
A memory game: A simple
tutorial with Bloc

S. Ducasse, E. Demeulenaere, and M. Dias

May 15, 2024

Copyright 2023 by S. Ducasse, E. Demeulenaere, and M. Dias.

The contents of this book are protected under the Creative Commons Attribution-
NonCommercial-NoDerivs CC BY-NC-ND
You are free to:

Share — copy and redistribute the material in any medium or format

The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following conditions:

Attribution. — You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner, but
not in any way that suggests the licensor endorses you or your use.

NonCommercial. — You may not use the material for commercial purposes.

NoDerivatives. — If you remix, transform, or build upon the material, you may not
distribute the modified material.

No additional restrictions. — You may not apply legal terms or technological measures
that legally restrict others from doing anything the license permits.

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Keepers of the lighthouse
Édition : BoD - Books on Demand,
12/14 rond-point des Champs-Élysées,75008 Paris
Impression : Books on Demand GmbH, Norderstedt, Allemagne
ISBN: XXXXXXXXXXXXXXX
Dépôt légal : Month/YEAR
Layout and typography based on the sbabook LATEX class by Damien Pollet.

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Contents

1 Objectives of this book 3
1.1 Memory game . 3
1.2 Getting started . 4
1.3 Loading the Memory Game . 5

2 Game model insights 7
2.1 Reviewing the card model . 7
2.2 Card simple operations . 8
2.3 Adding notification . 8
2.4 Reviewing the game model . 9
2.5 Grid size and card number . 9
2.6 Initialization . 10
2.7 Game logic . 10
2.8 Ready . 11

3 Basic building card graphical elements 13
3.1 First: the card element . 13
3.2 Starting to draw a card . 14
3.3 Improving the card visual . 15
3.4 Two faces of a card . 16
3.5 Defining some utilities . 16
3.6 Defining elements for card faces . 17
3.7 Handling the front face . 18
3.8 Flipping faces . 20
3.9 From the model side . 20
3.10 Resources . 21
3.11 Conclusion . 22

4 Adding a board view 23
4.1 The GameElement class . 23
4.2 Creating cards . 24
4.3 Updating the container to its children . 25
4.4 Getting all the children displayed . 25
4.5 Conclusion . 26

i

Contents

5 Adding game interactions 27
5.1 Adding events and event listeners . 27
5.2 Defining a click method . 28
5.3 Alternate design . 28
5.4 Connecting the model to the UI . 29
5.5 Handling disappear . 29
5.6 Reminder on missed pair . 29
5.7 Conclusion . 30

6 Adding animations 31
6.1 Card flipping animations . 31
6.2 Card disappearing animation . 32
6.3 Conclusion . 33

7 Graphical alternatives 35
7.1 Using Alexandrie Canvas . 35
7.2 Using element . 36
7.3 Using elements to add a cross . 36
7.4 Full cross . 37
7.5 Conclusion . 39

ii

Contents

This booklet is the second iteration on the Memory game tutorial. It is in-
spired from the 2017 original Memory Game tutorial written by A. Chis, A.
Syrel and S. Ducasse and entitled ”Building a memory game with Bloc”. This
old tutorial is available on https://books.pharo.org. It used the Sparta canvas
to draw the card visual elements. In the Bloc version distributed by the Pharo
consortium and that will be part of Pharo in the future, the Sparta canvas has
been replaced by Alexandrie the graphical canvas used in Pharo. In addition
in the current tutorial, instead of using the canvas low-level API, we use basic
bloc elements to display the card visual elements. We could draw some visual
using the Alexandrie canvas but this low-level API is not the best for an intro-
duction to Bloc so this is why we decided to take a more pedagogical path.

1

https://books.pharo.org
https://books.pharo.org

CHA P T E R 1
Objectives of this book

Bloc is the new graphics library for Pharo. A graphics library implies several
aspects such as coordinate systems, drawing shape, clipping, and event man-
agement.

In this tutorial, you will build a memory game. Given a provided model of a
game, we will focus on creating a UI for it.

1.1 Memory game

Let us have a look at what we want to build with you: a simple Memory game.
In a memory game, players need to find pairs of similar cards. In each round,
a player turns over two cards at a time. If the two cards show the same sym-
bol they are removed and the player gets a point. If not, they are both re-
turned facedown.

For example, Figure 1-1 shows the game after the first selection of two cards.
Facedown cards are represented with a cross and turned cards show their
number. Figure 1-2 shows the same game after a few rounds. While this game
can be played by multiple players, in this tutorial we will build a game with
just one player.

Our goal is to have a working game with a model and a simple graphical user
interface. In the end, the following code should be able to build, initialize,
and launch the game:

game := MGGame withNumbers.
visual := MGGameElement new.
visual memoryGame: game.

space := BlSpace new.

3

Objectives of this book

Figure 1-1 The game after the player has selected two cards: facedown cards are
represented with a cross and turned cards with their number.

space extent: 420@420.
space root addChild: visual.
space show

• First, we create a game model and ask you to associate the numbers
from 1 to 8 with the cards. By default, a game model has a size of 4 by 4,
which fits eight pairs of numbered cards.

