
Application Building with Spec 2.0

K. De Hondt, S. Ducasse with S. Jordan Montaño and E. Lorenzano

October 26, 2024

Copyright 2024 by K. De Hondt, S. Ducasse with S. Jordan Montaño and E. Lorenzano.

The contents of this book are protected under the Creative Commons Attribution-
NonCommercial-NoDerivs CC BY-NC-ND
You are free to:

Share — copy and redistribute the material in any medium or format

The licensor cannot revoke these freedoms as long as you follow the license terms. Un-
der the following conditions:

Attribution. — You must give appropriate credit, provide a link to the license, and indi-
cate if changes were made. You may do so in any reasonable manner, but not in
any way that suggests the licensor endorses you or your use.

NonCommercial. — You may not use the material for commercial purposes.

NoDerivatives. — If you remix, transform, or build upon the material, you may not dis-
tribute the modified material.

No additional restrictions. — You may not apply legal terms or technological measures
that legally restrict others from doing anything the license permits.

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Keepers of the lighthouse
Édition : BoD - Books on Demand,
12/14 rond-point des Champs-Élysées,75008 Paris
Impression : Books on Demand GmbH, Norderstedt, Allemagne
ISBN: 9782322478712
Dépôt légal : 10/2024
Layout and typography based on the sbabook LATEX class by Damien Pollet.

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Contents

1 Introduction 1
1.1 Reuse of logic . 1
1.2 Spec 2.0 . 3
1.3 Code . 5
1.4 Acknowledgements . 5

I All Spec in One Example

2 A 10 min small example 9
2.1 A customer satisfaction UI . 9
2.2 Create the class of the UI . 10
2.3 Instantiate and configure subpresenters . 10
2.4 Define a title and window size, open and close the UI 13
2.5 Conclusion . 14

3 Most of Spec in one example 15
3.1 Application . 15
3.2 A basic film model . 15
3.3 List of films . 17
3.4 Filling up the film list . 18
3.5 Opening presenters via the application . 19
3.6 Improving the window . 19
3.7 An application manages icons . 20
3.8 FilmPresenter . 20
3.9 Better looking FilmPresenter . 22
3.10 Opening FilmPresenter in a modal dialog . 24
3.11 Customizing the modal dialog . 24
3.12 Invoking a presenter . 25
3.13 Embedding a FilmPresenter into the FilmListPresenter 26
3.14 Define component communication . 27
3.15 Testing your application UI . 28
3.16 Adding more tests . 30
3.17 Changing layout . 31

i

Contents

3.18 Using transmissions . 33
3.19 Styling the application . 34
3.20 Conclusion . 36

II Spec Essentials

4 Spec core in a nutshell 39
4.1 Spec architecture overview . 39
4.2 Spec core architecture overview . 40
4.3 Presenters . 41
4.4 Application . 41
4.5 Application configuration . 42
4.6 Layouts . 43
4.7 Styles and stylesheets . 45
4.8 Navigation between presenters . 45
4.9 Conclusion . 46

5 Testing Spec applications 47
5.1 Testing presenters . 47
5.2 Spec user example . 49
5.3 Tests . 53
5.4 Testing your application . 58
5.5 Known limitations and conclusion . 59

6 The dual aspects of presenters: Domain and interaction model 61
6.1 About presenters on a model . 61
6.2 Example with SpPresenter . 62
6.3 SpPresenter vs. SpPresenterWithModel . 63
6.4 Example with SpPresenterWithModel . 63
6.5 User interface building: a model of UI presentation 65
6.6 The initializePresenters method . 66
6.7 The connectPresenters method . 67
6.8 The defaultLayout method . 68
6.9 Conclusion . 68

7 Reuse and composition at work 69
7.1 First requirements . 69
7.2 Creating a basic UI to be reused as a widget 70
7.3 Supporting reuse . 71
7.4 Combining two basic presenters into a reusable UI 72
7.5 Live inspection of the widgets . 74
7.6 Writing tests . 74
7.7 Managing three widgets and their interactions 75
7.8 Having different layouts . 78

ii

Contents

7.9 Enhancing our API . 78
7.10 Changing the layout of a reused widget . 79
7.11 Changing layouts . 81
7.12 Considerations about a public configuration API 81
7.13 New versus old patterns . 82
7.14 Conclusion . 83

8 Lists, tables and trees 85
8.1 Lists . 85
8.2 Controlling item display . 85
8.3 Decorating elements . 87
8.4 About single/multiple selection . 87
8.5 Drag and drop . 88
8.6 Activation clicks . 89
8.7 Filtering lists . 89
8.8 Selectable filtering lists . 90
8.9 Component lists . 91
8.10 Trees . 92
8.11 Tables . 94
8.12 First table . 94
8.13 Sorting headers . 95
8.14 Editable tables . 96
8.15 Tree tables . 97
8.16 Conclusion . 99

9 Managing windows 101
9.1 A working example . 101
9.2 Opening a window or a dialog box . 102
9.3 Preventing window close . 104
9.4 Acting on window close . 104
9.5 Window size and decoration . 105
9.6 Getting values from a dialog window . 108
9.7 Little modal dialog presenters . 109
9.8 Placing a presenter inside a dialog window 110
9.9 Setting keyboard focus . 111
9.10 Acting on window opening . 111
9.11 Conclusion . 113

10 Layouts 115
10.1 Basic principle reminder . 115
10.2 A running example . 116
10.3 BoxLayout (SpBoxLayout and SpBoxConstraints) 116
10.4 Box layout alignment . 119
10.5 Box alignment example . 119

iii

Contents

10.6 Alignment in horizontal box layout . 122
10.7 A more advanced layout . 123
10.8 Example setup for layout reuse . 126
10.9 Opening with a layout . 126
10.10 Better design . 127
10.11 Specifying a layout when reusing a presenter 127
10.12 Alternative to declare subcomponent layout choice 129
10.13 Dynamically changing a layout . 129
10.14 Grid layout (SpGridLayout) . 130
10.15 Paned layout (SpPanedLayout) . 132
10.16 Overlay layout (SpOverlayLayout) . 133
10.17 Conclusion . 136

11 Dynamic presenters 137
11.1 Layouts as simple as objects . 137
11.2 Dynamic button adder . 140
11.3 Defining add/remove buttons . 141
11.4 Building a little dynamic browser . 142
11.5 Placing elements visually . 144
11.6 Connecting the flow . 145
11.7 Toggling Edit/Read-only mode . 146
11.8 About layout recalculation . 147
11.9 Conclusion . 147

12 A Concrete Case: A Mail Application 149
12.1 The models . 150
12.2 Email . 150
12.3 MailFolder . 152
12.4 MailAccount . 153
12.5 The presenters . 155
12.6 The EmailPresenter . 156
12.7 The NoEmailPresenter . 157
12.8 The MailReaderPresenter . 158
12.9 The MailAccountPresenter . 159
12.10 The MailClientPresenter . 161
12.11 First full application . 163
12.12 Conclusion . 164

13 Menubar, Toolbar, Status Bar, and Context Menus 165
13.1 Adding a menubar to a window . 165
13.2 Implementing message menu commands 167
13.3 Installing shortcuts . 169
13.4 Defining actions . 169
13.5 Adding a toolbar to a window . 171

iv

Contents

13.6 Supporting enablement . 173
13.7 Adding a status bar to a window . 174
13.8 Adding a context menu to a presenter . 178
13.9 Enabling blocks . 180
13.10 Conclusion . 182

14 Using transmissions and ports 183
14.1 What are transmissions? . 183
14.2 A simple example . 184
14.3 Basic transmission . 185
14.4 Transforming a transmitted object . 186
14.5 Acting on a transmission without input port 187
14.6 Acting after a transmission . 188
14.7 Available ports . 189
14.8 Ports and nesting presenters . 190
14.9 A more advanced example . 190
14.10 Another variation . 191
14.11 Conclusion . 192

15 Styling applications 193
15.1 In a nutshell . 193
15.2 How do styles work? . 194
15.3 Stylesheets . 194
15.4 Style declaration . 195
15.5 Stylesheet examples . 195
15.6 Anatomy of a style . 196
15.7 Environment variables . 197
15.8 Top-level changes . 197
15.9 Defining an application and its style . 198
15.10 Applying styles . 199
15.11 Dynamically applying styles . 201
15.12 Conclusion . 203

16 Using Athens and Roassal in Spec 205
16.1 Introduction . 205
16.2 Direct integration of Athens with Spec . 206
16.3 Roassal Spec integration . 208
16.4 SpRoassalPresenter . 209
16.5 Hello world in Athens via Morphic objects 210
16.6 Handling resizing . 211
16.7 Using the morph with Spec . 212
16.8 Conclusion . 212

v

Contents

17 Customizing your Inspector 213
17.1 Creating custom tabs . 213
17.2 Adding a tab with text . 214
17.3 A tab with a table . 215
17.4 Tab activation condition . 216
17.5 Adding a raw view of a specific element of the collection 217
17.6 Removing the evaluator . 217
17.7 Adding Roassal charts . 218
17.8 Conclusion . 219

III Working with Commands

18 Commander: A powerful and simple command framework 223
18.1 Commands . 223
18.2 Defining commands . 224
18.3 Adding a common superclass for the command classes 224
18.4 Adding the main commands . 225
18.5 Adding placeholder commands . 227
18.6 Turning commands into menu items . 228
18.7 Using fillWith: . 229
18.8 Managing icons and shortcuts . 230
18.9 Managing a menubar . 231
18.10 Introducing groups . 233
18.11 Extending menus . 235
18.12 Declaring extension . 236
18.13 Managing a toolbar . 237
18.14 Conclusion . 241

vi

CHA P T E R 1
Introduction

Spec is a framework in Pharo for describing user interfaces. It allows for the
construction of a wide variety of UIs; from small windows with a few buttons
up to complex tools like a debugger. Indeed, multiple tools in Pharo are writ-
ten in Spec, e.g., Iceberg the git manager, Change Sorter, Critics Browser, and
the Pharo debugger. An important architectural decision is that Spec supports
multiple backends (at the time of writing this book, GTK and Morphic are avail-
able).

1.1 Reuse of logic

The fundamental principle behind Spec is the reuse of user interface logic and
its visual composition. User interfaces are built by reusing and composing ex-
isting user interfaces, and configuring them as needed. This principle starts
from the most primitive elements of the UI: widgets such as buttons and labels
are in themselves complete UIs that can be reused, configured, and opened in a
window. These elements can be combined to form more complex UIs that again
can be reused as part of a bigger UI, and so on. This is somewhat similar to how
the different tiles on the cover of this book are combined. Smaller tiles config-
ured with different colors or patterns join to form bigger rectangular shapes
that are part of an even bigger floor design.

To allow such reuse, Spec was influenced by VisualWorks’ and Dolphin Smalltalk’s
Model View Presenter (MVP) pattern. Spec recognizes the need for a Presenter
class. A presenter represents the glue between a domain and widgets as well as
the logic of interaction between the widgets composing the application.

1

Introduction

Figure 1-1 Spec supports multiple backends Morphic and GTK3.0.: Here we see
GTK.

In Spec 1.0, this role was filled by the class ComposableModel and now, in Spec
2.0, the class is called SpPresenter. A presenter manages the logic UI and the
link between widgets and domain objects. Fundamentally, when writing Spec code,
developers do not come into contact with UI widgets. Instead, they program a
Presenter that holds the UI logic (interactions, layout, ...) and talks to domain
objects. When the UI is opened, this presenter instantiates the appropriate
widgets. This being said, for developers, this distinction is not apparent and it
feels as if the widgets are being programmed directly.

Spec is the standard GUI framework in Pharo and differs from Pharo’s other
GUI frameworks such as Morphic. It is restricted in that it only allows one to
build user interfaces for applications that have typical GUI widgets such as but-
tons, lists, etc. It cannot be used as a general drawing framework, but you can
integrate a canvas inside a Spec component.

For example, you can embed a Roassal visualization (see Figure 1-2), or you can
extend Spec itself with additional native components.

Another example of integration is the NovaStelo project of Prof. E. Ito as shown
in Figure 1-3. It shows that Spec can be used for the overall structure of the ap-

2

1.2 Spec 2.0

Figure 1-2 Roassal and Spec integration.

plication and embed specific elements. Figure 1-4 is the screenshot developed
from a community member named Walehead.

1.2 Spec 2.0

Since Spec 2.0, different widget sets can be used to render your applications.
At the time of writing this book, Spec can be rendered using either Morphic
or GTK as a backend. Spec 2.0 represents a large iteration over Spec 1.0. Many
enhancements have been introduced: the way user interface layouts are ex-
pressed, the API has been revisited, new widgets are supported, and integra-
tion with other projects, such as Commander, has been added.

Pharo’s objective is to use Spec to build all its own GUIs. This ensures strong
support of Spec over time and improves the standardization of Pharo’s inter-
faces as well as their portability to new graphical systems. Using Spec 2.0 pro-
vides backend independence and logic reuse. This means that a UI written in
Spec will be rendered on backends other than GTK and Morphic. As new back-
ends become available, all applications written in Spec will be able to use them.

While this book uses previous Spec documentation as a foundation, the text
has been almost completely rewritten to achieve higher quality. It covers re-

3

Figure 1-3 An integration of Morphic Native Widgets and Spec.

Figure 1-4 A suduko.

1.3 Code

cent features. We hope that it will be useful to developers who write UIs in
Pharo.

Note This book focuses on Pharo 12. Earlier versions of Pharo come
equipped with different versions of Spec, which may cause some code sam-
ples from this book to break. Nevertheless, the fundamental principles of UI
development in Spec are the same.

1.3 Code

The code of all the examples in this book is stored at https://github.com/Square-
BracketAssociates/CodeOfSpec20Book.

You can load the code by evaluating this code snippet:

Metacello new
baseline: 'CodeOfSpec20Book';
repository: 'github://SquareBracketAssociates/CodeOfSpec20Book/src';
load

1.4 Acknowledgements

Even though due to the lack of manpower the fundraising campaign was not
used, the authors would like to express their warm gratitude to the following
people for their financial support: Masashi Fujita, Roch-Alexandre Nominé,
Eiichiro Ito, sumim, Hilaire Fernandes, Dominique Dartois, Philippe Mougin,
Pavel Krivanek, Michael L. Davis, Ewan Dawson, Luc Fabresse, David Bajger,
Jörg Frank, Petter Egesund, Pierre Bulens, Tomohiro Oda, Sebastian Heidbrink,
Alexandre Bergel, Jonas Skučas, and Mark Schwenk.

We want to thank I. Thomas for her chapter on the inspector, and R. De Ville-
meur for the chapter on Athens integration.

Finally, Stéphane Ducasse wants to thank Johan Fabry for his co-authoring of
the first book on Spec 1.0. Without that first book, this one would not exist. He
wants to thank Koen who happily jumped in as a co-author and tremendously
improved the book. Thanks again Koen. It was a fun journey.

We want to thank ESUG and the Pharo Association for sponsoring this book. It
was a real multiple year effort.

If you supported us and you are not on this list, please contact us or do a pull
request.

5

https://github.com/SquareBracketAssociates/CodeOfSpec20Book
https://github.com/SquareBracketAssociates/CodeOfSpec20Book
https://github.com/SquareBracketAssociates/CodeOfSpec20Book
https://github.com/SquareBracketAssociates/CodeOfSpec20Book

Part I

All Spec in One Example

CHA P T E R 2
A 10 min small example

We will construct a small but complete user interface. This will allow you to
build basic user interfaces.

After completing this chapter you may read Chapter 7 about the reuse of Spec
presenters, which is the key behind the power of Spec. With these two chap-
ters, you should be able to construct Spec user interfaces as intended. You
could use the rest of this book as reference material, but nonetheless, we rec-
ommend you to at least give a brief look at the other chapters as well.

2.1 A customer satisfaction UI

Figure 2-1 A screenshot of the customer satisfaction survey UI.

We construct a simple customer satisfaction survey UI, which allows a user to
give feedback about a service by clicking on one of three buttons. This feed-
back should be recorded and processed, but that is outside of the scope of this
example. Figure 2-1 shows a screenshot of the UI.

