Commander20: a Command Framework

Stéphane Ducasse and Julien Delplanque

December 9, 2019
Contents

<table>
<thead>
<tr>
<th>Illustrations</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2 A Simple Contact Book</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Contact book model</td>
<td>4</td>
</tr>
<tr>
<td>2.2 A simple graphical user interface</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Conclusion</td>
<td>9</td>
</tr>
<tr>
<td>3 Commander: a Powerful and Simple Command Framework</td>
<td>11</td>
</tr>
<tr>
<td>3.1 Commands</td>
<td>11</td>
</tr>
<tr>
<td>3.2 Defining commands</td>
<td>12</td>
</tr>
<tr>
<td>3.3 Adding some convenience methods</td>
<td>12</td>
</tr>
<tr>
<td>3.4 Adding the remove contact command</td>
<td>14</td>
</tr>
<tr>
<td>3.5 Turning commands into menu items</td>
<td>15</td>
</tr>
<tr>
<td>3.6 Introducing groups</td>
<td>16</td>
</tr>
<tr>
<td>3.7 Extending menus</td>
<td>18</td>
</tr>
<tr>
<td>3.8 Managing icons and shortcuts</td>
<td>19</td>
</tr>
<tr>
<td>3.9 Enabling shortcuts</td>
<td>20</td>
</tr>
<tr>
<td>3.10 In place customisation</td>
<td>20</td>
</tr>
<tr>
<td>3.11 Managing a menu bar</td>
<td>22</td>
</tr>
<tr>
<td>3.12 Conclusion</td>
<td>23</td>
</tr>
<tr>
<td>4 Tips and Tricks</td>
<td>25</td>
</tr>
<tr>
<td>4.1 Icon Provider</td>
<td>25</td>
</tr>
<tr>
<td>4.2 PharoLauncher icon tricks</td>
<td>25</td>
</tr>
<tr>
<td>4.3 Extra Spec behavior</td>
<td>26</td>
</tr>
<tr>
<td>4.4 Contexts can be dynamic</td>
<td>26</td>
</tr>
<tr>
<td>4.5 Dynamic name and description</td>
<td>26</td>
</tr>
<tr>
<td>4.6 Toolbar</td>
<td>26</td>
</tr>
<tr>
<td>4.7 Registration and navigation</td>
<td>26</td>
</tr>
</tbody>
</table>
5 For framework designers

5.1 Decorating commands ... 29
5.2 Modular Spec command decoration 30
5.3 Decorating group of commands 32
5.4 Spec decoration .. 32
5.5 Example of Visitor: toolbarBuilder 33
5.6 Conclusion ... 34

Bibliography .. 35
Illustrations

2-1 A rudimentary contact book application. .. 3
2-2 A simple model for the contact book. .. 4
2-3 A rudimentary contact book application. 7
2-4 First version of the GUI without menus and toolbar. 8
2-5 Playing inside the inspector. .. 9

3-1 A simple command and its hierarchy. ... 12
3-2 With two menu items with groups. ... 16
3-3 With a context menu. ... 17
3-4 With menu extension. ... 19
3-5 With menu extension. ... 21
3-6 With menubar. .. 23

5-1 Commands and command decorators. ... 30
5-2 Spec decorations and use. .. 31
5-3 Group and group decorators. ... 32
5-4 Spec's group and group decorators. .. 33
5-5 Full design: Core, UI support and Spec integration. 34
Introduction

Commands are reification of actions. They can be used to implement actions in many contexts such as text-editors, debuggers, web-browsers, etc. Since recent versions, Pharo had no unified way to express commands and this led to multiple implementation of the command design pattern spreading across projects. Each project was re-implementing the design-pattern leading to slightly different version preventing the re-usability of common parts. To solve this problem we started to analyze existing solutions. We designed Commander20 framework that Pharo will use as canonical implementation of the command design pattern. With time, all custom-implementations of the command design pattern will be migrated to use Commander20. This booklet describes how commands are expressed in Pharo using Commander20.

To set some stage we start by defining a simple domain and applications in Spec20. Then we show how commands can be defined. In the final chapter we discuss the design of the framework with more details.

The code used of the contact book is available at https://github.com/Ducasse/EgContactBook. The code contains tests that are not listed in this booklet but we encourage you to read them.
In this chapter we develop a simple model for a contact book. Then we define a user interface. This example will be used later in the book as an example to explain concepts such as commands, applications, windows.