• Second, we create a graphical game element.

• Third, we assign the model of the game to the UI.

• Finally, we create and display a graphical space in which we place the
game UI. Note that this last sequence should be better packaged as a
message to the MGGameElement.

1.2 Getting started

This tutorial is for Pharo 11.0 (https://pharo.org/download) running on
the latest compatible Virtual machine. You can get them at the following ad-
dress: http://www.pharo.org/

4

1.3 Loading the Memory Game

Figure 1-2 Another state of the memory game after the player has correctly
matched two pairs.

1.3 Loading the Memory Game

To make the demo easier to follow and help you if you get lost, we already
made a full implementation of the game. You can load it using the following
code:
Metacello new

baseline: 'BlocMemoryTutorial';
repository: 'github://pharo-graphics/Bloc-Memory-Tutorial/src';
load

After you have loaded the MemoryTutorial project, you will get two new
packages: Bloc-Memory and Bloc-MemoryGame-Tests. Bloc-Memory-Tests
contains the full implementation of the game.

You can browse a model of the game just executing the following code snip-
pet:

MGGame withEmoji

To get a working game just execute the following expression.

MGGameElement openWithNumber

Since we give you all the code, if you want to write it by your own, use a dif-
ferent prefix for the classes.

5

CHA P T E R 2
Game model insights

Before starting with the actual graphical elements, we first need a model for
our game. This game model will be used as the Model in the typical Model
View architecture. On the one hand, the model does not communicate di-
rectly with the graphical elements; all communication is done via announce-
ments. On the other hand, the graphic elements communicate directly with
the model.

In the remainder of this chapter, we describe the game model in detail. If you
want to move directly to building graphical elements using Bloc, this model is
fully defined in the package.

2.1 Reviewing the card model

Let us start with the card model: a card is an object holding a symbol to be
displayed, a state representing whether it is flipped or not, and an announcer
that emits state changes. This object could also be a subclass of Model which
already provides announcer management.

Object << #MGCard
slots: { #symbol . #flipped . #announcer};
tag: 'Model';
package: 'Bloc-Memory'

After creating the class we define an initializemethod to set the card as
not flipped, together with several accessors:

MGCard >> initialize
super initialize.
flipped := false

7

Game model insights

MGCard >> symbol: aCharacter
symbol := aCharacter

MGCard >> symbol
^ symbol

MGCard >> isFlipped
^ flipped

MGCard >> announcer
^ announcer ifNil: [announcer := Announcer new]

2.2 Card simple operations

Next we need two methods to flip a card and make it disappear when it is no
longer needed in the game.

MGCard >> flip
flipped := flipped not.
self notifyFlipped

MGCard >> disappear
self notifyDisappear

2.3 Adding notification

The notification is implemented as follows in the notifyFlipped and no-
tifyDisappearmethods. They simply announce events of type MGCard-
FlippedAnnouncement and MGCardDisappearAnnouncement. The graphical
elements have to register subscriptions to these announcements as we will
see later.
MGCard >> notifyFlipped
self announcer announce: MGCardFlippedAnnouncement new

MGCard >> notifyDisappear
self announcer announce: MGCardDisappearAnnouncement new

Here, MGCardFlippedAnnouncement and MGCardDisappearAnnouncement
are subclasses of Announcement.
Announcement << #MGCardFlippedAnnouncement
tag: 'Events';
package: 'Bloc-Memory'

Announcement << #MGCardDisappearAnnouncement
tag: 'Events';
package: 'Bloc-Memory'

We add one final method to print a card more nicely and we are done with
the card model!

8

2.4 Reviewing the game model

MGCard >> printOn: aStream
aStream

nextPutAll: 'Card';
nextPut: Character space;
nextPut: $(;
nextPut: self symbol;
nextPut: $)

2.4 Reviewing the game model

The game model is simple: it keeps track of all the available cards and all the
cards currently selected by the player.

Object << #MGGame
slots: { #availableCards . #chosenCards};
tag: 'Model';
package: 'Bloc-MemoryGame'

The initializemethod sets up two collections for the cards.

MGGame >> initialize
super initialize.
availableCards := OrderedCollection new.
chosenCards := OrderedCollection new

MGGame >> availableCards
^ availableCards

The chosenCards collection will hold at max two cards in this version of the
game.

MGGame >> chosenCards
^ chosenCards

2.5 Grid size and card number

For now, we’ll hardcode the size of the grid and the number of cards that
need to be matched by a player. Later this could be turned into an instance
variable and be configured.

MGGame >> gridSize
"Return grid size"
^ 4

The method matchesCount indicates that two identical cards are needed to
match.
MGGame >> matchesCount

"How many chosen cards should match for them to disappear"
^ 2

9

Game model insights

MGGame >> cardsCount
"Return how many cards there should be depending on grid size"
^ self gridSize * self gridSize

2.6 Initialization

To initialize the game with cards, we add an initializeForSymbols: method.
This method creates a list of cards from a list of characters and shuffles it. We
also add an assertion in this method to verify that the caller provided enough
characters to fill up the game board.