9

A 10 min small example

2.2 Create the class of the UI

All user interfaces in Spec are subclasses of SpPresenter, so the first step in
creating the UI is subclassing that class:

SpPresenter << #CustomerSatisfactionPresenter
slots: { #buttonHappy . #buttonNeutral . #buttonBad . #result};
package: 'CodeOfSpec20Book'

The instance variables of the class hold the presenters the UI contains, the so-
called subpresenters. In this case, we have three buttons and a text to show the
result of the survey.

The methods of the class provide the initialization and configuration of the
presenters, e.g., labels and actions, as well as the logic of their interaction. The
basic design of our GUI, i.e., how the presenters are laid out, is defined by the
class as well.

2.3 Instantiate and configure subpresenters

A subclass of SpPresenter has the responsibility to define the initializeP-
resentersmethod, which instantiates and configures the presenters used
in the user interface. We will discuss it piece by piece. Note that since this
method may be a bit long we will split it into pieces that represent their intent.

Presenter creation
CustomerSatisfactionPresenter >> initializePresenters

result := self newLabel.
buttonHappy := self newButton.
buttonNeutral := self newButton.
buttonBad := self newButton.

SpPresenter defines messages for the creation of standard presenters: new-
Button, newCheckBox, newDropList, … All of these are defined in the script-
ing - widgets protocol of the SpTPresenterBuilder trait. They are short-
cuts to create presenters.

The following method shows how newButton is defined.
SpPresenter >> newButton

^ self instantiate: SpButtonPresenter

Note that the naming may be a bit confusing since we write newButton while it
will create a button presenter and not a button widget, which Spec will take care

10

2.3 Instantiate and configure subpresenters

by itself. Spec provides newButton because it is easier to use than newButton-
Presenter.
Do not call new to instantiate a presenter that is part of your UI. An alterna-
tive way to instantiate presenters is to use the message instantiate: with a
presenter class as an argument. For example result := self instantiate:
SpLabelPresenter. This allows one to instantiate standard and non-standard
presenters.

Presenter configuration

The next step is configuring the buttons of our UI. The message label: sets
the button label and the message icon: specifies the icon that will be dis-
played near the label.

CustomerSatisfactionPresenter >> initializePresenters

... continued ...
result label: 'Please give us your feedback.'.
buttonHappy

label: 'Happy';
icon: (self iconNamed: #thumbsUp).

buttonNeutral
label: 'Neutral';
icon: (self iconNamed: #user).

buttonBad
label: 'Bad';
icon: (self iconNamed: #thumbsDown)

The method iconNamed: of SpPresenter uses an icon provider to fetch the
icon with the given name. You can browse the Spec icon provider by looking at
SpPharoThemeIconProvider, which is a subclass of SpIconProvider. Each
application is able to define its own icon provider by defining a subclass of
SpIconProvider.

Presenter interaction logic

Now we define what will happen when the user presses a button. We define
this in a separate method called connectPresenters:
CustomerSatisfactionPresenter >> connectPresenters

buttonHappy action: [result label: buttonHappy label].
buttonNeutral action: [result label: buttonNeutral label].
buttonBad action: [result label: buttonBad label]

We use the message action: to specify the action that is performed when the
button is clicked. In this case, we change the content of the result text to in-

11

A 10 min small example

form the user that the choice has been registered. Note that the message ac-
tion: is part of the button API. In other situations, you will specify that when
a given event occurs, some message should be sent to a subpresenter.

To summarize:

• Specialize initializePresenters to define and configure the presen-
ters that are the elements of your UI.

• Specialize connectPresenters to connect those presenters together and
specify their interaction.

Specifying the presenter layout

The presenters have been defined and configured, but their placement in the
UI has not yet been specified. This is the role of the method defaultLayout.
CustomerSatisfactionPresenter >> defaultLayout

^ SpBoxLayout newTopToBottom
add: (SpBoxLayout newLeftToRight

add: buttonHappy;
add: buttonNeutral;
add: buttonBad;
yourself);

add: result;
yourself

In this layout, we add two rows to the UI, one with the buttons and one with
the result text. Defining presenter layout is a complex process with many dif-
ferent possible requirements, hence in this chapter we do not talk in detail
about layout specification. For more information we refer to Chapter 10.

Figure 2-2 A first version of the customer satisfaction UI.

12

2.4 Define a title and window size, open and close the UI

Once the method defaultLayout is defined, you can open your UI with Cus-
tomerSatisfactionPresenter new open. You should see a window similar
to the one shown in Figure 2-2.

2.4 Define a title and window size, open and close the UI

To set the window title and the initial size of your presenter, you have to spe-
cialize the method initializeWindow: as follows:
CustomerSatisfactionPresenter >> initializeWindow: aWindowPresenter

super initializeWindow: aWindowPresenter.
aWindowPresenter

title: 'Customer Satisfaction Survey';
initialExtent: 400@100

You are free to use helper methods to return the title and extent of your pre-
senter. When you reopen your presenter, and you click the ”Happy” button,
you should see the window shown in Fig. 2-3.

Figure 2-3 A final version of the customer satisfaction UI.

Sending the openmessage to a presenter will open a window and return an
instance of SpWindowPresenter, which allows the window to be closed from
code.
| ui |
ui := CustomerSatisfactionPresenter new open.
[... do a lot of stuff until the UI needs to be closed ...]
ui close

Note that to update the contents of your window once it is open, you have the
method SpPresenter>>withWindowDo:, but we will discuss it later in this
book. More information about managing windows, e.g., opening dialog boxes
or setting the about text is present in Chapter 9.

This concludes our first example of a Spec user interface. In the next chapter,
we continue with more examples on how to configure the different presenters
that can be used in a user interface.

13

A 10 min small example

2.5 Conclusion

In this chapter, we have given you a small example of Spec user interfaces. We
have shown you what the different steps are to build a user interface with Spec.

More examples of Spec user interfaces are found in the Pharo image. Since
all Spec user interfaces are subclasses of SpPresenter, they are easy to find
and each of them may serve as an example. Furthermore, experimentation
with presenters and user interfaces is made easy because all presenters can be
opened as standalone windows.

We recommend that you at least read Chapter 7 about reuse of Spec presenters,
which is the key reason behind the power of Spec. This knowledge will help
you in building UIs faster through better reuse, and also allow your own UIs to
be reused.

14

CHA P T E R 3
Most of Spec in one example

In this chapter, we will guide you through the building of a simple but non-
trivial application to manage films as shown in Figure 3-1. We will show many
aspects of Spec that we will revisit in depth in the rest of this book: the applica-
tion, presenters, the separation between domain and presenter, layout, trans-
missions to connect widgets, and styles.

3.1 Application

Spec 2.0 introduces the concept of an application. An application is a small
object responsible for keeping the state of your application. It manages, for
example, the multiple windows that compose your application, and its backend
(Morphic or GTK), and can hold properties shared by the presenters.

We start with the definition of the example application class:

SpApplication << #ImdbApp
package: 'CodeOfSpec20Book'

3.2 A basic film model

Since we will manage films we define an ImdbFilm class as follows. It has a
name, a year, and a director. We generate the companion accessors.

Object << #ImdbFilm
slots: {#name . #year . #director};
package: 'CodeOfSpec20Book'

15

Most of Spec in one example

Figure 3-1 Film app: reusing the same component to edit and browsing a film.

We need a way to store and query films. We could use Voyage (https://github.com/pharo-
nosql/voyage) since it works without an external Mongo DB. But we want to
keep it extremely simple. So let’s define a singleton.

We define a class instance variable called films.
Object class << ImdbFilm class

slots: { #films }

We define a method that lazy initializes the films variable to an ordered col-
lection.
ImdbFilm class >> films

^ films ifNil: [films := OrderedCollection new]

And to finish we define a way to add a film to the list.

ImdbFilm class >> addFilm: aFilm

films add: aFilm

Now we are ready to define a first presenter that manages a list of films.

16

https://github.com/pharo-nosql/voyage
https://github.com/pharo-nosql/voyage
https://github.com/pharo-nosql/voyage
https://github.com/pharo-nosql/voyage

3.3 List of films

3.3 List of films

We define a presenter to manage a list of films by introducing a new class named
ImdbFilmListPresenter which inherits from SpPresenter. We add an in-
stance variable named filmList that will hold an elementary list presenter.

SpPresenter << #ImdbFilmListPresenter
slots: { #filmList };
package: 'CodeOfSpec20Book'

We define how the information should be presented by defining a method
named defaultLayout. We specify a simple vertical box layout with the film-
List as the only element.

defaultLayout

ImdbFilmListPresenter >> defaultLayout

^ SpBoxLayout newTopToBottom
add: filmList;
yourself

When you do not define any other methods to represent layout, defaultLay-
out is the method that is invoked by Spec logic.

A presenter can have subpresenters. ImdbFilmListPresenter contains a table
presenter and you will see later that:

1. a presenter can have multiple layouts

2. layouts can be defined dynamically

In Spec, layouts are dynamic by default and are expressed at the instance level.
To allow backward compatibility, it is still possible to define a defaultLay-
out class-sidemethod that returns a layout instead of using a defaultLayout
instance-side method, but it is not the recommended way.

initializePresenters

So far, we have not initialized filmList.

The place to initialize the subpresenters is the method initializePresen-
ters as shown below. There we define that filmList is a table with three
columns. The message newTable instantiates a SpTablePresenter.
ImdbFilmListPresenter >> initializePresenters

filmList := self newTable
addColumn: (SpStringTableColumn title: 'Name'

17

Most of Spec in one example

evaluated: #name);
addColumn: (SpStringTableColumn title: 'Director'
evaluated: #director);

addColumn: (SpStringTableColumn title: 'Year'
evaluated: #year);

yourself

The following expression creates an instance of the film list presenter and
opens it. You get the window shown in Figure 3-2.

ImdbFilmListPresenter new open

Figure 3-2 A layout and a simple initializePresenters showing an empty list
of films.

3.4 Filling up the film list

We define the method updatePresenter which is automatically invoked after
initializePresenters. It just queries the domain (ImdbFilm) to get the list
of the recorded films and populates the internal table. Right now we do not
have any film in the singleton so the list of films is empty.

ImdbFilmListPresenter >> updatePresenter

filmList items: ImdbFilm films

If you want, just add a film and reopen the presenter. You should see the film
on the list.

18

3.5 Opening presenters via the application

ImdbFilm addFilm: (ImdbFilm new
name: 'E.T.';
director: 'Steven Spielberg';
year: '1982';
yourself)

3.5 Opening presenters via the application

While directly creating a presenter is possible during development, a more
canonical way to create a presenter is to ask the application using the message
newPresenter: as follows.
| app |
app := ImdbApp new.
(app newPresenter: ImdbFilmListPresenter) open

The application is responsible for managing windows and other information,
therefore it is important to use it to create presenters that compose the appli-
cation.

3.6 Improving the window

A presenter can be embedded in another presenter as we will show later. It
can also be placed within a window and this is what the message open does.
Spec offers another hook, the method initializeWindow:, to specialize the
information presented when a presenter is displayed within a window.

Figure 3-3 Film list presenter with a toolbar and a decorated window.

The method initializeWindow: allows you to define a title, a default size
(message initialExtent:), and a toolbar.

19

Most of Spec in one example

ImdbFilmListPresenter >> initializeWindow: aWindowPresenter

| addButton toolbar |
addButton := self newToolbarButton

label: 'Add film' ;
icon: (self iconNamed: #smallAdd);
action: [self addFilm];
yourself.

toolbar := self newToolbar
add: addButton;
yourself.

aWindowPresenter
title: 'Mini IMDB';
initialExtent: 600@400;
toolbar: toolbar

You should obtain the window with a toolbar as shown in Figure 3-3. To make
sure that the Add film button does not raise an error, we trigger an addFilm
method that is defined with no behavior. In fact, we will define a different pre-
senter to be able to define a film.
ImdbFilmListPresenter >> addFilm

"empty for now"

As we will see in Chapter 18, toolbars can be automatically created out of com-
mands. We could have added the toolbar in that way to the filmList (e.g. us-
ing an instance variable) as part of the ImdbFilmListPresenter because the
toolbar is also a presenter (similar to the table presenter or other predefined
presenters). But doing it that way is less modular. Note also that the toolbar we
created could be factored in a separate class to increase reuse too.

3.7 An application manages icons

What we can see from the definition of the method initializeWindow: is that
an application manages icons with the message iconNamed:. Indeed, a pre-
senter defines the iconNamed: message as a delegation to its application. In
addition, your application can define its own icon set using the message icon-
Provider:.

3.8 FilmPresenter

We are ready to define a simple presenter to edit a film. We will use it to add a
new film or simply display it. We create a new subclass of SpPresenter named

20

3.8 FilmPresenter

ImdbFilmPresenter. This class has three instance variables: nameText, di-
rectorText, and yearNumber.
SpPresenter << #ImdbFilmPresenter

slots: { #nameText . #directorText . #yearNumber };
package: 'CodeOfSpec20Book'

As we did previously, we define a default layout. This time we use a grid layout.
With a grid layout, you can choose the position in the grid where your presen-
ters will appear.

ImdbFilmPresenter >> defaultLayout

^ SpGridLayout new
add: 'Name' at: 1@1; add: nameText at: 2@1;
add: 'Director' at: 1@2; add: directorText at: 2@2;
add: 'Year' at: 1@3; add: yearNumber at: 2@3;
yourself

Note that it is not required to create the accessors for the presenter elements
as we were forced to do in Spec 1.0. Here we only create getters because we will
need them when creating the corresponding ImbdFilm instance.
ImdbFilmPresenter >> year

^ yearNumber text

ImdbFilmPresenter >> director

^ directorText text

ImdbFilmPresenter >> name

^ nameText text

For convenience, a SpGridLayout also comes with a builder that lets you add
elements to the layout in the order they will appear. The previous layout defi-
nition can be rewritten as:
ImdbFilmPresenter >> defaultLayout

^ SpGridLayout build: [:builder |
builder
add: 'Name'; add: nameText; nextRow;
add: 'Director'; add: directorText; nextRow;
add: 'Year'; add: yearNumber]

Pay attention: do not add a yourselfmessage here because you would return
the class and not the layout instance.

21

Most of Spec in one example

Figure 3-4 A single film presenter.

And as before, we define the method initializePresenters to initialize the
variables to the corresponding elementary presenters. Here nameText and di-
rectorText are initialized to a text input, and yearNumber is a number input.

ImdbFilmPresenter >> initializePresenters

nameText := self newTextInput.
directorText := self newTextInput.
yearNumber := self newNumberInput

rangeMinimum: 1900 maximum: Year current year;
yourself

Now we can try our little application with the following script and obtain a
window similar to the one shown in Figure 3-4:

| app |
app := ImdbApp new.
(app newPresenter: ImdbFilmPresenter) open

3.9 Better looking FilmPresenter

We improve the look of the film presenter by specifying column behavior and
setting window properties. As you can see, the form to present Film data has
very large labels. Indeed, they take half of the form width. We can solve that
by using non-homogenous columns and asking the second column to take the
biggest possible width with column:expand:. See Figure 3-5.

22

3.9 Better looking FilmPresenter

ImdbFilmPresenter >> defaultLayout

^ SpGridLayout build: [:builder |
builder
beColumnNotHomogeneous;
column: 2 expand: true;
add: 'Name'; add: nameText; nextRow;
add: 'Director'; add: directorText; nextRow;
add: 'Year'; add: yearNumber]

Figure 3-5 Using a non-homogenous grid layout.

Now we set the window properties by adding the following new initial-
izeWindow: method. We get the situation shown in Figure 3-6.

ImdbFilmPresenter >> initializeWindow: aWindowPresenter

aWindowPresenter
title: 'Film';
initialExtent: 400@250

Figure 3-6 Better window.

23

Most of Spec in one example

3.10 Opening FilmPresenter in a modal dialog

Instead of opening the film presenter in a separate window, we like to open it
in a modal dialog window. The modal dialog blocks the user interface until the
user confirms or cancels the dialog. A modal dialog has no window decorations
and it cannot be moved.