Now it is more a replay of the concept previously mentioned. We start by implementing classes modeling the domain and then we will add a basic graphical user interface to obtain a little application as shown in Figure 2-1.
2.1 Contact book model

The model for the domain of our example is composed of two classes: Contact and ContactBook as shown in Figure 2-2.

Contact

The class modeling a contact is defined as follow.

```Smalltalk
Object subclass: #EgContact
    instanceVariableNames: 'name phone'
    classVariableNames: '
    package: 'EgContactBook'

It just defines a printOn: method and a couple of accessors.

EgContact >> printOn: aStream
    super printOn: aStream.
    aStream nextPut: $(.
    aStream nextPutAll: name.
    aStream nextPut: $).

EgContact >> name
    ^ name

EgContact >> phone
    ^ phone

EgContact >> name: aString
    name := aString

EgContact >> phone: anObject
    phone := anObject

EgContact >> hasMatchingText: aString
    ^ name includesSubstring: aString caseSensitive: false

EgContact class >> name: aNameString phone: aPhoneString
    ^ self new
    name: aNameString;
    phone: aPhoneString;
    yourself
```

Figure 2-2 A simple model for the contact book.
Contact book model

Now we define the class modeling the contact book. As for the contact class, it is simple and quite straightforward.

```smalltalk
Object subclass: #EgContactBook
    instanceVariableNames: 'contacts'
    classVariableNames: ''
    package: 'EgContactBook'

EgContactBook >> initialize
    super initialize.
    contacts := OrderedCollection new

EgContactBook >> contacts
    ^ contacts

EgContactBook >> contacts: aColl
    contacts := aColl

We add the possibility to add and remove a contact

EgContactBook >> addContact: aContact
    contacts add: aContact

EgContactBook >> removeContact: aContact
    contacts remove: aContact

EgContactBook >> addContact: newContact after: contactAfter
    contacts add: newContact after: contactAfter

We add a simple testing method in case one want to write some tests (which we urge you to do).

EgContactBook >> includesContact: aContact
    ^ contacts includes: aContact

And now we add a method to create a contact and add it to the contact book.

EgContactBook >> add: contactName phone: phone
    contact := EgContact new name: contactName; phone: phone.
    self addContact: contact.
    ^ contact

Finally some facilities to query the contact book.

EgContactBook >> findContactsWithText: aText
    ^ contacts select: [ :e | e hasMatchingText: aText ]

EgContactBook >> size
    ^ contacts size
```
Pre-filling up the contact book

Since we want to have some contacts and we way to keep them without re-sorting to a database or file we set some class instance variables.

We defined two class instance variables: family and coworkers and define some class method accessors as follows:

``` Smalltalk
EgContactBook class >> family
  ^family ifNil: [
    family := self new
    add: 'John' phone: '342 345';
    add: 'Bill' phone: '123 678';
    add: 'Marry' phone: '789 567';
    yourself
  ]

EgContactBook class >> coworkers
  ^coworkers ifNil: [
    coworkers := self new
    add: 'Stef' phone: '112 378';
    add: 'Pavel' phone: '898 678';
    add: 'Marcus' phone: '444 888';
    yourself
  ]
```

We add one method to be able to reset them if necessary. The <script> pragma tells the system browser to add a small button to execute reset method easily.

``` Smalltalk
EgContactBook class >> reset
  coworkers := nil.
  family := nil
```

2.2 A simple graphical user interface

Now we define the graphical user interface (GUI) to expose the model to the user. The targeted GUI is shown in Figure 2-3.

We define the class EgContactBookPresenter. It holds a reference to a contact book and it is structured around a table.

``` Smalltalk
SpPresenter subclass: #EgContactBookPresenter
  instanceVariableNames: 'table contactBook'
  classVariableNames: '
  package: 'EgContactBook'

We define an accessor for the contact book and the table.