MGGame >> initializeForSymbols: characters

aCollectionOfCharacters size = (self cardsCount / self
matchesCount)
ifFalse: [self error: 'Amount of characters must be equal to
possible all combinations'].

aCollectionOfCharacters do: [:aSymbol |
1 to: self matchesCount do: [:i |
availableCards add: (MGCard new symbol: aSymbol)]].

availableCards := availableCards shuffled

2.7 Game logic

Next, we define the method chooseCard:. It will be called when a user se-
lects a card. This method is the most complex method of the model and im-
plements the main logic of the game.

• First, the method makes sure that the chosen card is not already se-
lected.

This could happen if the view uses animations that give the player the chance
to click on a card more than once.

• Next, the card is flipped by sending it the message flip.

• Finally, depending on the actual state of the game, the step is complete
and the selected cards are either removed or flipped back.

MGGame >> chooseCard: aCard
(self chosenCards includes: aCard)

ifTrue: [^ self].
self chosenCards add: aCard.
aCard flip.
self shouldCompleteStep

ifTrue: [^ self completeStep].
self shouldResetStep

ifTrue: [self resetStep]

10

2.8 Ready

Completed.

The current step is completed if the player selects the right amount of cards
and they all show the same symbol. In this case, all selected cards receive the
message disappear and are removed from the list of selected cards.

MGGame >> shouldCompleteStep
^ self chosenCards size = self matchesCount

and: [self chosenCardMatch]

MGGame >> chosenCardMatch
| firstCard |
firstCard := self chosenCards first.
^ self chosenCards allSatisfy: [:aCard |

aCard isFlipped and: [firstCard symbol = aCard symbol]]

Note that the logic of chosenCardMatch looks more complex than expected
but it works with matches that require more than two cards.

MGGame >> completeStep
self chosenCards

do: [:aCard | aCard disappear];
removeAll.

Reset.

The current step should be reset if the player selects a third card. This will
happen when a player already selected two cards that do not match and clicks
on a third one. In this situation, the two initial cards will be flipped back. The
list of selected cards will only contain the third card.

MGGame >> shouldResetStep
^ self chosenCards size > self matchesCount

MGGame >> resetStep
| lastCard |
lastCard := self chosenCards last.
self chosenCards

allButLastDo: [:aCard | aCard flip];
removeAll;
add: lastCard

2.8 Ready

We are now ready to start building the game view.

11

CHA P T E R 3
Basic building card graphical

elements

In this chapter, we will build the visual appearance of the cards step by step.
In Bloc, visual objects are called elements, which are usually subclasses of
BlElement, the inheritance tree root. Elements are the basic visual building
blocks of Bloc. In subsequent chapters, we will add interaction using event
listeners.

3.1 First: the card element

Our graphic element representing a card will be a subclass of the BlElement.
This element has, in addition, a reference to a card model (as defined in the
previous chapter).

BlElement << #MGCardElement
slots: { #card };
tag: 'Elements';
package: 'Bloc-Memory'

We define the corresponding accessors since the setter methods will be the
place to hook registration for the communication between the model and the
view, as we will show later.

MGCardElement >> card
^ card

MGCardElement >> card: aMgCard
card := aMgCard

13

Basic building card graphical elements

The message backgroundPaint will be used later to customize the back-
ground of our card element. Let us define a nice color.

MGCardElement >> backgroundPaint
"Return a BlPaint that should be used as a background (fill)
of both back and face sides of the card. Colors are polymorphic
with BlPaint and therefore can be used too."

^ Color pink darker

We define a method initialize to set the size and the default color as well
as a card model object.

MGCardElement >> initialize
super initialize.
self size: 80 @ 80.
self background: self backgroundPaint.
self card: (MGCard new symbol: $a)

3.2 Starting to draw a card

In Bloc, BlElements draw themselves onto the integrated canvas of the in-
spector as we inspect them, take a look at our element by executing this (See
Figure 3-1).

MGCardElement new inspect

Figure 3-1 A first extremely basic representation of face down card.

14

3.3 Improving the card visual

3.3 Improving the card visual

Instead of displaying a full rectangle, we want a better visual. Bloc lets us de-
cide the geometry we want to give to our elements, it could be a circle, a tri-
angle or a rounded rectangle for example, you can check available geometries
by looking at subclasses of BlElementGeometry. We can also add a png as we
will show later.

We can start giving a circle shape to our element, we will need to use the ge-
ometry: message and give a BlCircleGeometry as an argument. You should
obtain an inspector as shown in Figure 3-2.

MGCardElement >> initialize
super initialize.
self size: 80 @ 80.
self background: self backgroundPaint.
self geometry: BlCircleGeometry new.
self card: (MGCard new symbol: $a)

Figure 3-2 A card with circular geometry.

However, we don’t want the card to be a circle either. We would like to have
a rounded rectangle so we use the BlRoundedRectangleGeometry class. We
need to give the corner radius as a argument of the cornerRadius: class
message. This is what we do in the following initializemethod.