While a window can be opened by sending open to an instance of a presenter
class, a dialog can be opened by sending openModal.
| app |
app := ImdbApp new.
(app newPresenter: ImdbFilmPresenter) openModal

Figure 3-7 A modal dialog.

Figure 3-7 shows the result. Note that there are no UI components to close the
dialog. Press the ”Esc” key on the keyboard to close it.

3.11 Customizing the modal dialog

Spec lets us adapt the dialog window, for example, to add interaction buttons.
We specialize the method initializeDialogWindow: to add two buttons that
control the behavior of the application, as shown in Figure 3-8. We also center
the dialog on screen by sending centered to the dialog presenter.
ImdbFilmPresenter >> initializeDialogWindow: aDialogPresenter

aDialogPresenter centered.
aDialogPresenter

addButton: 'Cancel' do: [:button | button close];
addButton: 'Save Film' do: [:button | button beOk; close].

24

3.12 Invoking a presenter

Figure 3-8 Customizing the dialog window.

3.12 Invoking a presenter

We are ready to use the film presenter from within the film list presenter. We
define the method addFilm in the class ImdbFilmListPresenter. When the
user clicks on the button, we create a new film presenter that we associate with
the current application.

We open the film presenter as a modal dialog using the message openModal.
When the user presses the ”Save Film” button, a new film is added to our little
database and we update the list.

ImdbFilmListPresenter >> addFilm

| dialog windowPresenter film |
dialog := ImdbFilmPresenter newApplication: self application.
windowPresenter := dialog openModal.
windowPresenter isOk ifFalse: [^ self].

film := ImdbFilm new
name: dialog name;
director: dialog director;
year: dialog yearNumber.

ImdbFilm addFilm: film.
self updatePresenter

Now we can open the FilmListPresenter and click on the Add film but-
ton. When the film data has been entered and the Save Film button has been
clicked, you will see that the FilmListPresenter is updated with the added film,
as shown in Figure 3-9.

app := ImdbApp new.
(app newPresenter: ImdbFilmListPresenter) open

25

Most of Spec in one example

Figure 3-9 The refreshed film list.

3.13 Embedding a FilmPresenter into the FilmListPresenter

We have two main visual elements: a list of films and the film details. We can
imagine that we would like to see the film details in the same container as the
list, especially because a film description is larger than the list columns.

To achieve that, we add a new instance variable named detail to the class
ImdbFilmListPresenter.
SpPresenter << #ImdbFilmListPresenter

slots: { #filmList . #detail };
package: 'CodeOfSpec20Book'

We redefine the default layout. We will show later that we can have different
layouts.

ImdbFilmListPresenter >> defaultLayout

^ SpBoxLayout newTopToBottom
add: filmList;
add: detail;
yourself

Since we are going to use this presenter in different places, we have to add a
method to control whether it is editable or not:
ImdbFilmPresenter >> editable: aBoolean

nameText editable: aBoolean.
directorText editable: aBoolean.
yearNumber editable: aBoolean

Now we improve the initializePresenters of ImdbFilmListPresenter.

26

3.14 Define component communication

• First we instantiate ImdbFilmPresenter.

• Second, we configure it as read-only by sending the editable: false
message.

• Third, when an element of the list is selected, we should display the in-
formation in the detail presenter. While we can express this in the ini-
tializePresentersmethod, we prefer specifying it in the connectPre-
sentersmethod. See Section 3.14.

ImdbFilmListPresenter >> initializePresenters

filmList := self newTable
addColumn: (SpStringTableColumn title: 'Name'

evaluated: #name);
addColumn: (SpStringTableColumn title: 'Director'

evaluated: #director);
addColumn: (SpStringTableColumn title: 'Year'

evaluated: #year);
yourself.

detail := self instantiate: ImdbFilmPresenter.
detail editable: false

3.14 Define component communication

We add a helper method named setModel: in class ImdbFilmPresenter to be
able to pass a film and populate the presenter accordingly.

ImdbFilmPresenter >> setModel: aFilm

aFilm
ifNil: [

nameText text: ''.
directorText text: ''.
yearNumber number: '']

ifNotNil: [
nameText text: aFilm name.
directorText text: aFilm director.
yearNumber number: aFilm year]

It is important to check for a nil value, otherwise sending name, director, or
year would fail. If the given aFilm argument is nil, we clear the three subpre-
senters.

Note that the method setModel: is needed only if you do not subclass from
SpPresenterWithModel. If you subclass from SpPresenter, it is the only way
to have the model initialized before the setup of the presenter, and avoid errors
when opening the presenter.

27

Most of Spec in one example

Defining interactions between presenters is done in the connectPresenters
method. We implement it to define that, when an element of the list is se-
lected, we display the information in the detail presenter. It is worth taking
some time to look at the whenSelectionChangedDo: method.

The whenSelectionChangedDo: method expects a block with at most one ar-
gument. The argument does not hold the selected item directly, but a more
complex object that represents the selection. Indeed a selection is different in
a single selection list and a multiple selection list. Therefore Spec defines the
concept of selection mode under the form of subclasses of SpAbstractSelec-
tionMode.
ImdbFilmListPresenter >> connectPresenters

filmList whenSelectionChangedDo: [:selectedItemMode |
detail setModel: selectedItemMode selectedItem]

With connectPresenters in place, selecting an item in the list results in show-
ing the details of the selected item, as shown in Figure 3-10.

Figure 3-10 Embedding the film description in the list: selecting a list item popu-
lates the detailed visual component.

3.15 Testing your application UI

A strong property of Spec is that we can write tests to describe the interaction
and the logic of a UI. Tests are so powerful to help us create nice designs and
make sure that we can spot errors, that we will show that writing tests for a UI
is not complex.

We define ImdbFilmListPresenterTest as a subclass of TestCase.

28

3.15 Testing your application UI

TestCase << #ImdbFilmListPresenterTest
package: 'CodeOfSpec20Book'

ImdbFilmListPresenterTest >>
testWhenSelectingOneFilmThenDetailIsUpdated

| presenter detail |
"Arrange"
presenter := ImdbFilmListPresenter new.
presenter open.
detail := presenter detail.
self assert: detail name isEmpty.

"Act"
presenter clickFilmAtIndex: 1.

"Assert"
self deny: detail name isEmpty.
presenter delete

As you see, we will have to define two methods on ImdbFilmListPresenter to
support proper testing: a getter for detail and an interaction method click-
FilmAtIndex:. We categorize them in the testing - support protocol to
indicate that they are only intended for testing purposes.

ImdbFilmListPresenter >> detail

^ detail

ImdbFilmListPresenter >> clickFilmAtIndex: anIndex

filmList clickAtIndex: anIndex

This test is a bit poor because we do not explicitly test the value of the film’s
name in the detail presenter. We did this to keep the test setup simple, partly
because ImdbFilm stores the current films globally. Singletons are ugly and
they also make testing more complex.

We define three helper methods on ImdbFilm to reset the stored films and add
the E.T. film.
ImdbFilm class >> reset

films := OrderedCollection new

ImdbFilm class >> addET

films add: self ET

29

Most of Spec in one example

ImdbFilm class >> ET

^ self new
name: 'E.T.';
director: 'Steven Spielberg';
year: '1982';
yourself

Now we can define the setUpmethod.

ImdbFilmListPresenterTest >> setUp

super setUp.
ImdbFilm reset.
ImdbFilm addET

Now we update the test to keep the opened presenter in an instance variable.
This allows us to define a tearDownmethod that always closes the presenter,
no matter if the test succeeds or fails.
ImdbFilmListPresenterTest >>

testWhenSelectingOneFilmThenDetailIsUpdated

| detail |
"Arrange"
presenter := ImdbFilmListPresenter new.
presenter open.
detail := presenter detail.
self assert: detail name isEmpty.

"Act"
presenter clickFilmAtIndex: 1.

"Assert"
self deny: detail name isEmpty

ImdbFilmListPresenterTest >> tearDown

presenter ifNotNil: [presenter delete].
super tearDown

3.16 Adding more tests

Tests are addictive because we can change programs and check that they still
work and limit our stress. So we will write another one.

Let us add the following getter method to support our tests.

30

3.17 Changing layout

ImdbFilmListPresenter >> filmList

^ filmList

Let us test that a list has one film and that if we select a non-existent index, the
name is cleared.
ImdbFilmListPresenterTest >> testNoSelectionClearsDetails

| name |
"Arrange"
presenter := ImdbFilmListPresenter new.
presenter open.

"Act"
presenter clickFilmAtIndex: 1.

"Assert"
name := presenter detail name.
self deny: name isEmpty.
self assert: presenter filmList listSize equals: 1.

presenter clickFilmAtIndex: 2.
self assert: presenter detail name equals: ''

Multiple selection is not supported. Therefore we test that filmList is config-
ured for single selection. There is no isSingleSelectionmethod, so instead
of asserting single selection, we deny multiple selection.

ImdbFilmListPresenterTest >> testListIsSingleSelection

presenter := ImdbFilmListPresenter new.
presenter open.
self deny: presenter filmList isMultipleSelection

What you see is that it is relatively simple to test that the interaction you speci-
fied actually works as expected.

3.17 Changing layout

With Spec, a presenter can have multiple layouts, even layouts that are created
on the fly as we will see with dynamic layouts. We can decide which layout to
use when opening a presenter. Let us illustrate that. Imagine that we prefer to
have the list positioned below the film details, or just the list alone.

31

Most of Spec in one example

ImdbFilmListPresenter >> listBelowLayout

^ SpBoxLayout newTopToBottom
add: detail;
add: filmList;
yourself

The following example shows that we can open ImdbFilmListPresenter with
the layout listBelowLayout that we just defined. See Figure 3-11.
| app presenter |
app := ImdbApp new.
presenter := app newPresenter: ImdbFilmListPresenter.
presenter openWithLayout: presenter listBelowLayout.

Figure 3-11 A presenter can have multiple layouts for its subpresenters.

We can also define a layout with a part of the subpresenters. Here listOnly-
Layout only shows the list.
ImdbFilmListPresenter >> listOnlyLayout

^ SpBoxLayout newTopToBottom
add: filmList;
yourself

The following example shows that we can open ImdbFilmListPresenter with
one layout and dynamically change it by another layout. In a playground, do
not declare the temporary variables so that they are bound and kept in the
playground.

app := ImdbApp new.
presenter := app newPresenter: ImdbFilmListPresenter.
presenter open

32

3.18 Using transmissions

The presenter opens with the default layout. Now in the playground execute
the following line.

presenter layout: presenter listOnlyLayout

Now you can see that the layout with only one list has been applied dynami-
cally.

3.18 Using transmissions

Spec 2.0 introduces a nice concept to propagate selections from one presenter
to another, thinking about the ”flow” of information more than the implemen-
tation details of this propagation, which can change from presenter to presen-
ter.

With transmissions, each presenter can define a set of output ports (ports to
transmit information) and input ports (ports to receive information). Widget
presenters already have defined the output/input ports you can use with them,
but you can add your own ports to your presenters.

The easiest way to declare a transmission is by sending the transmitTo: mes-
sage from one presenter to another. We can now change the connectPresen-
tersmethod to use transmissions.
ImdbFilmListPresenter >> connectPresenters

filmList transmitTo: detail

Here, filmList is a table that will transmit its selection to the detail presen-
ter.

Let us explain a bit. ImdbFilmPresenter is a custom presenter. Spec does not
know how to ”fill” it with input data. We need to tell Spec that ImdbFilmPre-
sentermodel will be the input port and receive the input data. Therefore we
need to define an input port as follows:

ImdbFilmPresenter >> inputModelPort

^ SpModelPort newPresenter: self

ImdbFilmPresenter >> defaultInputPort

^ self inputModelPort

Note that we could have inlined inputModelPort’s definition into the de-
faultInputPort definition.

The input data will be set by using the setModel: method we already defined
on ImdbFilmPresenter. SpModelPort takes care of that.

33

Most of Spec in one example

Now you can open the application and see that it still behaves as expected.

| app |
app := ImdbApp new.
(app newPresenter: ImdbFilmListPresenter) open

3.19 Styling the application

Different UI components in an application can have different look and feels, for
example to change the size or color of a font for a header. To support this, Spec
introduces the concept of ”styles” for components.

In Spec, an application defines a stylesheet (or a set of them). A stylesheet de-
fines a set of ”style classes” that can be assigned to presenter widgets. Defining
a style class, however, works differently for each backend. While GTK accepts
(mostly) regular CSS to style widgets, Morphic has its own subframework.

An application comes with a default configuration and a default stylesheet. If
you do not need to style your application, there is no need to define them. In
our example, we would like to define a header style to customize some labels.
In Spec every presenter understands the message addStyle: that adds a tag (a
CSS class) to the receiver.

To do so, you need to declare a stylesheet in a configuration. The configuration
itself needs to be declared in your application. We will define a new presenter
for the label and tag it with a specific CCS class using the message addStyle:.
Our CCS class will be named 'customLabel'.

First, we create the specific configuration for our application.

SpMorphicConfiguration << #ImdbConfiguration
package: 'CodeOfSpec20Book'

Second, we use it in ImdbApp.
ImdbApp >> initialize

super initialize.
self

useBackend: #Morphic
with: ImdbConfiguration new

Then we can define our custom styles. The easiest way is to create a style from
a String. Here we define that an element using the tag customLabel will have
red text.

34

3.19 Styling the application

ImdbConfiguration >> customStyleSheet

^ '
.application [

.customLabel [Font { #color: #red }]]'

Pay attention not to forget the ’.’ in front of application and customLabel

We specialize the method configure: so that it includes the custom style as
follows:
ImdbConfiguration >> configure: anApplication

super configure: anApplication.
self addStyleSheetFromString: self customStyleSheet

We are ready to use the tag for the label. Until now, Spec was creating a pre-
senter for the label automatically, but it was not accessible by the developer.
Therefore we have to add a label explicitly so that we can tag it with a CSS-like
class. This is what the message addStyle: 'customLabel' below does.

We add a nameLabel instance variable to ImdbFilmPresenter to hold a label,
and we initialize it in the method initializePresenters as follows:
ImdbFilmPresenter >> initializePresenters

nameLabel := self newLabel
label: 'Name';
addStyle: 'customLabel';
yourself.

nameText := self newTextInput.
directorText := self newTextInput.
yearNumber := self newNumberInput

rangeMinimum: 1900 maximum: Year current year;
yourself

Then we update the layout to use the newly defined label presenter.

ImdbFilmPresenter >> defaultLayout

^ SpGridLayout build: [:builder |
builder

beColumnNotHomogeneous;
column:2 withConstraints: #beExpand;
add: nameLabel; add: nameText; nextRow;
add: 'Director'; add: directorText; nextRow;
add: 'Year'; add: yearNumber]

Now we see that the name label of a film detail has been styled, as shown in
Figure 3-12.

35

Most of Spec in one example

Figure 3-12 Styled film name label.

3.20 Conclusion

We saw that with Spec the developer defines how a visual element (a presenter)
is composed of other visual elements. Such a presenter has the responsibility
to describe the interaction with other presenters, but also with the domain
objects. It has also the responsibility to describe its visual aspects.

36

Part II

Spec Essentials

CHA P T E R 4
Spec core in a nutshell

Spec is Pharo’s user interface framework. It provides the building blocks for
constructing UIs, from simple windows to complex tools like browsers and de-
buggers. With Spec, developers can capture the layout and the interactions
between the elements that compose a UI. For example, a developer can express
that a tool has two components: a list on the left and a component displaying
information on the right. Clicking on an item in the list will display detailed in-
formation about the selected item. In addition, Spec supports the reuse of the
UI interaction logic.

Spec is the foundation of most tools in Pharo, such as the inspector, Spotter,
the Pharo debugger, Iceberg, etc. In this short chapter, we place the key archi-
tectural elements of Spec in context.

4.1 Spec architecture overview

Figure 4-1 presents the general architecture of Spec. Basically, Spec is built
around 5 concepts that we will describe in subsequent sections. The most im-
portant concepts are presenter, layout, and application.