``` Smalltalk
EgContactBookPresenter >> contactBook
 ^ contactBook

EgContactBookPresenter >> table: anObject
 table := anObject
2.2 A simple graphical user interface

![Figure 2-3](image)

Figure 2-3 A rudimentary contact book application.

```smalltalk
EgContactBookPresenter >> table
^ table
```

Initializing the model

We specialize the method `setModelBeforeInitialization:` that is invoked by the framework to assign the `contactBook` instance variable to the object passed during the execution of the expression `(EgContactBookPresenter on: EgContactBook coworkers) openWithSpec`.

```smalltalk
EgContactBookPresenter >> setModelBeforeInitialization: aContactBook
super setModelBeforeInitialization: aContactBook.
contactBook := aContactBook
```

Layout

```smalltalk
EgContactBookPresenter class >> defaultSpec
^ SpBoxLayout newVertical add: #table; yourself
```

Widget initialization

We initialize the table to display two columns for the name and the phone. The respective accessor messages will be sent to the elements to fill up the columns. Finally the table contents is set using the contact book contents.

```smalltalk
EgContactBookPresenter >> initializePresenters
table := self newTable.
table
  addColumn: (StringTableColumn title: 'Name' evaluated: #name);
  addColumn: (StringTableColumn title: 'Phone' evaluated: #phone).
```
A Simple Contact Book

Figure 2-4 First version of the GUI without menus and toolbar.

Table items: contactBook contents.

Now we can start opening the UI by executing the following snippet (EgContactBookPresenter on: EgContactBook coworkers) openWithSpec

We define a class method to be able to easily re-execute the set up.

```smalltalk
EgContactBookPresenter class >> coworkersExample
<example>
^ (self on: EgContactBook coworkers) openWithSpec
```

You should obtain the following GUI as shown in Figure 3-1.

Interacting with user

We now implement the method that will open a window to ask the user to create a new contact for the contact book.

```smalltalk
EgContactBookPresenter >> newContact
| rawData splitted |
rawData := self
    request: 'Enter new contact name and phone (split by comma)' 
    initialAnswer: ''
    title: 'Create new contact'.
splitted := rawData splitOn: $,.
(splitted size = 2 and: [ splitted allSatisfy: #isNotEmpty ])
    ifFalse: [ SpInvalidUserInput signal: 'Please enter contact name and phone (split by comma)' ].
^ EgContact new
    name: splitted first;
    phone: splitted second;
    yourself
```
To test it, we can get access to the presenter as follows

```small
(EgContactBookPresenter on: EgContactBook coworkers)
openWithSpec presenter inspect
```

and you can send the `newContact` message as shown in Figure 2-5.

Some extra methods

We will also define the methods `isContactSelected` and `selectedContact` to know if a contact is currently selected and to return it. It will help us later to add contact just after the currently selected contact.

```small
EgContactBookPresenter >> isContactSelected
  ^ self table selectedItems isNotEmpty

EgContactBookPresenter >> selectedContact
  ^ table selection selectedItem
```

Conclusion

We have a little contact book manager now that we can use to explain other topics.
Commander was originally developed by Denis Kudriashov. Commander 2.0 is the second iteration of such a library. It has been designed and developed by Julien Delplanque and Stéphane Ducasse. Note that Commander 2.0 is not compatible with Commander but this is really easy to migrate from Commander to Commander 2.0. If you want to use Commander 2.0 in the context of Spec 2.0, the user interface building framework. From then on, when we mention Commander we refer to Commander 2.0. In addition, we show how to extend Commander to other needs.

3.1 Commands

Commander models application actions as first class objects following the Command design pattern. With Commander, you can express commands and use them to generate menus, toolbar but also to script an application from the command line.

Every action is implemented as a separate command class (subclass of CmCommand) with an execute method and all state required for execution. The superclass defines the context in which the command should be executed. Then the class CmCommand introduces name and description.

We will show later that for UI framework, we need more information such as an icon and shortcut description. In addition, we will present how commands can be decorated with extra functionality in an extensible way.

Note that nothing prevents you from defining commands by creating instances and filling them up with the same information. If you do so, you cannot use
classes to dispatch and should put in place other mechanisms. In this chapter we only discuss how to define class representing commands and use them.

3.2 Defining commands

A command is a simple object instance of a subclass of the class CmCommand. It has a description, a name (this name can be either static or dynamic as we will shown later on). In addition, it has a context from which it extracts information to execute itself. In its basic form there is not much more than that.

Let us have a look at examples. We will define some commands for the ContactBook application and illustrate how they can be turned into menu and menubar.

Note that we will present how Commander supports Spec menu and menubar creations. However such functionalities are not in the core of Commander. We show them because first this is important to illustrate how to build user interfaces elements with Commander but also because such functionalities show that Commander can be extended in a way that end-users do not have to feel they are using special extensions. We will come back to such point in the last chapter of this book to show to potential extenders of Commander that they can get inspiration from the Spec extensions.