MGCardElement >> initialize
super initialize.
self size: 80 @ 80.
self background: self backgroundPaint.
self geometry: (BlRoundedRectangleGeometry cornerRadius: 12).
self card: (MGCard new symbol: $a)

15

Basic building card graphical elements

You should get a visual representation close to the one shown in Figure 3-3.

Figure 3-3 A rounded card.

3.4 Two faces of a card

A card has two faces: its back and its front. There are several approaches to
manage this. In this tutorial, we will compose i.e, add/remove elements as
children of the MGCardElement instance.

• For the back we will add an element containing a png.

• For the front we will add a text element with a number.

3.5 Defining some utilities

Since we do not want to duplicate size card logic, we define a simple method
to return the extent of a card.
MGCardElement >> cardExtent
^ 80@80

And we use it to initialize the card element:
MGCardElement >> initialize
super initialize.
self size: self cardExtent.
self background: self backgroundPaint.
self geometry: (BlRoundedRectangleGeometry cornerRadius: 12).
self card: (MGCard new symbol: $a)

We could do the same for the corner radius but this is not important now.

16

3.6 Defining elements for card faces

To manage the back of a card, we will read a png file and define it as a method
to be able to version it. You can find the current definition on the class side of
MGCardElement.
Since this is a large method that contains the textual serialization of a png we
only show the beginning of its definition:

MGCardElement class >> cardbackForm
^ Form

extent: 80@80
depth: 32
bits: (Bitmap newFrom: #(16777215 16777215 16777215 16777215
16777215 16777215 16777215 16777215 318767103 1526726655
2936012799 3439329279 3942645759 4294967295 4294967295
4294967295 4294967295
...

You can read Section 3.10 to get more information about form and PNG han-
dling.

3.6 Defining elements for card faces

We add two instance variables backElement and frontElement to refer to
the children that represent the contents of the two card faces.

BlElement << #MGCardElement
slots: { #card . #backElement . #frontElement };
tag: 'Elements';
package: 'Bloc-Memory'

We redefine the initializemethod to create the backElement as well as
adding a layout for placement of the children of the MGCardElement instances.
MGCardElement >> initialize

super initialize.
backElement := BlElement new

background: self class cardbackForm;
size:self cardExtent;
yourself.

self size: self cardExtent.
self layout: BlLinearLayout new alignCenter.
self background: self backgroundPaint.
self geometry: (BlRoundedRectangleGeometry cornerRadius: 12).
self card: (MGCard new symbol: $a).

In the following added part:

backElement := BlElement new
background: self class cardbackForm;
size:self cardExtent;
yourself.

17

Basic building card graphical elements

frontElement := BlTextElement new.

We simply set a form as the background of this new element. The method
cardbackForm is the method illustrated above and that you can get load-
ing the code of this tutorial. If you want to create your own method, copy
the logic of the method and paste the contents of the stream passed to the
storeOn: method as in the following script:

String streamContents: [:str | myForm storeOn: str]

About layouts

In addition we initialized the layout to be a linear layout so that each child of
our card element is centered.
self layout: BlLinearLayout new alignCenter.

Better readability

We extract the back element creation in its own method initializeBack-
Element.
MGCardElement >> initializeBackElement
backElement := BlElement new

background: self class cardbackForm;
size: self cardExtent;
yourself

MGCardElement >> initialize
super initialize.
self initializeBackElement.
self size: self cardExtent.
self layout: BlLinearLayout new alignCenter.
self background: self backgroundPaint.
self geometry: (BlRoundedRectangleGeometry cornerRadius: 12).
self card: (MGCard new symbol: $a)

3.7 Handling the front face

Now we will work on the front face visual. First we will initialize a text ele-
ment to a simple text element. This element will be updated for each card
model.
MGCardElement >> initializeFrontElement
frontElement := BlTextElement new

MGCardElement >> initialize
super initialize.
self initializeBackElement.
self initializeFrontElement.

18

3.7 Handling the front face

self size: self cardExtent.
self layout: BlLinearLayout new alignCenter.
self background: self backgroundPaint.
self geometry: (BlRoundedRectangleGeometry cornerRadius: 12).
self card: (MGCard new symbol: $a)

Second, we define the method fillUpFrontElement as follows:

Figure 3-4 Front face with a letter: inspect MGCardElement new.

MGCardElement >> fillUpFrontElement
frontElement text: (card symbol asString asRopedText

fontSize: self fontPointSize;
foreground: self fontColor;
yourself)

To see the actual effect (See Figure 3-4) we redefine the method card: as fol-
lows and inspect the result of MGCardElement new.

Let us explain it a bit, when a new card model is set, the text element repre-
senting the front face is updated, the current children are emptied and the
front element is added as child of the card element.
MGCardElement >> card: aCard

card := aCard.
self fillUpFrontElement.
self removeChildren.
self addChild: frontElement

We will use the same logic to switch back to the back face. We are now ready
to implement the flipping of the card.