A presenter represents the UI element logic and it is also the connection with
the domain. The Application is also a place to be in contact with domain ob-
jects but generally, it handles application-specific resources (icons, windows,…).

Based on presenters and layouts, Spec builds the actual UI. Internally, it uses
adapters that are specific to each widget and per backend. This way presenters
are agnostic about backends and are reusable across them.

39

Spec core in a nutshell

Application

Stylesheet

Style

Presenter

Layout

1..n

1..n
1..n

1

1..n

uses

1..n

Domain

Domain

Widget

Adapter

0..n

Figure 4-1 Architecture of Spec.

4.2 Spec core architecture overview

Spec core is composed of the following elements:

• Application. An application is composed of multiple presenters and a
stylesheet.

• Presenters. A presenter is a unit of interactive behavior. It is connected
to domain objects and other presenters. Its visual representation is de-
fined via at least one layout.

• Layout. A layout describes the positions of elements and it can be recur-
sive.

• Stylesheet and styles. A stylesheet is composed of styles that describe
visual properties such as fonts, colors, …

Application

Stylesheet

Style

Presenter

Layout

1..n

1..n

1

1..n

uses

1..n 1..n0..n

Figure 4-2 Presenter, Application, Layout, and Style of Spec.

We detail each of the main elements.

40

4.3 Presenters

4.3 Presenters

A Spec presenter (an instance of a SpPresenter subclass), is an essential part
of the Spec framework. It represents the logic of a UI element. It can define
the behavior of a simple UI widget such as a button, as well as of a complex UI
widget composed by many other presenters (either simple or complex). To
build your user interface, you compose presenters.

Spec already comes with a predefined set of basic presenters (widgets) ready to
use in your presenters. You can find them in the ’scripting - widgets’ protocol
of the SpPresenter class. You will find buttons, labels, checkboxes, text input,
drop lists, lists, menus, tables, trees, toolbars, action bars, but also more com-
plex widgets like code diff presenters and notebooks. You can easily instantiate
a new presenter and display it:

SpButtonPresenter new
label: 'ok';
open

A presenter may also have a model that is a domain object you need to interact
with to display or update data. In this case, your presenter class should inherit
from SpPresenterWithModel so that the presenter keeps a reference to the
domain object and updates when the model changes (see Chapter 6).

A presenter defines layouts. One is mandatory. If you want to display a presen-
ter with the default layout, you can use the open or openDialogmethods. The
former will open a new window with the presenter while the latter will open a
blocking dialog with the presenter. You can use openWithLayout: or openDi-
alogWithLayout: to open the presenter with the layout you will provide as an
argument.

4.4 Application

A Spec application (an instance of the SpApplication class hierarchy) han-
dles your application initialization, configuration, and resources. SpAppli-
cation is not a presenter because it does not have a graphical representation.
An instance of SpApplication defines your application (keeping the backend,
theme, icons, and other graphical resources), and keeps the opened windows
that belong to the application, but it is not shown itself.

A Spec application also provides a way to access windows or resources such as
icons, and provides abstractions for interactions with the user (inform, error,
file, or directory selection).

Finally, an application provides the style used by Spec to style UI elements. A
default style is available, but you can customize it as shown in Chapter 15.

41

Spec core in a nutshell

You should also define a method to tell what is the main window / presenter
to use when running the application. Here we specialize the method start as
follows:
MyApplication >> start

(MyMainPresenter newApplication: self) open

You can run your application with MyApplication new run. It will call the
startmethod you defined.

4.5 Application configuration

In the application initialization, you can configure the backend you want to
use: Morphic (default) or GTK. In the future, Spec will also support Toplo, a
new widget library built on top of Bloc. It will replace Morphic.

Using Morphic

Here is an example using the Film application from Chapter 3. We define a con-
figuration as a subclass of SpMorphicConfiguration.
SpMorphicConfiguration << #ImdbMorphicConfiguration

package: 'CodeOfSpec20Book'

Then we define the method configure: as follows:

ImdbMorphicConfiguration >> configure: anApplication

super configure: anApplication.
"There are ways to write/read this from strings or files,
but this is how you do it programatically."
self styleSheet

addClass: 'header' with: [:style |
style

addPropertyFontWith: [:font | font bold: true];
addPropertyDrawWith: [:draw | draw color: Color red]]

Note that we could use a style described in a string as shown Chapter 15.

Finally, in the corresponding application class, we declare that the Morphic
backend should use our configuration using the message useBackend:with:.
ImdbApp >> initialize

super initialize.
self useBackend: #Morphic with: ImdbMorphicConfiguration new

42

4.6 Layouts

Using GTK theme and settings

For GTK the process is similar, we define a subclass of SpGTKConfiguration.
SpGTKConfiguration << #ImdbGTKConfiguration

package: 'CodeOfSpec20Book'

Then we configure it by selecting and extending CSS.

ImdbGTKConfiguration >> configure: anApplication

super configure: anApplication.
"This will choose the theme 'Sierra-dark' if it is available"
self installTheme: 'Sierra-dark'.
"This will add a 'provider' (a stylesheet)"
self addCSSProviderFromString: '.header {color: red; font-weight:

bold}'

And in the application initialization, we declare that the configuration should
be used for GTK.
ImdbApp >> initialize

super initialize.
self useBackend: #GTK with: ImdbGTKConfiguration new

4.6 Layouts

To display its elements, a presenter uses a layout. A layout describes how ele-
ments are placed on the display surface. To help you build nice user interfaces,
several layouts are available:

• GridLayout: Choose this layout when you need to create a presenter with
a label, and fields that need to be aligned (form style). You can specify in
which box of the grid you want to place an element.

• BoxLayout: a SpBoxLayout arranges presenters in a box, vertically (top
to bottom) or horizontally (left to right).

• PanedLayout: a SpPanedLayout is a layout with two elements called
”panes” and a splitter in between. The user can drag the splitter to resize
the panes.

• TabLayout: a SpTabLayout shows all its elements as tabs. You can select
a tab to display the content.

• MillerLayout: a layout to implement miller columns, also known as cas-
cading lists (https://en.wikipedia.org/wiki/Miller_columns).

43

https://en.wikipedia.org/wiki/Miller_columns
https://en.wikipedia.org/wiki/Miller_columns

Spec core in a nutshell

Any layout in Spec is dynamic and composable. In general, a layout is defined
at the presenter instance level, but it can be defined on the class side.

Defining a layout is as simple as defining the defaultLayoutmethod. This
method is automatically invoked if a layout is not manually set.

Let’s revisit the defaultLayoutmethod from Chapter 2.

CustomerSatisfactionPresenter >> defaultLayout

^ SpBoxLayout newTopToBottom
add: (SpBoxLayout newLeftToRight

add: buttonHappy;
add: buttonNeutral;
add: buttonBad;
yourself);

add: result;
yourself

The method defines two box layouts:

• one containing the three buttons

• one containing the first one and a result text below.

Each of the layouts refers to accessible subpresenters (buttonHappy, button-
Neutral, buttonBad, result) from the presenter. Figure 4-3 shows the corre-
sponding result.

Figure 4-3 The layout corresponding to the defaultLayoutmethod.

44

4.7 Styles and stylesheets

4.7 Styles and stylesheets

A Spec application always comes with a default stylesheet. A stylesheet con-
tains style definitions that can be applied to presenters. Chapter 15 presents
styles in detail.

A style is a property container to “style” components, and defines (to a certain
degree) its behavior within the different layouts.

Here is an example of a stylesheet for the Morphic backend:

'.application [
.lightGreen [Draw { #color: #B3E6B5 }],
.lightBlue [Draw { #color: #lightBlue }]]'

The styles in Spec format are similar to CSS but expressed in STON. Pay atten-
tion not to forget the leading periods.

You can apply it on your Spec application by sending the styleSheet: mes-
sage to an application:

myStyleSheet := SpStyleVariableSTONReader fromString:
'.application [

Font { #bold: true },
.bgBlack [Draw { #backgroundColor: #black }],
.blue [Draw { #color: #blue }]

]'
application styleSheet: SpStyle defaultStyleSheet, myStyleSheet.

Then you can style a presenter using the message addStyle: (think about a
tag with a class in CSS) as follows:

presenter label: 'I am a label'.
presenter addStyle: 'blue'.

4.8 Navigation between presenters

Once the definition of your UI components (i.e., your Spec presenters and lay-
outs) is done, you will need to define the behavior of the UI: what happens
when you open a new presenter?

You will probably want to provide some data (a model) to the presenter so that
it can be used to display data. It is called a transmission: you transmit data
from one presenter to another presenter. Transmissions are defined as reac-
tions to events.

It is quite easy to define the behavior of the UI by using widget-predefined
events. You can find them in the api-events protocol of the presenter classes.

45

Spec core in a nutshell

Most used events are whenSelectionChangedDo:, whenModelChangedDo:,
whenTextChangedDo:. Here are some examples:

messageList
whenSelectionChangedDo: [:selection |

messageDetail model: selection selectedItem];
whenModelChangedDo: [self updateTitle].

textModel whenSubmitDo: [:text | self accept: text].
addButton action: [self addDirectory].
filterInput whenTextChangedDo: [:text | self refreshTable].

4.9 Conclusion

Class SpPresenter is a central class that has the following responsibilities:

• Initialization of presenter part and state.

• Definition of application layout.

• Connection of the elements to support the interaction flow.

• Update of the UI components.

We will illustrate these points in the following chapters.

46

CHA P T E R 5
Testing Spec applications

Developers often think that testing a user interface is difficult. It is true that
fully testing the placement and layout of widgets can be tedious. However, test-
ing the logic of an application and in particular the interaction logic is possi-
ble. That is what we will show in this chapter. We will show that testing a Spec
application is simple and effective.

5.1 Testing presenters

Tests are key to ensuring that everything works correctly. In addition, they free
us from the fear of breaking something without being warned about it. Tests
support refactorings. While such facts are general and applicable to many do-
mains, they are also true for user interfaces.

Spec architecture

Spec is based on an architecture with three different layers as shown in Figure
5-1:

• Presenters: Presenters define the interaction logic and manipulate do-
main objects. They access backend widgets but via an API that is speci-
fied by Adapters.

• Adapters: Adapters are objects exposing low-level backend widgets.
They are a bridge between presenters and low-level widgets.

• Backend widgets. Backend widgets are plain widgets that can be used
without Spec.

47

Testing Spec applications

SpPresenterSpApplication SpAbstractWidget
Presenter

SpListPresenter

MyUIPresenter

SpButtonPresenter

SpMorphicButton
Adapter

SpAbstractMorphicAdapter

SpMorphicList
Adapter

SimpleButtonMorph FastTableMorph Backends

Adapters

YourApp

Presenters

Figure 5-1 Spec Architecture: three layers Presenters - Adapters - Backends.

Three roles and concerns

To help you understand the different possibilities of testing that you can en-
gage in, we identify the following roles and their related concerns.

• Spec Users. Spec users are developers who build a new application. They
define the logic of the application by assembling presenters and domain
objects. We believe that this is the role that you will play most of the
time.

• Spec Developers. Spec developers are more concerned with the develop-
ment of new Spec presenters and their link with the adapters.

• Widget Developers. Widget developers are concerned about the logic
and working of a given widget for a given backend.

Spec user perspective

We will focus on the first role. For the reader interested in the second role, the
class SpAbstractBackendForTest is a good starting place.

As a Spec user, you should consider that the backends are working and your
responsibility is to test the logic of the user interface components. You should
make sure that when the model changes, the user interface components reflect
the changes. Inversely when the user interface components change, you should
ensure that the model is updated. Let’s give an example.

48

5.2 Spec user example

5.2 Spec user example

We will test a simple spec application, as shown in Figure 5-2. The model for
this application is an instance of the Color class. The application shows a list
of colors from which the user can choose one. After choosing a color, the appli-
cation shows the color in a big box, and it shows the printString of the color,
together with the hexadecimal code. The application also provides two buttons
to make the chosen color lighter or darker.

Figure 5-2 A Spec application.

The presenter is defined as described below. The class has six instance vari-
ables. The first five instance variables hold subpresenters that compose the
application window. The sixth instance variable holds the color that serves as
the model of the application.

SpPresenter << #ColorChooser
slots: { #colorList . #colorDetails . #colorBox . #lighterButton .

#darkerButton . #currentColor };
package: 'CodeOfSpec20Book'

The method initializePresenters initializes the subpresenters. colorList
holds a list presenter with the colors. colorBox displays the chosen color in a
SpRoassalPresenter. colorDetails holds a text presenter that shows infor-
mation about the color. lighterButton and darkerButton are the buttons to
make the current color lighter or darker.

49

Testing Spec applications

ColorChooser >> initializePresenters

colorList := self newList
display: [:color | ''];
displayBackgroundColor: [:color | color];
yourself.

colorBox := self instantiate: SpRoassalPresenter.
lighterButton := self newButton

label: 'Lighter';
action: [self lighter];
yourself.

darkerButton := self newButton
label: 'Darker';
action: [self darker];
yourself.

colorDetails := self newText

The instance variable currentColor is not initialized by initializePresen-
ters. It is initialized in setModelBeforeInitialization: because a color
can be given when creating a new ColorChooser instance.
ColorChooser >> setModelBeforeInitialization: aColor

currentColor := aColor

The method defaultLayout defines the layout with a left side and a right
side. The left side is the color list. The right side consists of the color box, the
two buttons, and the color details. Composition with horizontal and vertical
BoxLayouts, together with a 5-pixel spacing, results in the window shown in
Figure 5-2.

ColorChooser >> defaultLayout

| colorBoxAndDetails buttons |
buttons := SpBoxLayout newLeftToRight

spacing: 5;
add: lighterButton;
add: darkerButton;
yourself.

colorBoxAndDetails := SpBoxLayout newTopToBottom
spacing: 5;
add: colorBox;
add: buttons expand: false;
add: colorDetails;
yourself.

^ SpBoxLayout newLeftToRight
spacing: 5;
add: colorList expand: false;

50

5.2 Spec user example

add: colorBoxAndDetails;
yourself

The method initializeWindow: sets the title and the initial dimensions of
the window.
ColorChooser >> initializeWindow: aWindowPresenter

aWindowPresenter
title: 'Color Chooser';
initialExtent: 400@294

Connecting the subpresenters is expressed easily. When a selection in the color
list is made, the color is updated.

ColorChooser >> connectPresenters

colorList whenSelectionChangedDo: [:selection |
self updateColor: selection selectedItem]

The method connectPresenters delegates to updateColor: to update the
color box and the color details. As you can see, updateColor: takes care of a
possible nil value for currentColor.
ColorChooser >> updateColor: color

| details |
currentColor := color.
colorBox canvas

background: (currentColor ifNil: [Color transparent]);
signalUpdate.

details := currentColor
ifNil: ['']
ifNotNil: [self detailsFor: currentColor].

colorDetails text: details

The method updateColor: delegates the responsibility of producing the text
with color details to detailsFor:.
ColorChooser >> detailsFor: color

^ String streamContents: [:stream |
stream

print: color; cr; cr; nextPut: $#;
nextPutAll: color asHexString]

We also define updatePresenter to set the initial state of the subpresenters. It
populates the color list with default colors, as defined by defaultColors, and
the initial color is set with updateColor:.

51

Testing Spec applications

ColorChooser >> updatePresenter

| initialColor |
initialColor := currentColor.
colorList items: self defaultColors.
self updateColor: initialColor

Note that keeping the initial color with initialColor := currentColor is
necessary because colorList items: self defaultColors resets the se-
lection in the list, which triggers the block in connectPresenters. That block
sends updateColor: nil because there is no selection. So this method keeps
the initial color and applies it with self updateColor: initialColor.
To keep things simple, defaultColors answers only a handful of colors. This
method can be changed easily to answer a different collection of colors. For
instance, you could try Color red wheel: 20.
ColorChooser >> defaultColors

^ {
Color red .
Color orange .
Color yellow .
Color green .
Color magenta .
Color cyan .
Color blue .
Color purple .
Color pink .
Color brown .
Color white .
Color gray .
Color black }

There are only two methods missing from the code above to complete the class
implementation. The method initializePresenters sets actions for the but-
tons, which invoke the following two methods. These methods delegate to the
method updateColor: to do the heavy lifting.