3.3 Adding some convenience methods

For convenience reasons, we define a common superclass named EgContactBookCommand to all the commands of the contact book application.
3.3 Adding some convenience methods

```smalltalk
CmCommand subclass: #EgContactBookCommand
  instanceVariableNames: '
  classVariableNames: '
  package: 'EgContactBook'

We define a simple helper method to make the code more readable

```smalltalk
EgContactBookCommand >> contactBookPresenter
 ^ self context

For the same reason, we define another helper to access the contact book and the selected item.

```smalltalk
EgContactBookCommand >> contactBook
  ^ self contactBookPresenter contactBook

EgContactBookCommand >> selectedContact
  ^ self contactBookPresenter selectedContact

Using such helper methods we defined the method hasSelectedContact as follows:

```smalltalk
EgContactBookCommand >> hasSelectedContact
 ^ self contactBookPresenter isContactSelected

Adding the add contact command

We define a subclass to define the add a contact command.

```smalltalk
EgContactBookCommand subclass: #EgAddContactCommand
  instanceVariableNames: '
  classVariableNames: '
  package: 'EgContactBook'

CmAddContactCommand >> initialize
  super initialize.
  self
    basicName: 'New contact';
    basicDescription: 'Creates a new contact and add it to the contact book.'

CmAddContactCommand >> execute
  |
  contact |
  contact := self contactBookPresenter newContact.
  self hasSelectedContact
    ifTrue: [ self contactBook addContact: contact after: self selectedContact ]
    ifFalse: [ self contactBook addContact: contact ].
  self contactBookPresenter updateView
```
We should define the method `updateView` to refresh the contents of the table.

``` Smalltalk
EgContactBookPresenter >> updateView
  table items: contactBook contacts
```

Now in the inspect pane we can simply execute the command as follows:

``` Smalltalk
(EgAddContactCommand new context: self) execute
```

Executing the command should ask you to give a name and a phone number and will get added to the list.

We can also execute the following snippet.

``` Smalltalk
| presenter cmd |
presenter := EgContactBookPresenter on: EgContactBook coworkers.
cmd := EgAddContactCommand new context: presenter.
cmd execute
```

3.4 Adding the remove contact command

We define now another command to remove a command. This example is interesting because it does not involve any UI interaction. It shows that a command is not necessarily linked to UI interaction.

``` Smalltalk
EgContactBookCommand subclass: #EgRemoveContactCommand
  instanceVariableNames: ''
  classVariableNames: ''
  package: 'EgContactBook'

EgRemoveContactCommand >> initialize
  super initialize.
  self
    name: 'Remove';
    description: 'Removes the selected contact from the contact book.'
```

This command definition illustrates how we can control when a command should or not be executed. The method `canBeRun` allows one to specify such condition.

``` Smalltalk
EgRemoveContactCommand >> canBeExecuted
  ^ self context isContactSelected
```

The method `execute` is straightforward.

``` Smalltalk
EgRemoveContactCommand >> execute
  self contactBook removeContact: self selectedContact.
  self contactBookPresenter updateView
```

The following test validates the correct execution of the command.
3.5 Turning commands into menu items

Now that we have our commands we would like to reuse them and turn them into menus. In Spec, commands that are transformed into menu items are structured into a tree of command instances. The class method `buildCommandsGroupWith:forRoot:` of `SpPresenter` is a hook to let presenters define the root of the command instance tree.

A command is transformed into a command for Spec using the message `forSpec`. We will show later that we can add UI specific information to a command such as an icon and a shortcut.

The method `buildCommandsGroupWith:forRoot:` registers commands to which the presenter instance is passed as context. Note that here we just add plain commands, but we can also create groups. This is also in this method that we will specify toolbar.

```smalltalk
EgContactBookPresenter class >>
  buildCommandsGroupWith: presenter
  forRoot: rootCommandGroup

  rootCommandGroup
  register: (EgAddContactCommand forSpec context: presenter);
  register: (EgRemoveContactCommand forSpec context: presenter)

We have now have to attach the root of the command tree to the table. This is what we do with the new line in the `initializePresenters` method. Notice that we have the full control and as we will show we could select a subpart of the tree (using the message `/`) and defining as root for given component.

```smalltalk
EgContactBookPresenter >> initializePresenters
 table := self newTable.
 table
 addColumn: (SpStringTableColumn title: 'Name' evaluated: #name);
 addColumn: (SpStringTableColumn title: 'Phone' evaluated: #phone).
 table contextMenu: [self rootCommandsGroup beRoot asMenuPresenter].
 table items: contactBook contacts.