19

Basic building card graphical elements

3.8 Flipping faces

Let us define two methods showBackFace and showFrontFace to encapsulate
the logic of switching to a different face visual.

MGCardElement >> showBackFace
self removeChildren.
self addChild: backElement

MGCardElement >> showFrontFace
self removeChildren.
self addChild: frontElement

We redefine the method card: to put in place the corresponding visual based
on the flipped status of the card model.

MGCardElement >> card: aCard
card := aCard.
self fillUpFrontElement.
card isFlipped

ifTrue: [self showFrontFace]
ifFalse: [self showBackFace].

We can do another step to factor nicely the behavior of the method card:.
We define a new method called showCardFace
MGCardElement >> showCardFace
card isFlipped

ifTrue: [self showFrontFace]
ifFalse: [self showBackFace]

MGCardElement>> card: aCard
"Attach a card model and subscribe to its announcements."

card := aCard.
self fillUpFrontElement.
self showCardFace.

3.9 From the model side

Now we are ready to develop the flipped side of the card. To see if we should
change the card model you can use the inspector to get the card element and
send it the message card flip or directly recreate a new card as follows:

| cardElement |
cardElement := MGCardElement new.
cardElement card flip.
cardElement

20

3.10 Resources

3.10 Resources

This section complements Section 3.5. If you want to use your own pngs, have
a look at the class ReaderWriterPNG that converts PNG files into Forms. A
form is a piece of graphical memory internally used by Pharo. So you have to
convert your graphics from or to Forms.

Here are some little scripts (that you should execute in order if you want to
reproduce their effect.)

To save a form as a PNG on your disk:

PNGReadWriter putForm: MGCardElement cardbackForm onFileNamed:
'CardBack.png'

To save a form as a text (as shown above) that you can later execute to recre-
ate the original form.

| text |
text := String streamContents: [:str |

(PNGReadWriter formFromFileNamed: 'CardBack.png') storeOn: str].

"to recreate the form from its textual representation"
text := MGCardElement
Object readFrom: text readStream

Using Uuencoded strings

Storing a form in a plain text can produce large files, you can also use uuen-
coded of them. This is what IconFactory project is doing.

If you want to manage forms as the method cardbackForm provided in the
project, you can have a look at the IconFactory project on github.

Metacello new
baseline: #IconFactory;
repository: 'github://pharo-graphics/IconFactory';
load

This project supports the definition of form as textual resources in methods
that can be then versioned altogether with the code.

Given a base64 encoded string you can get a form with the following expres-
sion, here we take the base64 encoded string from IconFactoryTest new
exampleIconContents
Form fromBinaryStream: IconFactoryTest new exampleIconContents

base64Decoded asByteArray readStream

Following this you can generate a method body with a cache (here named
icons) as follows:

21

Basic building card graphical elements

iconMethodTemplate
^ '{1}
"Private - Generated method"
^ self icons

at: #{1}
ifAbsentPut: [Form fromBinaryStream: IconFactoryTest new
exampleIconContents

base64Decoded asByteArray readStream]'

Where the first argument is part of a method name for example ’tintin’.

3.11 Conclusion

We have all the visual elements for the card, so we are ready to work on the
board game.

22

CHA P T E R 4
Adding a board view

In the previous chapter, we defined all the card visualizations. We are now
ready to define the game board visualization. Basically, we will define a new
BlElement subclass and set its layout.

Here is a typical scenario to create the game: we create a model and its view
and we assign the model as the view’s model.

game := MGGame withNumbers.
board := MGGameElement new.
board memoryGame: game.

4.1 The GameElement class

Let us define the class MGGameElement that will represent the game board. As
for the MGCardElement, it inherits from the BlElement class. The instance
variable memoryGame holds a reference to the game model.

BlElement << #MGGameElement
slots: { #memoryGame };
package: 'Bloc-MemoryGame'

We define the memoryGame: setter method. We will extend it to create all the
card elements shortly.

MGGameElement >> memoryGame: aGameModel
memoryGame := aGameModel

MGGameElement >> memoryGame
^ memoryGame

23

Adding a board view

During the object initialization, we set the layout (i.e., how sub-elements are
placed inside their container). Here we define the layout to be a grid layout
with a little extra space around the card element and we set it as horizontal.

MGGameElement >> initialize
super initialize.
self background: Color veryLightGray.
self layout: (BlGridLayout horizontal cellSpacing: 20).

4.2 Creating cards

When a model is set for a board game, we use the model information to per-
form the following actions:

• we set the number of columns of the layout and

• we create all the card elements paying attention to set their respective
model.

MGGameElement >> memoryGame: aGameModel
memoryGame := aGameModel.
memoryGame availableCards

do: [:aCard | self addChild: (MGCardElement new card: aCard)]

Note in particular that we add all the card graphical elements as children of
the board game using the message addChild:.

Figure 4-1 A first board - not really working.

game := MGGame withNumbers.
board := MGGameElement new.
board memoryGame: game.
board

When we inspect the previous code snippet, we obtain a situation similar to
the one of Figure 4-1. It shows that only a small part of the game is displayed.