ColorChooser >> lighter

self updateColor: currentColor lighter

ColorChooser >> darker

self updateColor: currentColor darker

With the code above in place, we can open the application. Let’s start with
opening the default with:

52

5.3 Tests

ColorChooser new open

In this case, there is no initial color, which results in the window shown in Fig-
ure 5-3. The color box does not show a color and the color details are empty.

Figure 5-3 The default ColorChooser.

Let’s see what happens when we provide a color with:

(ColorChooser on: Color yellow) open

In this case, yellow is given as the initial color that should be shown when the
window opens. Note that on: has not been defined as a class method by Col-
orChooser. The class method is inherited from the superclass SpAbstractP-
resenter. The result is shown in Figure 5-4.

5.3 Tests

With all the code in place, it is time to write some tests. First, we define the test
class.
TestCase << #ColorChooserTest

slots: { #chooser };
package: 'CodeOfSpec20Book'

Each test will open a new instance of ColorChooser. It is expected that the
instance variable chooser will hold the instance used in a test. To ensure that
the instance is cleaned up, we define tearDown. It takes into account that a test
can fail before chooser is bound to an instance of ColorChooser.

53

Testing Spec applications

Figure 5-4 The ColorChooser opened on the color yellow.

ColorChooserTest >> tearDown

chooser ifNotNil: [chooser delete].
super tearDown

With that infrastructure in place, we can write our tests.

Opening the default application

Our first test describes the state of the application after opening the default
application.

ColorChooserTest >> testDefault
"When a ColorChooser opens without a color,
the color box shows a transparent color and the details are empty."

chooser := ColorChooser new.
chooser open.

self assert: chooser boxColor equals: Color transparent.
self assert: chooser detailsText equals: ''

We have to add a few so-called ’test support’ methods to make this work. These
methods belong to the test api of the ColorChooser, because they are intended
to be used for testing purposes only.

54

5.3 Tests

ColorChooser >> boxColor

^ colorBox canvas color

ColorChooser >> detailsText

^ colorDetails text

Correct initialization

The second test describes the state of the application after opening the appli-
cation with a color.
ColorChooserTest >> testInitialization

"When a ColorChooser opens on a color,
the color box shows that color
and the details show the print string and the HEX code."

chooser := ColorChooser on: Color palePeach.
chooser open.

self assert: chooser boxColor equals: Color palePeach.
self assert: chooser detailsText equals: 'Color palePeach\\#FFEDD5'

withCRs

Choosing a color

The third test describes what happens when the user chooses a color.

First, the test selects the first color in the list and verifies the state of the subp-
resenters. Then it selects the seventh color in the list and verifies the expected
state changes in the subpresenters.

ColorChooserTest >> testChooseColor
"When the user chooses a color in the list,
the color box shows the color
and the details show the print string and the HEX code."

chooser := ColorChooser new.
chooser open.

chooser clickColorAtIndex: 1.
self assert: chooser boxColor equals: Color red.
self assert: chooser detailsText equals: 'Color red\\#FF0000'

withCRs.

chooser clickColorAtIndex: 7.
self assert: chooser boxColor equals: Color blue.

55

Testing Spec applications

self assert: chooser detailsText equals: 'Color blue\\#0000FF'
withCRs

This test uses an extra test support method to click on a color in the list.

ColorChooser >> clickColorAtIndex: index

colorList clickAtIndex: index

Making the current color lighter

Now, it is time to describe the application behavior after clicking the ’Lighter’
button.

The test consists of four parts. First, the first color in the list is clicked. That
results in an update of the color box and the color details. After a click on the
button, the test verifies the changed state of the color box and the color de-
tails. Then it clicks the button a second time to describe that the current color
can be made lighter over and over again. Finally, the test selects the seventh
color in the list and verifies the expected state changes in the subpresenters.

ColorChooserTest >> testLighter
"When the user presses the 'Lighter' button,
the color box shows the ligher color
and the details show the print string and the HEX code."

chooser := ColorChooser new.
chooser open.

chooser clickColorAtIndex: 1.
chooser clickLighterButton.
self

assert: chooser boxColor
equals: (Color r: 1.0 g: 0.030303030303030304 b:
0.030303030303030304 alpha: 1.0).

self
assert: chooser detailsText
equals: '(Color r: 1.0 g: 0.030303030303030304 b:
0.030303030303030304 alpha: 1.0)\\#FF0707' withCRs.

chooser clickLighterButton.
self

assert: chooser boxColor
equals: (Color r: 1.0 g: 0.06060606060606061 b:
0.06060606060606061 alpha: 1.0).

self
assert: chooser detailsText
equals: '(Color r: 1.0 g: 0.06060606060606061 b:

56

5.3 Tests

0.06060606060606061 alpha: 1.0)\\#FF0F0F' withCRs.

chooser clickColorAtIndex: 7.
chooser clickLighterButton.
self

assert: chooser boxColor
equals: (Color r: 0.030303030303030304 g: 0.030303030303030304 b:
1.0 alpha: 1.0).

self
assert: chooser detailsText
equals: '(Color r: 0.030303030303030304 g: 0.030303030303030304 b:
1.0 alpha: 1.0)\\#0707FF' withCRs

As the other tests, this test requires an extra test support method.

ColorChooser >> clickLighterButton

lighterButton click

Making the current color darker

This test is very similar to the previous test. Instead of clicking the ’Lighter’
button, this test clicks the ’Darker’ button.

ColorChooserTest >> testDarker
"When the user presses the 'Darker' button,
the color box shows the darker color
and the details show the print string and the HEX code."

chooser := ColorChooser new.
chooser open.

chooser clickColorAtIndex: 1.
chooser clickDarkerButton.
self

assert: chooser boxColor
equals: (Color r: 0.9198435972629521 g: 0.0 b: 0.0 alpha: 1.0).

self
assert: chooser detailsText
equals: '(Color r: 0.9198435972629521 g: 0.0 b: 0.0 alpha:
1.0)\\#EB0000' withCRs.

chooser clickDarkerButton.
self

assert: chooser boxColor
equals: (Color r: 0.8396871945259042 g: 0.0 b: 0.0 alpha: 1.0).

self
assert: chooser detailsText

57

Testing Spec applications

equals: '(Color r: 0.8396871945259042 g: 0.0 b: 0.0 alpha:
1.0)\\#D60000' withCRs.

chooser clickColorAtIndex: 7.
chooser clickDarkerButton.
self

assert: chooser boxColor
equals: (Color r: 0.0 g: 0.0 b: 0.9198435972629521 alpha: 1.0).

self
assert: chooser detailsText
equals: '(Color r: 0.0 g: 0.0 b: 0.9198435972629521 alpha:
1.0)\\#0000EB' withCRs

Again, this test requires an extra test support method. Note that such a method
is not mandatory and could be replaced by a simple access to the button using
an accessor. Using such a helper method factors the logic.

ColorChooser >> clickDarkerButton

darkerButton click

Verifying window properties

Now we want to check that the window is built correctly. We will verify that the
title and the initial extent of the window are correct.
ColorChooserTest >> testInitializeWindow

| window |
chooser := ColorChooser new.
window := chooser open.
self assert: window isBuilt.
self assert: window title equals: 'Color Chooser'.
self assert: window initialExtent equals: 400@294

5.4 Testing your application

In Spec, an application is responsible to run and gather the windows of your
application. The pattern is to override the startmethod of your application.
The method start is a hook method that is invoked when you execute your
application using the runmessage as in ColorChooserApplication new run.
It is important to see that in the startmethod you should configure the pre-
senter you are opening so that it knows its application. This is important so
that the application knows the windows it is opening.

In a TDD fashion, we define the test class first:

58

5.5 Known limitations and conclusion

TestCase << #ColorChooserApplicationTest
slots: { #application };
package: 'CodeOfSpec20Book'

ColorChooserApplicationTest >> setUp

super setUp.
application := ColorChooserApplication new

ColorChooserApplicationTest >> tearDown

application ifNotNil: [application closeAllWindows].
super tearDown

ColorChooserApplicationTest >> testWindowRegistration

self assert: application windows size equals: 0.
application start.
self assert: application windows size equals: 1.
application start.
self assert: application windows size equals: 2

The method testWindowRegistration describes the expected behavior of our
application. When opened windows are correctly registered, the application
should have access to all the opened windows. The test opens two windows and
verifies that the number of windows increases.

The test fails, because ColorChooserApplication does not exist yet. Let’s
define it:
SpApplication << #ColorChooserApplication

slots: {};
package: 'CodeOfSpec20Book'

The test still fails. It fails in the second assertion because the application does
not register the open windows. Let’s implement the startmethod to register
the windows.
ColorChooserApplication >> start

ColorChooser new
application: self;
open

Tada! The test passes.

5.5 Known limitations and conclusion

In this chapter we showed that you can take advantage of Spec to define tests
that will help you to evolve the visual part of your application. This is really

59

Testing Spec applications

key for modern software development and to lower your stress in the future.
So take advantage of agile development.

Currently, Spec does not offer a way to script and control popup windows. It is
not possible to script a button that opens a dialog for a value. Future versions
of Spec should cover this missing feature.

60

CHA P T E R 6
The dual aspects of presenters:
Domain and interaction model

A presenter has a dual role in Spec. On the one hand, it acts as the glue be-
tween domain objects and widgets, and on the other hand, it implements the
user interface logic by connecting subpresenters together. These two aspects
compose the core of a presenter and this is what this chapter describes.

We start by presenting an important aspect of presenters: the way they handle
communication with domain objects that here we call a model.

In this chapter, we visit the key aspects of Spec and put the important cus-
tomization points of its building process in perspective.

6.1 About presenters on a model

Frequently you want to open a presenter on a given object such as your list of
to-do items. In that case, you would like the subpresenters (list, text,..) to be
initialized based on the object that you passed. For example, you may want to
get all the items in your basket.

However, simply instantiating a presenter using the message new and passing
the object will not work because messages such as initializePresenters will
be already sent.

There are two ways to address this situation in Spec and in particular, Spec
offers a special presenter called SpPresenterWithModel. Let us explain how
to take advantage of it.

61

The dual aspects of presenters: Domain and interaction model

We will build the simplest example to show how to do it. We will implement
a presenter that lists the method signatures of a class, first using a presenter
inheriting from the default superclass (SpPresenter) and second using a pre-
senter (subclass of SpPresenterWithModel) dedicated to handling a model.

6.2 Example with SpPresenter

If you do not need to react to model changes, you can simply inherit from Sp-
Presenter, override the setModelBeforeInitialization: method to set
your domain object, and use YourPresenter on: yourDomainObject to in-
stantiate it.

This is exactly what we do hereafter.

First, we create a new presenter class.

SpPresenter << #MethodLister
slots: { #sourceClass . #list};
package: 'Spec2Book'

We define a list presenter and populate it.

MethodLister >> initializePresenters

list := self newList.
list items: sourceClass selectors sorted

Specializing the method setModelBeforeInitialization:, we assign its ar-
gument coming from the on: message to the instance variable sourceClass
for future use.
MethodLister >> setModelBeforeInitialization: aModel

sourceClass := aModel

We define a basic layout for the list presenter.

MethodLister >> defaultLayout

^ SpBoxLayout newTopToBottom
add: #list;
yourself

The following snippet opens a window with the list of methods of the class
Point as shown in Figure 6-1.

(MethodLister on: Point) open.

62

6.3 SpPresenter vs. SpPresenterWithModel

Figure 6-1 A simple list of sorted selectors of the class Point.

6.3 SpPresenter vs. SpPresenterWithModel

The key difference between using SpPresenter and SpPresenterWithModel
is if you need to react to changes of the model. We mean that while the presen-
ter is open, an event changes the model that was used to build the UI. In our
example, that means that when you change the class, the method list displays
its selectors. If you need this behavior, then you should use SpPresenterWith-
Model.

The following snippet shows that the change of model is not taken into account
in the sense that the list is not refreshed and still displays methods of the class
Point, while the methods of the class ‘Rectangle should be displayed.

| lister |
lister := MethodLister on: Point.
lister open.
lister setModel: Rectangle

6.4 Example with SpPresenterWithModel

A presenter may also have a model that is a domain object you need to interact
with to display or update data. In that case, you should inherit from SpPre-
senterWithModel so that the presenter keeps a reference to the domain ob-
ject and manages its changes. As a client of this presenter, we use the message
model: to change the model.

The method is inherited from the superclass. This model: method implements
the following behavior:

• If the domain object is an instance of Model, it is stored as is in the pre-
senter.

63

The dual aspects of presenters: Domain and interaction model

• Else a value holder is created to hold the domain object so that you can
be notified when the domain object used by the presenter changes.

You do not need to define the method setModelBeforeInitialization: as
we previously showed.

Let us revisit our little example. First, we inherit from SpPresenterWith-
Model.
SpPresenterWithModel << #MethodListerWithModel

slots: { #list };
package: 'Spec2Book'

Second, we define initializePresenters.
MethodListerWithModel >> initializePresenters

list := self newList

You can then implement the modelChangedmethod to refresh your UI when
the model changes.

MethodListerWithModel >> modelChanged

list items: self model selectors sorted

We define the same layout method as before:

MethodListerWithModel >> defaultLayout

^ SpBoxLayout newTopToBottom
add: #list;
yourself

Figure 6-2 A simple list of sorted selectors changing based on its model.

Now we can open our widget. As the following script shows, it will react to the
change of the model (see Figure 6-2).

64

6.5 User interface building: a model of UI presentation

| lister |
lister := MethodListerWithModel on: Point.
lister open.
lister model: Rectangle

Note that the right way to create a presenter is to use the method newAppli-
cation: anApplication because it ensures that the application knows its
constituents.

So the code above should be:
| lister app |
app := SpApplication new
lister := MethodListerWithModel newApplication: app.

Then we have a problem because we want to specify the model too. The correct
and idiomatic way is to use the method newApplication:model: so the final
code version is:
| lister |
app := SpApplication new.
lister := MethodListerWithModel newApplication: app model: Point.
lister open.
lister model: Rectangle

You saw that you can easily build an application user interface populated from
a model and reacting to model changes.

Now we will focus on the user interface logic modeling.

6.5 User interface building: a model of UI presentation

A key aspect of Spec is that all user interfaces are constructed through the
reuse and composition of existing user interfaces. To allow this, defining a user
interface consists of defining the model of the user interface, and not the user
interface elements that will be shown on screen. These UI elements are instan-
tiated by Spec, taking into account the underlying UI framework.

In the end, it is the presentation model and the UI elements that make up the
resulting user interface that is shown. This composition of the presentation
models is represented as a Presenter object as in Model-View-Presenter. The
presenter that is defined in Spec corresponds to a presenter in the MVP triad
as shown in Figure 6-3.

To define a new user interface, the developer should create a subclass of SpP-
resenter.

Fundamentally, it is built around three concerns that materialize themselves as
the following three methods in SpPresenter:

65

The dual aspects of presenters: Domain and interaction model

subPresenters
parent

Presenter

Model

Widgets

Figure 6-3 A presenter is a model of presentation: It is in relationships with the
widgets and its domain model. It composes other presenters to form a presenter
tree.

• The method initializePresenters treats the subpresenters them-
selves.

• The method connectPresenters treats the interactions between the
subpresenters.

• The method defaultLayout treats the layout of the subpresenters.

Hence, these methods are typically found in the model of each user interface.
You can read the code of the small interface presented in Chapter 2 to get ex-
amples of each of the points we will present now.

In this chapter, we describe the finer points of each method and how these
three methods work together to build the overall UI.

6.6 The initializePresentersmethod

The method initializePresenters instantiates, holds in instance variables,
and partially configures the different widgets that will be part of the UI.

The instantiation of the presentation models will cause the instantiation and
initialization of the different lower-level user interface components, construct-
ing the UI that is shown to the user. The first part of the configuration of each
widget is specified in initializePresenters as well.