Reopening the interface (EgContactBookPresenter on: EgContactBook coworkers) openWithSpec you should see the menu items as shown in Fig-
With two menu items with groups.

As we will show later we could even replace a menu item by another one, changing its name, or icon in place.

3.6 Introducing groups

Commands can be managed in groups and such groups can be turned into corresponding menu item sections. The key hook method is the class method named `buildCommandsGroupWith: presenterInstance forRoot:`.

Here we give an example of such grouping. Note that the message `asSpecGroup` sent to a group. We create two method creating each a simple group one for adding and one for removing contracts.

```smalltalk
EgContactBookPresenter class >> buildAddingGroupWith: presenter
  ^ (CmCommandGroup named: 'Adding') asSpecGroup
  description: 'Commands related to contact addition.';
  register: (EgAddContactCommand forSpec context: presenter);
  beDisplayedAsGroup;
  yourself

EgContactBookPresenter class >> buildRemovingGroupWith: presenter
  ^ (CmCommandGroup named: 'Removing') asSpecGroup
  description: 'Commands related to contact removal.';
  register: (EgRemoveContactCommand forSpec context: presenter);
  beDisplayedAsGroup;
  yourself
```

We group the previously defined groups together under contextual menu for example.
3.6 Introducing groups

Figure 3-3 With a context menu.

```spar
EgContactBookPresenter class >> buildContextualMenuGroupWith:
  presenter
  ^ (CmCommandGroup named: 'Context Menu') asSpecGroup
    register: (self buildAddingGroupWith: presenter);
    register: (self buildRemovingGroupWith: presenter);
    yourself

Finally we revisit the hook `buildCommandsGroupWith:forRoot:` to register the last group to the root command group.

```spar
EgContactBookPresenter class >>
 buildCommandsGroupWith: presenter
 forRoot: rootCommandGroup

 rootCommandGroup
 register: (self buildContextualMenuGroupWith: presenter)

Reopening the interface (EgContactBookPresenter on: EgContactBook coworkers) openWithSpec you should see the menu items inside a 'Context Menu' as shown in Figure 3-3.

To show you that we can also select a part of the command tree we select the 'Context Menu' group and we declare it as the root of the table menu. In such case you will not see the 'Context Menu' anymore.

```spar
EgContactBookPresenter >> initializePresenters

  table := self newTable.
  table
    addColumn: (SpStringTableColumn title: 'Name' evaluated: #name);
    addColumn: (SpStringTableColumn title: 'Phone' evaluated: #phone).
```
table contextMenu: [(self rootCommandsGroup / 'Context Menu')
 beRoot asMenuPresenter].
table items: contactBook contacts

3.7 Extending menus

Building menu is nice, but sometimes we need to add a menu into an existing one. Commander supports this via a dedicated pragma, called <extension-Commands> that identifies extensions.

as we show it now.

Imagine that we have a new functionality that we want to add to the contact book and that this behavior is packaged in another package, here, EgContactBook-Extensions. First we will define a new command and second we will show how we can extend the existing menu to add a new menu item.

EgContactBookCommand subclass: #EgChangePhoneCommand
 instanceVariableNames: 'newPhone'
 classVariableNames: ''
 package: 'EgContactBook-Extensions'

EgChangePhoneCommand >> newPhone: anObject
 newPhone := anObject

EgChangePhoneCommand >> newPhone
 ^ newPhone

EgChangePhoneCommand >> initialize
 super initialize.
 self
 name: 'Change phone';
 description: 'Change the phone number of the contact.'

EgChangePhoneCommand >> execute
 self selectedContact phone: self contactBookPresenter newPhone.
 self contactBookPresenter updateView

We add ContactBookPresenter with the method newPhone the presenter to support the definition of the new phone number. The point here is not that this is method is or not packaged with the new command.

EgContactBookPresenter >> newPhone
 | phone |
 phone := self
 request: 'New phone for the contact'
 initialAnswer: self selectedContact phone
 title: 'Set new phone for contact'.
 (phone matchesRegex: '\d\d\d\s\d\d\d')
 ifFalse: [
 SpInvalidUserInput signal: 'The phone number is not well formated.'
3.8 Managing icons and shortcuts

The last missing piece is the declaration of the extension. This one is done using the pragma <extensionCommands> on the class side of the presenter class as follows:

Here we see that using slash (/), we can select the group in which we want to add the item.

```small
EgContactBookPresenter class >>
changePhoneCommandWith: presenter
forRootGroup: aRootCommandsGroup

<extensionCommands>
(aRootCommandsGroup / 'Context Menu')
  register: (EgChangePhoneCommand forSpec context: presenter)
```

3.8 Managing icons and shortcuts

By default a command does not know about Spec specific behavior, this is because a command does not have to be linked to UI. Now obviously you want to have icons and shortcut bindings when you are designing an interactive application.

