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2. checkout a new branch pointing to your working copy commit or

3. merge what is in the image into the current branch.

Detached HEAD (Git) The Detached HEAD status means that the current repos-
itory on disk is not working on a branch but on a commit. From a git stand-
point you can commit and continue working but your changes may get lost
as the commit is not pointed to by any branch. From an Iceberg stand-point,
we forbid commit in this state to avoid difficult to understand and repair
situations. To recover from this status, you need to checkout a (new or exist-
ing) branch.
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