24

4.3 Updating the container to its children

This is due to the fact that the board game element did not adapt to its chil-
dren.

4.3 Updating the container to its children

A layout is responsible for the layout of the children of a container but not of
the container itself. For this, we should use constraints.

MGGameElement >> initialize
super initialize.
self background: Color veryLightGray.
self layout: (BlGridLayout horizontal cellSpacing: 20).
self

constraintsDo: [:aLayoutConstrants |
aLayoutConstraints horizontal matchParent.
aLayoutConstraints vertical matchParent]

Now when we refresh our view we should get a situation close to the one pre-
sented in Figure4-2, i.e., having just one row. Indeed we never mentioned to
the layout that it should layout its children into a grid, wrapping after four.

Figure 4-2 Displaying a row.

4.4 Getting all the children displayed

Wemodify the memoryGame: method to set the number of columns that the
layout should handle.

MGGameElement >> memoryGame: aGameModel
memoryGame := aGameModel.
self layout columnCount: memoryGame gridSize.
memoryGame availableCards

do: [:aCard | self addChild: (MGCardElement new card: aCard)]

25

Adding a board view

Once the layout is set with the correct information we obtain a full board as
shown in Figure 4-3.

Figure 4-3 Displaying a full board.

Before adding interaction let’s define a method openWithNumber that will
open our game element with a given model.

MGGameElement class >> openWithNumber
| aGameElement space |
aGameElement := MGGameElement new

memoryGame: MGGame withNumbers;
yourself.

space := BlSpace new.
space root addChild: aGameElement.
space root whenLayoutedDoOnce: [space extent: 420 @ 420].
space show

We are now ready to add interaction to the game.

4.5 Conclusion

The board is now ready to display the full game but the user interaction is
still missing. This is what we will investigate in the next chapter.

26

CHA P T E R 5
Adding game interactions

In this chapter, we will add interaction to the game. We want to flip the cards
by clicking on them. Bloc supports such situations using two mechanisms:
on one hand, event listeners handle events and on the other hand, the com-
munication between the model and view is managed via the registration to
announcements sent by the model.

5.1 Adding events and event listeners

In Bloc, there is of course plenty of Events and we will focus on BlClick-
Event. We can also say that events are easily managed through event han-
dlers

Now we should add an event handler to each card because we want to know
which card will be clicked and pass this information to the game model.

MGGameElement >> initialize
super initialize.
self initializeBackElement.
self initializeFrontElement.
self size: self cardExtent.
self layout: BlLinearLayout new alignCenter.
self background: self backgroundPaint.
self geometry: (BlRoundedRectangleGeometry cornerRadius: 12).
self card: (MGCard new symbol: $a).
self addEventHandlerOn: BlClickEvent do: [:anEvent | self click]

We can easily see that whenever our card Element will receive a click Event,
we will send the clickmessage to this element

27

Adding game interactions

5.2 Defining a click method

Now we can specialize the clickmethod as follows:

• We tell the model we just chose this card.

• We switch the card visual according to its card state.

MGCardElement >> click
self parent memoryGame chooseCard: self card.
self showCardFace

It means that the memory game model is changed but the cards don’t flip
back after mistaking the symbols. Indeed this is normal. We never made
sure that visual elements were listening to model changes except for when
we click on it. This is what we will do in the following .

5.3 Alternate design

Alternatively to use self addEventHandlerOn: BlClickEvent do: [
:anEvent | self click], we can define a specific event listener and reuse
it over all cards. In this case we can reuse the 444 event handler for all card
elements. It allows us to reduce overall memory consumption and improve
game initialization time.

BlEventListener << #MGCardEventListener
slots: { #memoryGame };
package: 'Bloc-Memory'

MGCardEventListener >> clickEvent: anEvent
memoryGame chooseCard: anEvent currentTarget card

MGGameElement >> memoryGame: aGame

| aCardEventListener |
game := aGame.
aCardEventListener :=

MGCardEventListener new
memoryGame: aGame;
yourself.

self layout columnCount: game gridSize.

game availableCards do: [:aCard |
| cardElement |
cardElement :=

MGCardElement new
card: aCard;
addEventHandler: aCardEventListener;
yourself.

self addChild: cardElement]

28

5.4 Connecting the model to the UI

5.4 Connecting the model to the UI

We show how the domain communicates with the user interface: the domain
emits notifications using announcements but it does not refer to the UI ele-
ments. It is the visual elements that should register to the notifications and
react accordingly. We can prepare the message that will tell our elements to
disappear we both cards match, otherwise we just tell our cards to flip back
and draw their backside.
MGCardElement >> onDisappear

"nothing for now"

Now we can modify the setter so that when a card model is set to a card graph-
ical element, we register to the notifications emitted by the model. In the fol-
lowing methods, we make sure that on notifications we invoke the method
just defined.

MGCardElement >>card: aCard
card := aCard.
self fillUpFrontElement.
self showCardFace.

card announcer
when: MGCardFlippedAnnouncement
send: #showCardFace to: self;
when: MGCardDisappearAnnouncement
send: #onDisappear to: self

5.5 Handling disappear

There are two ways to implement the disappearance of a card: Either setting
the opacity of the element to 0 (Note that the element is still present and re-
ceives events.)