Commander supports the addition of icons and shortcut key to commands. Let us see how it works from a user perspective. The framework offers two methods to set icon and shortcut key `iconName:` and `shortcutKey:` and we should specialize the method `aSpecCommand` as follows:
Note that the commands are created using the message `forSpec` and this is this message that takes care about the calling of `asSpecCommand`.

3.9 Enabling shortcuts

To the time of this chapter writing, Commander management of shortcuts has not been pushed to Spec to avoid dependency to Commander. It is then the responsibility of your presenter to manage shortcuts as shown in the following method. We ask the command group to install the shortcut handler in the window.

```smalltalk
EgContactBookPresenter >> initializeWindow: aWindowPresenter

    super initializeWindow: aWindowPresenter.
    self rootCommandsGroup installShortcutsIn: aWindowPresenter
```

3.10 In place customisation

Commander supports also the reuse and in place customisation of commands. It means that the instance representing a command can be modified on the spot: for example its name or description can be adapted to the exact use context. Here is an example that shows that we adapt twice the same command.

Let us define a really simple and generic command which will simply inspect the object.

```smalltalk
EgContactBookCommand subclass: #EgInspectCommand
    instanceVariableNames: '
    classVariableNames: '
    package: 'EgContactBook-Extensions'

EgInspectCommand >> initialize
    super initialize.
    self
        name: 'Inspect';
        description: 'Inspect the context of this command.'
3.10 In place customisation

Figure 3-5  With menu extension.

EgInspectCommand >> execute
self context inspect

Using a block the context is computed at the moment the command is executed and the name and description can be adapted for its specific usage as shown in Figure 3-6.

EgContactBookPresenter class >>
extraCommandsWith: presenter
forRootGroup: aRootCommandsGroup

<extensionCommands>
aRootCommandsGroup / 'Context Menu'
register:
((CmCommandGroup named: 'Extra') asSpecGroup
description: 'Extra commands to help during development.';
register:
((EgInspectCommand forSpec context: [ presenter
selectedContact ])
name: 'Inspect contact';
description: 'Open an inspector on the selected contact.';
iconName: #smallFind;
yourself);
register:
((EgInspectCommand forSpec context: [ presenter
contactBook ])
name: 'Inspect contact book';
description: 'Open an inspector on the contact book.';
yourself);
yourself)
3.11 Managing a menu bar

Commander supports also menu bar creation. The logic is the same than for contextual menus: we define a group and register it under a given and we specify to the presenter to use this group as a menubar.

Imagine that we have a new command to print the contact.

```smalltalk
EgContactBookCommand subclass: #EgPrintContactCommand
 instanceVariableNames: ''
 classVariableNames: ''
 package: 'EgContactBook'

EgPrintContactCommand >> initialize
 super initialize.
 self
 name: 'Print';
 description: 'Print the contact book in Transcript.'

EgPrintContactCommand >> execute
 Transcript open.
 self contactBook contacts do: [:contact | self traceCr: contact
 name , ' - ' , contact name]
```

We create a simple group that we call 'MenuBar' (but it could be called anything).

```smalltalk
EgContactBookPresenter class >> buildMenuBarGroupWith: presenter
 ^ (CmCommandGroup named: 'MenuBar') asSpecGroup
 register: (EgPrintContactCommand forSpec context: presenter);
 yourself

EgContactBookPresenter >> initializePresenters
 table := self newTable.
 table
 addColumn: (SpStringTableColumn title: 'Name' evaluated: #name);
 addColumn: (SpStringTableColumn title: 'Phone' evaluated: #phone).
```

We modify the root to get the menu bar group in addition the previous ones.