The focus of this method is to specify what the widgets will look like and what
their self-contained behavior is. The behavior to update the model state, e.g.,
when pressing a Save button, is described in this method as well. It is explic-
itly not the responsibility of this method to define the interactions between the
widgets.

In general, the initializePresentersmethod should follow the pattern:

• Widget instantiation

• Widget configuration

• Specification of focus order

66

6.7 The connectPresenters method

The last step is not mandatory since the focus order is by default given by the
order of declaration of the subpresenters.

Note. Specifying the method initializePresenters is mandatory, as without
it the UI would have no widgets.

Subpresenter instantiation

The instantiation of a subpresenter (i.e., the model for a widget composing the
UI) can be done in two ways: through the use of a creation method or through
the use of the instantiate: method.

• Considering the first option, the framework provides unary messages
for the creation of all basic widgets. The format of these messages is
new[Widget], for example, newButton creates a button widget, and
newList creates a list widget. The complete list of available widget cre-
ation methods can be found in the class SpPresenter in the protocol
scripting - widgets.

• The second option is more general: to reuse a SpPresenter subclass
(other than the ones handled by the first option), the widget needs to
be instantiated using the instantiate: method. For example, to reuse a
MessageBrowser presenter, the code is self instantiate: Message-
Browser. The instantiate: method has the responsibility to build an
internal parent presenter tree.

6.7 The connectPresentersmethod

The method connectPresenters defines the interactions between the differ-
ent widgets. By connecting the behaviors of the different widgets, it specifies
the overall presentation, i.e., how the overall UI responds to interactions by the
user. Usually, this method consists of specifications of actions to perform when
a certain event is received by a widget. The whole interaction flow of the UI
then emerges from the propagation of those events.

Note. The method connectPresenters is an optional method for a Spec UI,
but we recommend to separate this behavior clearly.

In Spec, the different UI models are contained in value holders, and the event
mechanism relies on the announcements from these value holders to manage
the interactions between widgets.

Value holders provide the method whenChangedDo: that is used to register a
block to perform on change, and the method whenChangedSend: aSelector
to: aReceiver to send a message to a given object. In addition to these primi-
tive methods, the basic widgets provide more specific hooks, e.g., when an item
in a list is selected (whenSelectionChangedDo:).

67

The dual aspects of presenters: Domain and interaction model

6.8 The defaultLayout method

Widget layout is defined by specifying methods that state how the different
widgets are placed in the UI. In addition, it also specifies how a widget reacts
when the window is resized. As we will see later, these methods can have dif-
ferent names.

The method defaultLayout is an instance method, but it can be also defined
at the class level. Put differently, typically all the instances of the same user
interface have the same layout, but a layout can be specific to one instance and
be dynamic.

Note. Specifying a layout is mandatory, as without it the UI would show no
widgets to the user.

Using setter message layout:
We recommend to clearly separate presenter initialization (initializePresenters
and defaultLayout). You can, however, also use the layout: message to set a
layout during the presenter initialization phase.

Multiple layouts for a widget

For the same UI, multiple layouts can be described, and when the UI is built,
the use of a specific layout can be indicated. To do this, instead of calling open
(as we have done until now), use the openWithLayout: message with a layout
as an argument.

6.9 Conclusion

In this chapter, we have given a more detailed description of how the three
fundamental methods of Spec, initializePresenters, defaultLayout, and
connectPresenters, are each responsible for a different aspect of the user
interface building process.

Although reuse is fundamental in Spec, we did not explicitly treat it in this
chapter. Instead, we refer to the next chapter for more information.

68

CHA P T E R 7
Reuse and composition at work

A key design goal of Spec is to enable the seamless reuse of user interfaces. The
reason for this is that it results in a significant productivity boost when creat-
ing user interfaces.

This focus on reuse was actually already visible in the previous chapters, where
we have seen that basic widgets can be used as if they were complete user in-
terfaces. In this section we focus on the reuse and composition of presenters,
showing that it basically comes for free. The only requirement when building
a UI is to consider how the user interface should be parameterized when it is
being reused.

Said differently, in this chapter, you will learn how you can build a new UI by
reusing already defined elements.

7.1 First requirements

To show how Spec enables the composition and reuse of user interfaces, in this
chapter we build the user interface shown in Figure 7-1 as a composition of
four parts:

1. TheWidgetClassListPresenter: This widget contains a SpListPresen-
ter specifically for displaying the subclasses of SpAbstractWidgetPre-
senter.

2. The ProtocolMethodListPresenter: This widget is composed of a SpList-
Presenter and a SpLabelPresenter for displaying methods of a proto-
col.

69

Reuse and composition at work

Figure 7-1 ProtocolCodeBrowser: Browsing the public APIs of widgets.

3. The ProtocolViewerPresenter: This widget is a composition of one Wid-
getClassListPresenter and two ProtocolMethodListPresenter. It
allows browsing the methods of all subclasses of SpAbstractWidgetPre-
senter.

4. The ProtocolCodeBrowserPresenter: This widget reuses a ProtocolView-
erPresenter, changes its layout, and adds a SpTextPresenter to see
the source code of the methods.

7.2 Creating a basic UI to be reused as a widget

The first UI we build displays a list of all subclasses of the class SpAbstractWid-
getPresenter. This UI will later be reused as a widget for a more complete UI.
The code is as follows.

First, we create a subclass of SpPresenter with one instance variable list
which will hold an instance of SpListPresenter.
SpPresenter << #WidgetClassListPresenter

slots: { #list };
package: 'CodeOfSpec20Book'

In the method initializePresenters, we create the list and populate it with
the required classes, in alphabetical order.

WidgetClassListPresenter >> initializePresenters

list := self newList.
list items: (SpAbstractWidgetPresenter allSubclasses sorted: [:a :b

70

7.3 Supporting reuse

| a name < b name]).
self focusOrder add: list

We also add a title for the window.
WidgetClassListPresenter >> initializeWindow: aWindowPresenter

aWindowPresenter title: 'Widgets'

The layout contains only the list.

WidgetClassListPresenter >> defaultLayout

^ SpBoxLayout newLeftToRight
add: #list;
yourself

When doing WidgetClassListPresenter new open, you should see the UI
shown in Figure 7-2.

Figure 7-2 WidgetClassListPresenter.

7.3 Supporting reuse

Since this UI will later be used together with other widgets to provide a more
complete user interface, some actions will need to occur when a list item is
clicked. However, we cannot know beforehand what all these possible actions
will be everywhere that it will be reused. Therefore the best solution is to place
this responsibility on the reuser of the widget. Every time this UI is reused as
a widget, it will be configured by the reuser. To allow this, we add a configura-
tion method named whenSelectionChangedDo: as follows:

71

Reuse and composition at work

WidgetClassListPresenter >> whenSelectionChangedDo: aBlock

list whenSelectionChangedDo: aBlock

Now, whoever reuses this widget can parameterize it with a block that will be
executed whenever the selection changes.

7.4 Combining two basic presenters into a reusable UI

The UI we build next will show a list of all methods of a given protocol, and
it combines two widgets: a list and a label. Considering reuse, there is no dif-
ference from the previous UI. This is because the reuse of a UI as a widget is
not impacted at all by the number of widgets it contains (nor by their position).
Large and complex UIs are reused in the same way as simple widgets.

SpPresenter << #ProtocolMethodListPresenter
slots: { #label . #methods };
package: 'CodeOfSpec20Book'

The initializePresentersmethod for this UI is straightforward. We specify
the default label text as ’Protocol’, which will be changed when the widget is
reused.
ProtocolMethodListPresenter >> initializePresenters

methods := self newList.
methods display: [:m | m selector].
label := self newLabel.
label label: 'Protocol'.
self focusOrder add: methods

To make sure that we have a nice title when the widget is opened in a window,
we define the method initializeWindow:.
ProtocolMethodListPresenter >> initializeWindow: aWindowPresenter

aWindowPresenter title: 'Protocol widget'

The layout code builds a column with the label above the method list.

ProtocolMethodListPresenter >> defaultLayout

^ SpBoxLayout newTopToBottom
add: #label;
add: #methods;
yourself

72

7.4 Combining two basic presenters into a reusable UI

This UI can be seen by executing ProtocolMethodList new open. As shown
in Figure 7-3 the list is empty and the result is not really nice. This is normal
because we did not set any items. We should also place the elements better.

Figure 7-3 ProtocolMethodListPresenter with bad layout.

ProtocolMethodListPresenter >> defaultLayout

^ SpBoxLayout newTopToBottom
add: #label expand: false;
add: #methods;
yourself

Now you should get a better UI as shown in Figure 7-4.

Figure 7-4 ProtocolMethodListPresenter with nicer layout.

Our protocol method list needs to be configured when it is used, by filling the
list of methods and specifying what the name of the protocol is. To allow this,

73

Reuse and composition at work

we add some configuration methods:

ProtocolMethodListPresenter >> items: aCollection

methods items: aCollection

ProtocolMethodListPresenter >> label: aText

label label: aText

ProtocolMethodListPresenter >> resetSelection

methods selection unselectAll

ProtocolMethodListPresenter >> whenSelectionChangedDo: aBlock

methods whenSelectionChangedDo: aBlock

7.5 Live inspection of the widgets

Now we can check manually if the widget is working by doing:

ProtocolMethodListPresenter new open; inspect

Then in the inspector, we can use the newly created presenter to pass a collec-
tion of methods. See the result in Figure 7-5.

self items: Point methods

Now we can play and for example, decide to sort the items as follows:

self items: (Point methods sort: #selector ascending)

7.6 Writing tests

When we start to feel the need to check manually what we have done, that is
a sign that we should write a test instead. It is easy to write simple tests for
widgets when we do not use popups. So let’s take advantage of that.

We add an accessor to access the method list.
ProtocolMethodListPresenter >> methods

^ methods

TestCase << #ProtocolMethodListPresenterTest
slots: {};
package: 'CodeOfSpec20Book'

74

7.7 Managing three widgets and their interactions

Figure 7-5 Live coding your widgets.

ProtocolMethodListPresenterTest >> testItems

| proto methods |
methods := Point methods sort: #selector ascending.
proto := ProtocolMethodListPresenter new.
proto items: methods.
self assert: proto methods items first class equals: CompiledMethod.
self assert: proto methods items first selector equals: methods

first selector

We hope that we convinced you that writing simple UI tests is easy with Spec.
Do not miss this opportunity to control the complexity of your software.

7.7 Managing three widgets and their interactions

The third user interface we build is a composition of the two previous user in-
terfaces. We will see that there is no difference between configuring custom
UIs and configuring system widgets: both kinds of widgets are configured by
calling methods of the ’api’ protocol.

75

Reuse and composition at work

This UI is composed of a WidgetClassListPresenter and two Protocol-
MethodListPresenters. It specifies that when a model class is selected in
the WidgetClassListPresenter, the methods in the protocols ’api’ and ’api-
events’ will be shown in the two ProtocolMethodListPresenter widgets.
SpPresenter << #ProtocolViewerPresenter

slots: { #models . #api . #events };
package: 'CodeOfSpec20Book'

The initializePresentersmethod shows the use of instantiate: to in-
stantiate widgets, and some of the different parameterization methods of the
ProtocolMethodListPresenter class.
ProtocolViewerPresenter >> initializePresenters

models := self instantiate: WidgetClassListPresenter.
api := self instantiate: ProtocolMethodListPresenter.
events := self instantiate: ProtocolMethodListPresenter.

api label: 'api'.
events label: 'api-events'.

self focusOrder
add: models;
add: api;
add: events

ProtocolViewerPresenter >> initializeWindow: aWindowPresenter

aWindowPresenter title: 'Protocol viewer'

To describe the interactions between the different widgets we define the con-
nectPresentersmethod. It specifies that when a class is selected, the selec-
tions in the method lists are reset and both method lists are populated. Ad-
ditionally, when a method is selected in one method list, the selection in the
other list is reset.
ProtocolViewerPresenter >> connectPresenters

models whenSelectionChangedDo: [:selection |
| class |
api resetSelection.
events resetSelection.
class := selection selectedItem.
class
ifNil: [

api items: #().
events items: #()]

ifNotNil: [

76

7.7 Managing three widgets and their interactions

api items: (self methodsIn: class for: 'api').
events items: (self methodsIn: class for: 'api - events')]].

api whenSelectionChangedDo: [:selection |
selection selectedItem ifNotNil: [events resetSelection]].

events whenSelectionChangedDo: [:selection |
selection selectedItem ifNotNil: [api resetSelection]]

ProtocolViewerPresenter >> methodsIn: class for: protocol

^ (class methodsInProtocol: protocol)
sorted: [:a :b | a selector < b selector]

Lastly, the layout puts the subpresenters in one column, with all subpresenters
taking the same amount of space.

ProtocolViewerPresenter >> defaultLayout

^ SpBoxLayout newTopToBottom
add: #models;
add: #api;
add: #events;
yourself

Figure 7-6 ProtocolViewerPresenter in vertical mode.

As previously, the result can be seen by executing the following snippet of
code. The result is shown in Figure 7-6.

ProtocolViewerPresenter new open

77

Reuse and composition at work

This user interface is functional. Clicking on a class will show the methods of
the ’api’ and the ’api-events’ protocols of that class.

7.8 Having different layouts

Note that you can change the layout as follows to get all the widgets in a row
as shown in Figure 7-7. We will show later that a presenter can have multiple
layouts and that the programmer decides which one to use.

We can do better. Let us define two methods as follows:
ProtocolViewerPresenter >> horizontalLayout

^ SpBoxLayout newLeftToRight
add: #models;
add: #api;
add: #events;
yourself

ProtocolViewerPresenter >> verticalLayout

^ SpBoxLayout newTopToBottom
add: #models;
add: #api;
add: #events;
yourself

ProtocolViewerPresenter >> defaultLayout

^ self verticalLayout

Now we can decide to open the viewer with different layouts using the message
openWithLayout: as follows. See Figure 7-7 for the result.

ProtocolViewerPresenter class >> exampleHorizontal

| inst |
instance := self new.
instance openWithLayout: instance horizontalLayout

7.9 Enhancing our API

Similar to the second user interface, when this UI is reused it will probably
need to be configured. The relevant configuration here is what to do when a
selection change happens in any of the three lists. Hence we add the following
three methods to the ’api’ protocol.

78

7.10 Changing the layout of a reused widget

Figure 7-7 ProtocolViewerPresenter in horizontal mode.

ProtocolViewerPresenter >> whenSelectionInAPIChanged: aBlock

api whenSelectionChangedDo: aBlock

ProtocolViewerPresenter >> whenSelectionInClassChanged: aBlock

models whenSelectionChangedDo: aBlock

ProtocolViewerPresenter >> whenSelectionInEventChanged: aBlock

events whenSelectionChangedDo: aBlock

Note. These methods add semantic information to the configuration API. They
state that they configure what to do when a class, ’api’, or ’api-events’ list item
has been changed. This arguably communicates the customization API more
clearly than just having the subpresenters accessible.

7.10 Changing the layout of a reused widget

Sometimes, when you want to reuse an existing UI as a widget, the layout of
that UI is not appropriate for your needs. Nonetheless Spec allows you to reuse
such a UI by overriding the layout of its widgets, and we show this here.

Our last user interface reuses the ProtocolViewerPresenter with a different
layout and adds a text zone to edit the source code of the selected method.