MGCardElement >> onDisappear
self opacity: 0

Or changing the visibility as follows:

MGCardElement >> disappear
self visibility: BlVisibility hidden

Note that in the latter case, the element no longer receives events. It is used
for layout.

5.6 Reminder on missed pair

Remember that when the player selects two cards that are not a pair, we
present the two cards as shown in Figure 5-1. Now clicking on another card

29

Adding game interactions

Figure 5-1 Selecting two cards that are not in pair.

will flip back the previous cards. In addition, a card raises a notification when
flipped in either direction.

MGCard >> flip
flipped := flipped not.
self notifyFlipped

In the method resetStep we see that all the previous cards are flipped (tog-
gled).

MGGame >> resetStep
| lastCard |
lastCard := self chosenCards last.
self chosenCards

allButLastDo: [:aCard | aCard flip];
removeAll;
add: lastCard

5.7 Conclusion

At this stage, you are done for the simple interaction. Future versions of this
document will explain how to add animations.

30

CHA P T E R 6
Adding animations

In this chapter, we will add animations to the game. We will define anima-
tions and add them to the queue of card animation. Then Bloc logic will ex-
ecute the animation queue on the receiver. This chapter will illustrate how
animations can be composed or run in parallel.

6.1 Card flipping animations

When the user flip the two cards we want to shrink them a bit to make them
stand out. We use a simple scaling transformation. An animation will modify
the attributes (size, color, position...) of the element on which it is applied.
Once the transformation is defined it is added to the animation queue of the
receiver using the message addAnimation:.
MGGameElement >> onFlippedFace

| animation |
animation := BlTransformAnimation scale: 0.85 @ 0.85.
animation

absolute;
easing: BlQuinticInterpolator default;
duration: 0.3 seconds.

self addAnimation: animation.
self showFrontFace

We define another similar animation to put back the full size of flipped back
card.

31

Adding animations

MGGameElement >> onFlippedBack
| animation |
animation := BlTransformAnimation scale: 1@1.
animation

absolute;
easing: BlEasing bounceOut;
duration: 0.35 seconds.

self addAnimation: animation.
self showBackFace

Wemodify the showCardFacemethod to invoke the method performing the
animations prior to changing the visual of the cards.

MGGameElement >> showCardFace
card isFlipped

ifTrue: [self onFlippedFace]
ifFalse: [self onFlippedBack]

6.2 Card disappearing animation

When two cards match we want them to enlarge a bit to get player’s atten-
tion. When a card disappears, we will compose several animations: one that
will grow the element, another that will change its opacity and in parallel its
size.

The opacity animation will slowly make the card transparent while the size
will make it is smaller.

We replace the previous onDisappearmethod by the following one.

MGCardElement >> onDisappear
| vanish enlarge minimize disappear |
enlarge := BlTransformAnimation scale: 1.15 @ 1.15.
enlarge

absolute;
easing: BlEasing bounceOut;
duration: 0.5 seconds.

vanish := BlOpacityAnimation new
opacity: 0;
duration: 0.35 seconds.

minimize := BlTransformAnimation scale: 0.01 @ 0.01.
minimize

absolute;
easing: BlEasing linear;
duration: 0.35 seconds.

disappear := BlParallelAnimation withAll: { vanish . minimize }.

self addAnimation: (BlSequentialAnimation withAll: { enlarge.
disappear })

32

6.3 Conclusion

6.3 Conclusion

This chapter presented how animations are simple to be defined in Bloc and
how they are useful to enhance user experience.

33

CHA P T E R 7
Graphical alternatives

While in the previous chapters we used a PNG for the back of the card, in this
chapter we show alternative solutions: (1) that we can also draw using a low-
level API such as the one proposed by the Alexandrie canvas or (2) compose
elementary BlElements.

7.1 Using Alexandrie Canvas

Alexandrie is a Cairo-based optimized canvas. It is the default canvas sup-
ported by Bloc. Every element is ultimately drawn with Alexandrie.

Now you can also draw the visual aspect of a BlElement directly using Cairo
operations. For this, it is enough to override the method aeDrawOn:.

We give an example of a ClockElement.

ClockElement >> aeDrawOn: aeCanvas
"draw clock tick on frame"
super aeDrawOn: aeCanvas.
aeCanvas setOutskirtsCentered.
0 to: 11 do: [:items |

| target |
target := (items * Float pi / 6) cos @ (items * Float pi / 6)
sin.
items % 3 == 0

ifTrue: [aeCanvas pathFactory: [:cairoContext |
cairoContext

moveTo: center;
relativeMoveTo: target * 115;
relativeLineTo: target * 35;
closePath].