```smalltalk
EgContactBookPresenter class >> buildCommandsGroupWith: presenter
 forRoot: rootCommandGroup
 rootCommandGroup
 register: (self buildMenuBarGroupWith: presenter);
 register: (self buildContextualMenuGroupWith: presenter)

And we hook it into the widget as the last line of the initializePresenters method. Notice the use of the message asMenuBarPresenter and the addition of a new instance variable called menuBar.

```smalltalk
EgContactBookPresenter >> initializePresenters
  table := self newTable.
  table
    addColumn: (SpStringTableColumn title: 'Name' evaluated: #name);
    addColumn: (SpStringTableColumn title: 'Phone' evaluated: #phone).
3.12 Conclusion

In this chapter we saw how you can define a simple command, execute it in a given context. We show how you can turn command into menu item in Spec20 by sending the message `forSpec`. You learned how we can reuse and customize commands. We presented groups of commands as a way to structure menus and menubars.

In the next chapter we will provide more details about certains UI aspects.
In this chapter we will detail some APIs that can be useful and some tips and tricks.

4.1 Icon Provider

The Commander’ Spec extension (Commander for short in the rest of the chapter) has no preconcieved idea about where to look for icons. By default it used internally the fonctionality provider by Spec presenters.

Now Commander lets you also specify your own source of icon provider using the message iconProvider:.

This way you can manage your own icon set without having to register in the system.

4.2 PharoLauncher icon tricks

You may want to do a specific treatment on your icon form before displaying them. You may want to add or modify the icons form. Here is a typical example made in the PharoLauncher to get a greyed icon. Pay attention that iconNamed: is a protected method in the sense that only subclasses of Command may redefine it.

```
PhLLaunchImageCommand2 >> iconNamed: aName

^ (super iconNamed: aName) asGrayScaleWithAlpha
```
4.3 **Extra Spec behavior**

SD: Julien I need help

The integration of Commander into Spec20 allows one to access features that are only available for menu items,

- `beDisabledWhenCantBeRun`. Julien help please. How do we know that it cannot be run? How do I specify the condition? Can I specify the condition? Pay attention that this is static feature in the sense that it is evaluated at the command creation. Is it true?

- `beHiddenWhenCantBeRun`. Julien help please. How do we know that it cannot be run? How do I specify the condition? Can I specify the condition? Pay attention that this is static feature.

- `beDisplayedOnRightSide` and `beDisplayedOnLeftSide`. Julien help please the right side of what?

4.4 **Contexts can be dynamic**

If you want your command to work on a context that will change at execution, pass a block as argument of the `context:` message.

SD: put an example

4.5 **Dynamic name and description**

Commander allows you to customize the name and description of a command. The idea is to let you provide description or name that take advantage of the context in which they are used.

SD: Julien when dynamicDescription is invoked?

4.6 **Toolbar**

Commands can also be turned into a toolbar using the message `asToolbarPresenter` sent to a group of commands.

SD: Ask christophe for an example

4.7 **Registration and navigation**

Commands are often grouped together to act as menu groups. In the previous chapter we show that a group is structured as a composite tree of groups and commands. Adding elements to such composite is done via the messages `register: aGroupOrCommand`. 

26
4.7 Registration and navigation

We show that the message `/` navigates the tree and access the corresponding subtree.

SD: Show add an example here

The Spec extension supports also the notion of order and substitution as follows:

- `registerFirst: aGroupOrCommand`
- `registerLast: aGroupOrCommand`
- `register: aGroupOrCommand after: another` and `register: aGroupOrCommand before: another`
- `register: aGroupOrCommand insteadOf: another`
- `unregister:`
The design of Commander favors strong extensibility while keeping its use simple. The extensibility is brought in by using a simple decorator pattern. The idea is to propose a simple API to users while giving the possibility to modularly extend the framework. In this chapter, we explain the key aspects of Commander so that developers of other frameworks can use it as the root of their solution. We show the integration of Commander and Spec as a concrete use case.

5.1 Decorating commands

By default a command does not know about Spec specific behavior. It can be used in other contexts such as scripting libraries as this was the case with Gofer (Gofer was a scripting API to script monticello). Another example is that the core behavior of PharoLauncher will be exposed as Clap command-line using the fact that PharoLauncher propose commands.

The Spec project extends Commander so that we use commands with specific aspects related to Spec. It uses the fact that Commander allows us to decorate commands with decoration that are polymorphic to commands as shown in Figure 5-1.

Let us describe Figure 5-1:

- The common abstract root class CmAbstractCommand defines way to manage the context and execute a command.
- The class CmBlokcCommand is a generic command whose behavior is specified using a block.
For framework designers

- The class `CmCommand` is the main root class of commands. Users will usually subclass it. For example, `EgAddContactCommand` subclasses it as shown in Figure 5-2.

Without Spec integration, the class `CmCommand` does not have any behavior related to Spec. The only interesting extension point is the `decorateWith:` method that is an extension hook as we show later.

- The class `CmCommandDecorator` is the root of command decorators. It merely delegates to a decorated command. It supports dynamic name and descriptions (to be able to get more specialized and dynamically updated commands). At runtime, decorators will be created to wrap a command and as such provide more information.

- The class `CmUICommand` is a decorator of command dedicated for UI related state and actions. Note that it is not linked per se to Spec. It offers some general functionalities related to UI, as we saw in previous chapters:
  - State: icon, shortcutKey
  - Behavior: defining icon, and shortcutKey

Now we are ready to study the Spec integration.

### 5.2 Modular Spec command decoration

Figure 5-2 shows how Commander is extended to support Spec specific behavior and this in a modular way. First the class `SpCommand` is a Spec specific decorator. For example, it contains logic how to turn a command into a button presenter. Second, the package containing the Spec related code extends
5.2 Modular Spec command decoration

The class `CmCommand` with the `asSpecCommand` method. The method `asSpecCommand` decorates a command to define extra behavior responsible for the addition of UI related functionality and state.

The implementation is the following one:

```smalltalk
CmCommand >> asSpecCommand

^ self decorateWith: SpCommand
```

It means that the base command will be decorated by an instance of the class `SpCommand`.

Remember that the method `asSpecCommand` is directly or indirectly used by the developer to build commands that he will register to the command root of its presenter. The following method show:

```smalltalk
EgContactBookPresenter >> buildAddingGroupWith: presenter

^ (CmCommandGroup named: 'Adding') asSpecGroup
 description: 'Commands related to contact addition.';
 register: (EgAddContactCommand forSpec context: presenter);
 beDisplayedAsGroup;
 yourself
```

The method `forSpec` is a handy creation class method.

```smalltalk
CmCommand class >> forSpec

^ self new
 asSpecCommand
```

What is interesting to note is that as an end-user the developer defining the command just as to define the method `asSpecCommand` without having to
worry about the details of the implementation. Here is the command definition for the command of adding a contact in our contact book application.

```smalltalk
EgAddContactCommand >> asSpecCommand
^ super asSpecCommand
 shortcutKey: $n meta;
 iconName: #changeAdd;
 yourself
```

5.3 **Decorating group of commands**

Commander uses the same logic for group of commands as shown by Figure 5-3. Let us describe the hierarchy.

- The class `CmAbstractCommandGroup` is an abstract root defining elementary operation of group.
- The class `CmCommandGroup` is the central class from an end-user point of view.
- The class `CmCommandGroupDecorator` is just a decorator.

On top of this the class `CmUICommandGroup` extends the basic decorator with ui related behavior as shown in Figure 5-4.

5.4 **Spec decoration**

The Spec extension then is based on the definition of a specific decorator `SpCommandGroup` and the method `asSpecGroup` defined as follows:

```smalltalk
CmCommandGroup >> asSpecGroup
 ^ self decorateWith: SpCommandGroup
```

The class `SpCommandGroup` defines methods that are producing Spec object often using the
5.5 Example of Visitor: toolbarBuilder

Commander defines a simple visitor. This visitor is used in many places. Here we present the SpToolBarPresenterBuilder responsible for turning groups into a toolbar.

```plaintext
SpCommandGroup >> asMenuPresenter
 ^ SpMenuPresenterBuilder new
 visit: self;
 menuPresenter

SpCommandGroup >> asToolBarPresenter
 ^ SpToolBarPresenterBuilder new
 visit: self;
 toolbarPresenter

SpvisitCommand: aCmCommandEntry
 aCmCommandEntry positionStrategy
 addButton: (SpToolBarButton new
 label: aCmCommandEntry name;
 help: aCmCommandEntry description;
 icon: aCmCommandEntry icon;
 action: [aCmCommandEntry execute];
 yourself)
 toToolbar: self toolbarPresenter
```

Figure 5-4  Spec's group and group decorators.
5.6 Conclusion

To conclude this chapter Figure 5-5 gives a full overview of the design and layers supported by Commander. We show that Commander proposes a simple way for user to express commands while at the same time commands can be modularly decorated to add extra behavior. Commander20 is a central piece of Pharo infrastructure and all the other commands solutions will be ported to it.
Bibliography