SpPresenter << #ProtocolCodeBrowserPresenter
slots: { #text . #viewer };
package: 'CodeOfSpec20Book'

79

Reuse and composition at work

ProtocolCodeBrowserPresenter >> initializePresenters

text := self instantiate: SpCodePresenter.
viewer := self instantiate: ProtocolViewerPresenter.
text syntaxHighlight: true.
self focusOrder

add: viewer;
add: text

ProtocolCodeBrowserPresenter >> defaultLayout

^ SpBoxLayout newTopToBottom
add: (SpBoxLayout newLeftToRight add: #viewer; yourself);
add: #text;
yourself

ProtocolCodeBrowserPresenter >> initializeWindow: aWindowPresenter

aWindowPresenter title: 'Spec Protocol Browser'

The connectPresentersmethod is used to make the text zone react to a selec-
tion in the lists. When a method is selected, the text zone updates its contents
to show the source code of the selected method.
ProtocolCodeBrowserPresenter >> connectPresenters

viewer whenSelectionInClassChanged: [:selection |
text behavior: selection selectedItem].

viewer whenSelectionInAPIChanged: [:selection |
selection selectedItem
ifNotNil: [:item | text beForMethod: item; text: item

sourceCode]].
viewer whenSelectionInEventChanged: [:selection |

selection selectedItem
ifNotNil: [:item | text beForMethod: item; text: item

sourceCode]]

With the current implementation of initializePresenters, opening a win-
dow with ProtocolCodeBrowserPresenter new open results in a vertical
layout for the ProtocolViewerPresenter instance held in the viewer in-
stance variable because its default layout is the vertical layout. Our objective
was to use a different layout. That can be achieved by sending layout: to the
viewer. So let’s adapt initializePresenters that way.
initializePresenters

text := self instantiate: SpCodePresenter.
viewer := self instantiate: ProtocolViewerPresenter.
viewer layout: viewer horizontalLayout.

80

7.11 Changing layouts

text syntaxHighlight: true.
self focusOrder

add: viewer;
add: text

Now a window opens as shown in Figure 7-1.

7.11 Changing layouts

There are different ways to configure the layout of a presenter. Let’s demon-
strate that with ProtocolViewerPresenter. The first option is using open-
WithLayout: to open a window.

presenter := ProtocolViewerPresenter new.
presenter openWithLayout: (SpBoxLayout newLeftToRight

add: #models;
add: #api;
add: #events;
yourself)

Or you can send the message layout: to the presenter to specify a layout and
open the window afterwards.

presenter := ProtocolViewerPresenter new.
presenter layout: (SpBoxLayout newLeftToRight

add: #models;
add: #api;
add: #events;
yourself).

presenter open

An alternative is to use a layout provided by the presenter, like we did in the
previous section.

presenter := ProtocolViewerPresenter new.
presenter layout: presenter horizontalLayout.
presenter open

7.12 Considerations about a public configuration API

In this chapter, we have seen several definitions of methods in the public con-
figuration API of the presenter being built. The implementation of our configu-
ration methods is simply delegated to internal widgets, but a configuration can
of course be more complex than that, depending on the internal logic of the UI.

For methods that simply delegate to the internal widgets, the question is whether
it makes sense to define these as methods in the ’api’ protocols at all. Funda-

81

Reuse and composition at work

mentally this is a design decision to be made by the programmer. Not having
such methods makes the implementation of the presenter more lightweight
but comes at the cost of less clear intent and of breaking encapsulation.

For the former cost, we have seen an example in the protocol method list of
Section 7.4. The presence of the three methods defined there communicates
to the user that we care about what to do when a class, ’api’ or ’api-events’ list
item has been changed. Fundamentally the same also holds for the other ex-
amples in this chapter: each method in an ’api’ protocol communicates an in-
tent to the reuser: this is how we expect that this presenter will be configured.
Without such declared methods, it is less clear to the reuser what can be done
to effectively reuse a presenter.

For the latter cost, expecting reusers of the widget to directly send messages
to internal objects (in instance variables) means breaking encapsulation. As a
consequence, we are no longer free to change the internals of the UI, e.g., by
renaming the instance variables to a better name or changing the kind of wid-
get used. Such changes may break reusers of the presenter and hence severely
limit how we can evolve this presenter in the future. It is safer to define a pub-
lic API and ensure in future versions of the presenter that the functionality of
this API remains the same.

So in the end it is important to consider future reusers of your UI and the fu-
ture evolution of your UI. You need to make a tradeoff between writing extra
methods and possibly making reuse of the UI harder as well as possibly making
future evolution of the UI harder.

7.13 New versus old patterns

In Spec 1.0, list presenters exposed a different API, namely whenSelecte-
dItemChanged:, as in the following example.

initializePresenters

models := self instantiate: WidgetClassListPresenter.
api := self instantiate: ProtocolMethodListPresenter.
events := self instantiate: ProtocolMethodListPresenter.

api label: 'api'.
events label: 'api-events'

connectPresenters

api whenSelectedItemChanged: [:method |
method ifNotNil: [events resetSelection]].

82

7.14 Conclusion

events whenSelectedItemChanged: [:method |
method ifNotNil: [api resetSelection]]

In Spec 2.0, list presenters and friends expose a different object that represents
the selection of the list. The design rationale is that a selection is a complex
object (single selection, multiple selection). So we have:

connectPresenters
api whenSelectionChangedDo: [:selection |

selection selectedItem ifNotNil: [events resetSelection]].
events whenSelectionChangedDo: [:selection |

selection selectedItem ifNotNil: [api resetSelection]]

The question for your presenters is what is the API that you should expose to
your users. If you like the Spec 1.0 way, that is still possible as shown below.

whenSelectedItemChangedDo: aBlock
methods whenSelectionChangedDo: [:selection |

selection selectedItem ifNotNil: [:item | aBlock value: item]]

But we advise using the Spec 2.0 way because it will give your presenters con-
sistency with the core presenters of Spec and it will be easier to make them
collaborate.

7.14 Conclusion

In this chapter, we have discussed a key point of Spec: the ability to seamlessly
reuse existing UIs as widgets. This ability comes with no significant cost to the
creator of a UI. The only thing that needs to be taken into account is how a UI
can (or should) be customized.

The reuse of complex widgets at no significant cost was a key design goal of
Spec because it is an important productivity boost for the writing process of
UIs. The boost firstly comes from being able to reuse existing nontrivial wid-
gets, and secondly because it allows you to structure your UI in coherent and
more easily manageable subparts with clear interfaces. We therefore encour-
age you to think of your UI as a composition of such subparts and construct it
modularly, to yield greater productivity.

83

CHA P T E R 8
Lists, tables and trees

An important part of user interfaces is displaying lists of data. Such lists can be
structured as tables, plain lists, but also trees supporting the nesting of data.

Spec provides three main presenters: SpListPresenter, SpTreePresenter,
and SpTablePresenter. In addition, it offers SpComponentListPresenter
which allows one to embed any presenter in a list. In this chapter, we present
some of the functionality of these presenters.

8.1 Lists

Creating a list is as simple as instantiating a SpListPresenter and specifying
a list of items that the list should display. The following script illustrates this
and the result is shown in Figure 8-1.

SpListPresenter new
items: Collection withAllSubclasses;
open

We can change the header title of the list using the message headerTitle:.
The header title can be hidden using the message hideHeaderTitle.

8.2 Controlling item display

By default a list item is displayed using the result of the asStringOrTextmes-
sage sent to the item. We can configure a list to apply a block to control the dis-
play of each item using the message display:. The following script configures

85

Lists, tables and trees

Figure 8-1 A simple list showing class names.

a list presenter to display the name of the methods of the class Point instead
of showing the result of asStringOrText. See Figure 8-2.
SpListPresenter new

items: Point methods;
display: [:item | item selector];
open

Figure 8-2 A simple list controlling the way items are displayed.

We can sort the items using the message sortingBlock:.
SpListPresenter new

items: Point methods;
display: [:item | item selector];
sortingBlock: [:a :b | a selector < b selector];
open

86

8.3 Decorating elements

8.3 Decorating elements

We can configure the way items are displayed in a more fine-grained way. The
following example illustrates it. We can control the icon associated with the
item using the message displayIcon:, and the item color using the message
displayColor:. The format (bold, italic, underline) can be controlled by the
corresponding messages displayItalic:, displayBold: and displayUn-
derline:. See Figure 8-3.
SpListPresenter new

items: Collection withAllSubclasses;
displayIcon: [:aClass | self iconNamed: aClass systemIconName];
displayColor: [:aClass |

(aClass name endsWith: 'Set')
ifTrue: [Color green]
ifFalse: [self theme textColor]];

displayItalic: [:aClass | aClass isAbstract];
displayBold: [:aClass | aClass hasSubclasses];
displayUnderline: [:aClass | aClass numberOfMethods > 10];
open

Figure 8-3 A decorated list: icons, text styling, and color.

8.4 About single/multiple selection

Lists support multiple selections. The message beMultipleSelection controls
that aspect.

SpListPresenter new
items: Collection withAllSubclasses;
beMultipleSelection;
open

87

Lists, tables and trees

Since selection can hold multiple items, there is an impact on the protocol to
react to selection changes. Indeed, lists, filtering lists, trees, and tables offer
the whenSelectionChangedDo: API and not whenSelectedItemDo:. The ar-
gument of the block is an instance of SpSingleSelectionMode, SpMultiple-
SelectionMode, SpTreeMultipleSelectionMode or SpTreeSingleSelec-
tionMode.

Here is a typical use case of the method whenSelectionChangedDo:.
connectPresenters

changesTree whenSelectionChangedDo: [:selection | | diff |
diff := selection selectedItem
ifNil: ['']
ifNotNil: [:item | self buildDiffFor: item].

textArea text: diff]

8.5 Drag and drop

Lists and other container structures support drag and drop. The following
script shows how to configure two lists to support dragging from one and drop-
ping in another.

| list1 list2 |
list1 := SpListPresenter new.
list1

items: #('abc' 'def' 'xyz');
dragEnabled: true.

list2 := SpListPresenter new.
list2 dropEnabled: true;

wantsDrop: [:transfer | transfer passenger
allSatisfy: [:each | each isString]];

acceptDrop: [:transfer | list2 items: list2 items , transfer
passenger].

SpPresenter new
layout: (SpBoxLayout newLeftToRight

add: list1;
add: list2;
yourself);

open

The following script illustrates the API.

• dragEnabled: configures the receiver to allow dragging of its items.

• dropEnabled: configures the receiver to accept dropped items.

88

8.6 Activation clicks

• wantsDrop: [:transfer | transfer passenger allSatisfy:
[:each | each isString]. With the message wantsDrop: we can
specify a predicate to accept dropped elements.

• acceptDrop: [:transfer | list2 items: list2 items , trans-
fer passenger]. The message acceptDrop: specifies the treatment
performed once the dropped items are accepted.

8.6 Activation clicks

An element on a list can be activated, meaning it will trigger an event to exe-
cute an action on it. Note that an activation is different than a selection: one
can select an element without activating it. The message activateOnDou-
bleClick configures the list to react to double click, while its counterpart is
activateOnSingleClick.

8.7 Filtering lists

Lists can also be filtered as shown in Figure 8-4. The following script shows the
use of the SpFilteringListPresenter.
SpFilteringListPresenter new

items: Collection withAllSubclasses;
open;
withWindowDo: [:window |

window title: 'SpFilteringListPresenter example']

Figure 8-4 A filtering list with bottom filter.

The following script shows that the filter can be placed at the top.

89

Lists, tables and trees

SpFilteringListPresenter new
items: Collection withAllSubclasses;
openWithLayout: SpFilteringListPresenter topLayout;
withWindowDo: [:window |

window title: 'SpFilteringListPresenter example']

Note that a filter can be declared upfront using the message applyFilter:.
SpFilteringListPresenter new

items: Collection withAllSubclasses;
openWithLayout: SpFilteringListPresenter topLayout;
applyFilter: 'set';
withWindowDo: [:window |

window title: 'SpFilteringListPresenter prefiltered example']

8.8 Selectable filtering lists

Often lists are used to select items. This is what the class SpFilteringSe-
lectableListPresenter offers. In addition to being able to filter items, it
lets the user select items by ticking them as shown by Figure 8-5.

Figure 8-5 A selectable filtering list with a filter at the top.

The following script illustrates such a selectable list with filter.

(SpFilteringSelectableListPresenter new
items: Collection withAllSubclasses;
layout: SpFilteringListPresenter topLayout;
applyFilter: 'set';
asWindow)

title: 'SpFilteringSelectableListPresenter example';
open

90

8.9 Component lists

8.9 Component lists

While the lists we saw until now are homogeneous in the sense that they all
display strings, Spec offers the possibility to display a list of presenters. It
means that elements in the list do not have the same size and can contain
other presenters.

This lets developers produce advanced user interfaces such as the one of the
report builder of the ModMoose tool suite shown in Figure 8-6.

Figure 8-6 An example of a component list from the ModMoose platform.

The following script shows how to define a SpComponentListPresenter as
shown in Figure 8-7.

| list |
list := {

(SpLabelPresenter new
label: 'Test 1';
yourself).

(SpImagePresenter new
image: (self iconNamed: #smallOk);
yourself).

(SpButtonPresenter new
label: 'A button';
yourself).

(SpImagePresenter new
image: PolymorphSystemSettings pharoLogo asForm;
yourself) }.

91

Lists, tables and trees

SpComponentListPresenter new
presenters: list;
open

Figure 8-7 A component list with several different presenters: a label, an image, a
button, and an image.

8.10 Trees

Spec offers also trees. The following script shows how to list all the classes of
Pharo using inheritance as shown by Figure 8-8.

Figure 8-8 A Tree presenter showing the inheritance hierarchy of the class Excep-
tion.

SpTreePresenter new
roots: { Object };
children: [:aClass | aClass subclasses];
displayIcon: [:aClass | self iconNamed: aClass systemIconName];
display: [:aClass | aClass name];
expandPath: #(1 1 3);

92

8.10 Trees

open

The message expandPath: shows that we can expand a specific item by a path.

Figure 8-9 A tree with a menu.

The following script shows how to use a dynamic context menu. This is a dy-
namic menu because its content is recalculated. The dynamic aspect is ex-
pressed by a block. Figure 8-9 shows the result.

| tree |
tree := SpTreePresenter new.
tree roots: { Object };

children: [:aClass | aClass subclasses];
displayIcon: [:aClass | self iconNamed: aClass systemIconName];
display: [:aClass | aClass name];
contextMenu: [

SpMenuPresenter new
addGroup: [:group |
group addItem: [:item | item name: tree selectedItem asString

]]];
open

The following script shows the use of the message selectPathByItems:scroll-
ToSelection:, which allows selecting elements by specifying a list of items (a
path from the root to the selected item) and asking the tree to scroll to the se-
lection. Figure 8-10 shows the result.

| pathToSpPresenter |
pathToSpPresenter := SpTreePresenter withAllSuperclasses reversed

allButFirst.
SpTreePresenter new

roots: { Object };
children: [:aClass | aClass subclasses];
displayIcon: [:aClass | self iconNamed: aClass systemIconName];
display: [:aClass | aClass name];

93

Lists, tables and trees

open;
selectPathByItems: pathToSpPresenter scrollToSelection: true

Figure 8-10 A tree with a selected item and scrolling to display it.

8.11 Tables

Spec offers tables. A table can have multiple columns and a column can be
composed of elementary elements. Tables have different kinds of columns that
can be added to a table:

• SpStringTableColumn offers cell items that are strings.

• SpCheckBoxTableColumn lets us have cells with a checkbox.

• SpIndexTableColumn displays the index of the current item.

• SpDropListTableColumn lets us have a drop list in cells.

• SpImageTableColumn offers cell items with forms (icons, graphics, ...).

• SpCompositeTableColumn offers the possibility to compose a column
out of different kinds of columns. For instance, it allows one to compose
an icon (SpImageTableColumn) with a name (SpStringTableColumn).

8.12 First table

The following script shows how to define a simple table with two columns as
shown in Figure 8-11. The message showColumnHeaders will display the head-
ers.

94

8.13 Sorting headers

SpTablePresenter new
addColumn: (SpStringTableColumn title: 'Number' evaluated:

#yourself);
addColumn: (SpStringTableColumn title: 'Hex' evaluated: #hex);
showColumnHeaders;
items: (1 to: 10);
open

Figure 8-11 A simple table with two columns.

Add SpIndexTableColumn title: 'My index' to the previous table to see
the index column in action.

Figure 8-12 A simple table with two columns that can be sorted.

8.13 Sorting headers

The following script presents how to define a table with two sortable columns.
Figure 8-12 shows the result after sorting the second column in descending

95

Lists, tables and trees

order.
| classNameCompare methodCountSorter |
classNameCompare := [:c1 :c2 | c1 name < c2 name].
methodCountSorter := [:c1 :c2 |

c1 methodDictionary size threeWayCompareTo: c2 methodDictionary size
].