35

Graphical alternatives

aeCanvas setBorderBlock: [
aeCanvas

setSourceColor: Color black;
setBorderWidth: 8]]

ifFalse: [aeCanvas pathFactory: [:cairoContext |
cairoContext

moveTo: center;
relativeMoveTo: target * 125;
relativeLineTo: target * 25;
closePath].

aeCanvas setBorderBlock: [
aeCanvas

setSourceColor: Color black;
setBorderWidth: 6]].

aeCanvas drawFigure]

7.2 Using element

We can also compose BlElements and place them as children of the main el-
ement. Here is for example the same ClockElement, this time defined using
elementary BlElements.

The initClockFramemethod is invoked when initializing the object.

lClock >> initClockFrame
"draw small lines around clock frame"
0 to: 11 do: [:items |

| target |
target := (items * Float pi / 6) cos @ (items * Float pi / 6)
sin.
items % 3 == 0

ifTrue: [self addChild: (BlElement new
geometry: (BlLineGeometry from: center + (target * 115)

to: center + (target * 150));
outskirts: BlOutskirts centered;
border: (BlBorder paint: Color black width: 8))]

ifFalse: [self addChild: (BlElement new
geometry: (BlLineGeometry from: center + (target * 125)

to: center + (target * 150));
outskirts: BlOutskirts centered;
border: (BlBorder paint: Color black width: 6))]]

7.3 Using elements to add a cross

We can apply the same technique that presented in previous section to to
define the backside of our card. We start by drawing a line. To draw a line
we should use the BlLineGeometry. At the end, we will create two lines and

36

7.4 Full cross

therefore two elements with a line geometry that will be added as children of
the MGCardElement.

Bloc uses parent-child relations between its elements thus leaving us with
trees of elements where each node is an element, connected to a single par-
ent and with zero to many children.

A line is defined between two points, we then need to give two points as pa-
rameters of the from:to: message from the BlLineGeometry class. Lines
created using BlLineGeometry are a bit special because they are considered
as ”open geometries” meaning we don’t define their color with the usual
background: message like any other BlElement. Instead we define a bor-
der for our line and give this border the color we wanted (here we chose light
green), we also define the thickness of our line with the border’s width. An-
other particularity of open geometries is that they don’t fit well with default
outskirts in the current verision of Bloc, this is why we redefine them to be
centered
MGCardElement >> buildFirstLine

| line |
line := BlElement new

border: (BlBorder paint: Color lightGreen width: 3);
geometry: BlLineGeometry new;

outskirts: BlOutskirts centered.
line

when: BlElementLayoutComputedEvent
do: [:e | line geometry from: 0 @ 0 to: line parent extent].

^ line

The message when:do: is used here to wait for the line parent to be drawn
for the line to be defined, otherwise the line parent extent will be 0@0
and our line will not be displayed.

7.4 Full cross

Now we can add the second line to build a full cross.
MGCardElement >> buildSecondLine

| line |
line := BlElement new

border: (BlBorder paint: Color lightGreen width: 3);
geometry: BlLineGeometry new;

outskirts: BlOutskirts centered.
line when: BlElementLayoutComputedEvent do: [:e |

line geometry from: 0 @ line parent height to: line parent width
@ 0].

^ line

37

Graphical alternatives

MGCardElement >> buildBackSide

backElement := BlElement new
addChildren: { self buildFirstLine . self buildSecondLine };
constraintsDo: [:c |

c horizontal matchParent.
c vertical matchParent].

Then we make sure that we invoke the buildBackSidemethod.
MGCardElement >> card: aCard
card := aCard.
self fillUpFrontElement.
self buildBackSide.
card isFlipped

ifTrue: [self showFrontFace]
ifFalse: [self showBackFace].

Once this method is defined, refresh the inspector and you should get a card
as in Figure ??.

Figure 7-1 Using crossed back side cards.

The backside is then an BlElement holding both lines, we tell this element
to match its parent using constraints, meaning the element size will scale
according to the parent size, this also makes our lines defined to the correct
points.

38

7.5 Conclusion

7.5 Conclusion

We show that you can have different ways to define a graphical representa-
tion of your element.

39

	Objectives of this book
	Memory game
	Getting started
	Loading the Memory Game

	Game model insights
	Reviewing the card model
	Card simple operations
	Adding notification
	Reviewing the game model
	Grid size and card number
	Initialization
	Game logic
	Completed.
	Reset.

	Ready

	Basic building card graphical elements
	First: the card element
	Starting to draw a card
	Improving the card visual
	Two faces of a card
	Defining some utilities
	Defining elements for card faces
	About layouts
	Better readability

	Handling the front face
	Flipping faces
	From the model side
	Resources
	Using Uuencoded strings

	Conclusion

	Adding a board view
	The GameElement class
	Creating cards
	Updating the container to its children
	Getting all the children displayed
	Conclusion

	Adding game interactions
	Adding events and event listeners
	Defining a click method
	Alternate design
	Connecting the model to the UI
	Handling disappear
	Reminder on missed pair
	Conclusion

	Adding animations
	Card flipping animations
	Card disappearing animation
	Conclusion

	Graphical alternatives
	Using Alexandrie Canvas
	Using element
	Using elements to add a cross
	Full cross
	Conclusion