SpTablePresenter new
addColumn: ((SpStringTableColumn title: 'Name' evaluated: #name)

compareFunction: classNameCompare);
addColumn: ((SpStringTableColumn

title: 'Methods'
evaluated: [:c | c methodDictionary size]) sortFunction:

methodCountSorter);
items: Collection withAllSubclasses;
open

Figure 8-13 A table with an editable column.

8.14 Editable tables

The following script shows that table cells can be editable using the messages
beEditable and onAcceptEdition:. The resulting table is shown in Figure
8-13.
| items |
items := String methods.
SpTablePresenter new

addColumn:
(SpStringTableColumn new
title: 'Editable selector name';
evaluated: [:m | m selector];

96

8.15 Tree tables

displayBold: [:m | m selector isKeyword];
beEditable;
onAcceptEdition: [:m :t |
Transcript

nextPutAll: t;
cr;
endEntry];

yourself);
addColumn:

(SpStringTableColumn title: 'Size' evaluated: #size)
beSortable;
showColumnHeaders;
items: items;

open

Figure 8-14 A tree table with two columns: the first one is a composed column
with an icon and a string.

8.15 Tree tables

Spec offers a way to have a tree with extra columns. The class SpTreeTableP-
resenter encapsulates this behavior. Note that the first column is interpreted
as a tree.

The following script shows that the first column will be a tree whose element
is composed of an icon and a name: SpCompositeTableColumn. Figure 8-14
shows the window after expanding the root of the tree.

SpTreeTablePresenter new
beResizable;
addColumn:

(SpCompositeTableColumn new
title: 'Classes';

97

Lists, tables and trees

addColumn:
(SpImageTableColumn evaluated: [:aClass |

self iconNamed: aClass systemIconName]);
addColumn:

(SpStringTableColumn evaluated: [:each | each name]);
yourself);

addColumn:
(SpStringTableColumn new
title: 'Methods';
evaluated: [:class | class methodDictionary size asString]);

roots: { Object };
children: [:aClass | aClass subclasses];
open

Sending the messages width: and beExpandable to the SpCompositeTableCol-
umn instance fixes the size of the column.

Figure 8-15 A tree table with two columns.

SpCompositeTableColumn new
title: 'Classes';
addColumn:

(SpImageTableColumn evaluated: [:aClass |
self iconNamed: aClass systemIconName]);

addColumn: (SpStringTableColumn evaluated: #name);
width: 250;
beExpandable;
yourself

You can try the following silly example which results in Figure 8-15.

| compositeColumn |
compositeColumn := SpCompositeTableColumn new title: 'Classes';

addColumn: (SpImageTableColumn evaluated: [:aClass |
self iconNamed: aClass systemIconName]);

98

8.16 Conclusion

addColumn: (SpStringTableColumn evaluated: [:each | each name]);
yourself.

SpTreeTablePresenter new
beResizable;
addColumn: (SpStringTableColumn new

title: 'Methods';
evaluated: [:class | class methodDictionary size asString]);

addColumn: compositeColumn;
roots: { Object };
children: [:aClass | aClass subclasses];
open

8.16 Conclusion

In this chapter, we presented important containers: list, component list, and
table presenters.

99

CHA P T E R 9
Managing windows

So far we have described the reuse of SpPresenters, discussed the fundamen-
tal functioning of Spec, and presented how to layout the widgets of a user in-
terface. Yet what is still missing for a working user interface is showing all
these widgets inside of a window. In our examples until now we have only
shown a few of the features of Spec for managing windows, basically restrict-
ing ourselves to opening a window.

In this chapter, we provide a more complete overview of how Spec allows for
the management of windows. We will show opening and closing, the built-in
dialog box facility, the sizing of windows, and all kinds of window decoration.

9.1 A working example

To illustrate the window configuration options that are available, we use a sim-
ple WindowExamplePresenter class that has two buttons placed side by side.
These buttons do not have any behavior associated yet. The behavior will be
added in an example further down this chapter.

SpPresenter << #WindowExamplePresenter
slots: { #minusButton . #plusButton };
package: 'CodeOfSpec20Book'

WindowExamplePresenter >> initializePresenters

plusButton := self newButton.
minusButton := self newButton.
plusButton label: '+'.
minusButton label: '-'

101

Managing windows

Figure 9-1 A rather simple window on WindowExamplePresenter.

WindowExamplePresenter >> defaultLayout

^ SpBoxLayout newLeftToRight
add: #plusButton;
add: #minusButton;
yourself

9.2 Opening a window or a dialog box

A user interface can be opened as a normal window or opened as a dialog box,
i.e. without decoration and with ’Ok’ and ’Cancel’ buttons. We will show how
this is done, including the configuration options specific to dialog boxes. See
also Section 9.5 for more information about window decoration.

Opening a window

As we have shown in previous chapters, to open a user interface you have to
instantiate the SpPresenter for that interface and send the openmessage to
the instance. That results in the creation of an instance of SpWindowPresenter
which points to the window containing the user interface, and showing it in a
window on the screen.

We have also seen the openWithLayout: method that takes a layout (instance
of SpLayout subclasses) as an argument. Instead of using the default layout, the
opened UI will use the layout passed as an argument.

Below we show the two ways we can open a window for our WindowExampleP-
resenter. The code snippet opens two identical windows as shown in Figure
9-1.

102

9.2 Opening a window or a dialog box

| presenter |
presenter := WindowExamplePresenter new.
presenter open.
presenter openWithLayout: presenter defaultLayout

Opening a dialog box

Spec provides an easy way to open a UI as a simple dialog box with ’Ok’ and
’Cancel’ buttons. A dialog box does not have icons for resizing and closing, nor
a window menu. To open a dialog box, send the message openDialog:
| presenter dialog |
presenter := WindowExamplePresenter new.
dialog := presenter openDialog

The answer of sending openDialog, assigned to the dialog variable above, is
an instance of the SpDialogWindowPresenter class (a subclass of SpWindowP-
resenter). Figure 9-2 shows the dialog.

Figure 9-2 A rather simple dialog on WindowExamplePresenter.

The SpDialogWindowPresenter instance can be configured in multiple ways.
To execute code when the user clicks on a button, send it the okAction: or
cancelAction: message with a zero-argument block.

| presenter dialog |
presenter := WindowExamplePresenter new.
dialog := presenter openDialog

okAction: ['okAction' crTrace];
cancelAction: ['cancelAction' crTrace]

The message canceled sent to dialog will return true if the dialog is closed
by clicking on the ’Cancel’ button.

103

Managing windows

9.3 Preventing window close

Spec provides a way to check if a window can effectively be closed when the
user clicks on the close box. SpWindowPresenter>>whenWillCloseDo: takes
a block that decides whether the window can be closed. We can change our
WindowExamplePresenter as follows:
WindowExamplePresenter >> initializeWindow: aWindowPresenter

aWindowPresenter whenWillCloseDo: [:announcement |
announcement denyClose]

The block has an announcement argument. It will be bound to an instance of
SpWindowWillClose. That class has two interesting methods: allowClose and
denyClose. The code snippet above sends denyClose to the announcement.
By doing so, we have effectively created an unclosable window!

To be able to close this window, we have to change the implementation of the
above method. By default a window can be closed, so the block should only
send denyClose in case the window cannot be closed. Let’s adapt the block
to ask whether the user is sure about closing the window.

WindowExamplePresenter >> initializeWindow: aWindowPresenter

aWindowPresenter whenWillCloseDo: [:announcement |
(self confirm: 'Are you sure that you want to close the window?')
ifFalse: [announcement denyClose]]

Of course, the example method above is extremely simplistic and not very use-
ful. Instead, it should use application-dependent logic of what to check on win-
dow close.

9.4 Acting on window close

It is also possible to perform an action whenever a window is closed, both with
a plain window or a dialog window.

With a window

When you want to be notified that a window is closed, you should redefine the
initializeWindow: method in the class of your presenter as follows:

WindowExamplePresenter >> initializeWindow: aWindowPresenter

aWindowPresenter whenClosedDo: [self inform: 'When closed']

104

9.5 Window size and decoration

The following snippet programmatically opens and closes a window and you
should see the notification triggered on close.

| presenter window |
presenter := WindowExamplePresenter new.
window := presenter open.
window close

With a dialog window

When you want the same behavior with a dialog window you can either use
the mechanism as described previously (i.e. declare your interest in window
closing in the method initializeWindow:) or configure the dialog presenter
returned by the message openDialog.
| presenter dialog |
presenter := WindowExamplePresenter new.
dialog := presenter openDialog.
dialog

okAction: ['okAction' crTrace];
cancelAction: ['cancelAction' crTrace];
whenClosedDo: [self inform: 'Bye bye!']

Action with Window

The message withWindowDo: makes sure that the presenter that scheduled the
window still exists or is in a state that makes sense.
withWindowDo: [:window | window title: 'MyTitle']

9.5 Window size and decoration

Now we focus on sizing a window before and after opening it, and then de-
scribe removing the different control widgets that decorate the window.

Setting initial size and changing size

To set the initial size of a window when it opens, send the initialExtent:
message to the corresponding SpWindowPresenter before opening, for exam-
ple like this:

| windowPresenter |
windowPresenter := WindowExamplePresenter new asWindow.
windowPresenter initialExtent: 300@80.
windowPresenter open

105

Managing windows

The common way to specify the initial size of the window is to use the message
initialExtent: as follows:
WindowExamplePresenter >> initializeWindow: aWindowPresenter

aWindowPresenter initialExtent: 80@100

Note that you can also set an initial position using the message initialPosi-
tion:.
After a window is opened, it can also be resized by sending the resize: mes-
sage to the window of the UI. For example, we can change our example’s ini-
tializePresentersmethod so that the window resizes itself depending on
which button is clicked.
WindowExamplePresenter >> initializePresenters

plusButton := self newButton.
minusButton := self newButton.
plusButton label: '+'.
minusButton label: '-'.
plusButton action: [self window resize: 500@200].
minusButton action: [self window resize: 200@100]

You have also centered, centeredRelativeTo: and centeredRelativeTo-
TopWindow to help you place the windows relative to world/other windows.

Fixed size

The size of a window can be fixed, so that the user cannot resize it by dragging
the sides or corners as follows:
| presenter |
presenter := WindowExamplePresenter new open.
presenter window beUnresizeable

Removing window decoration

Sometimes it makes sense to have a window without decoration, i.e. without
control widgets. Currently, this configuration cannot be performed on the Sp-
WindowPresenter of that window, but the underlying widget library may allow
it. Below we show how to get the SpWindow of our example and instruct it to
remove the different control widgets:

| presenter |
presenter := WindowExamplePresenter new open.
presenter window

removeCollapseBox;
removeExpandBox;

106

9.5 Window size and decoration

removeCloseBox;
removeMenuBox

Note This window is still closable using the halo menus or by calling
close on the SpWindowPresenter instance (presenter in the example
above).

Setting and changing the title

By default, the title of a new window is ’Untitled window’. Of course, this can
be changed. The first way is to specialize the method initializeWindow: to
send the message title: to the windowPresenter as follows:
WindowExamplePresenter >> initializeWindow: aWindowPresenter

aWindowPresenter title: 'Click to grow or shrink.'

In addition, you can set the title of any UI after it has been opened (even if it
specifies a titlemethod) by sending the title: message with the new title as
an argument to the window of the UI. An example is:

| presenter |
presenter := WindowExamplePresenter new.
presenter open.
presenter window title: 'I am different!'

Setting the about text

The about text of a window can be used by application developers to give a de-
scription of the application, and to list its contributors. The about text can be
opened by selecting ’About’ from the pop-up menu in the top-right corner of a
window, as shown in Figure 9-3.

Figure 9-3 Opening the about text of a window.

107

Managing windows

To set the about text of a window, either override the aboutTextmethod of the
corresponding SpPresenter so that it returns the new about text, or send the
instance the aboutText: message before opening, for example as below.

| windowPresenter |
windowPresenter := WindowExamplePresenter new asWindow.
windowPresenter aboutText: 'Click + to grow, - to shrink.'.
windowPresenter open

After opening the window with the code snippet above, and after choosing
’About’ from the window menu, the about window opens with the configured
about text, as shown in Figure 9-4.

Figure 9-4 The about text of a window.

9.6 Getting values from a dialog window

Sending the message openDialog to a presenter will return the dialog win-
dow itself so that you can easily send it the message isOk. When isOk answers
true, the dialog is in a state to provide the data it has collected from the user.

Let’s look at an example. We will open a dialog to select some colors.

Configuring the UI makes up for the largest part of the code below, but the in-
teresting part is at the end. The canceled state is the default state of a dialog
so we have to tell the dialog that it is not canceled. We do that in the okAction
block, where the dialog receives the message beOk.

Then in the whenClosedDo: block, we send isOk to the dialog. If that message
answers true, it makes sense to process the selection of colors. For the sake of
simplicity of this example, we just inspect the selected colors.

108

9.7 Little modal dialog presenters

| selectedColors presenter colorTable dialogPresenter |
selectedColors := Set new.
presenter := SpPresenter new.
colorTable := presenter newTable

items: (Color red wheel: 10);
addColumn: (SpCheckBoxTableColumn new

evaluated: [:color | selectedColors includes: color];
onActivation: [:color | selectedColors add: color];
onDeactivation: [:color | selectedColors remove: color];
width: 20;
yourself);

addColumn: (SpStringTableColumn new
evaluated: [:color | ''];
displayBackgroundColor: [:color | color];
yourself);

hideColumnHeaders;
yourself.

presenter layout: (SpBoxLayout newTopToBottom
add: colorTable;
yourself).

dialogPresenter := presenter openDialog.
dialogPresenter

title: 'Select colors';
okAction: [:dialog | dialog beOk];
whenClosedDo: [dialogPresenter isOk

ifTrue: [selectedColors inspect]]

9.7 Little modal dialog presenters

A modal dialog is a window that takes control of the entire Pharo user inter-
face, making it impossible for the user to select another window while it is
open.

Spec provides some little predefined dialogs to inform or request information
from the users. Most of them inherit from SpDialogPresenter. They offer a
builder API to configure them.

The simplest dialog is an alert.

SpAlertDialog new
title: 'Inform example';
label: 'You are seeing an inform dialog!';
acceptLabel: 'Close this!';
openModal

Confirm dialogs are created as follows:

109

Managing windows

SpConfirmDialog new
title: 'Confirm example';
label: 'Are you sure?';
acceptLabel: 'Sure!';
cancelLabel: 'No, forget it';
onAccept: [:dialog| dialog alert: 'Yes!'];
onCancel: [:dialog| dialog alert: 'No!'];
openModal

The idiomatic way to use them is to access them via the application of your
presenter class:

self application newAlert
title: 'Inform example';
label: 'You are seeing an inform dialog!';
acceptLabel: 'Close this!';
openModal

SpApplication offers the following API: newConfirm, newAlert, newJobList,
newRequest, newSelect, newRequestText.

9.8 Placing a presenter inside a dialog window

Any presenter can be placed in a dialog window by specializing the method
SpAbstractPresenter>>initializeDialogWindow:, which is implemented
like this:
WindowExamplePresenter >> initializeDialogWindow:

aDialogWindowPresenter
"Used to initialize the model in the case of the use into a dialog

window.
Override this to set buttons other than the default (Ok, Cancel)."

aDialogWindowPresenter
addButton: 'Cancel' do: [:presenter |
presenter triggerCancelAction.
presenter close];

addDefaultButton: 'Ok' do: [:presenter |
presenter triggerOkAction.
presenter close]

Override this method to define how your presenter will behave when it is open
in a dialog window.

110

9.9 Setting keyboard focus

9.9 Setting keyboard focus

Some widgets can take keyboard focus. All text editing widgets come to mind,
but lists can also take keyboard focus. Buttons too. In principle, when a presen-
ter responds to keyboard events, it is able to take keyboard focus.

Widgets indicate that they have keyboard focus, typically by displaying a light-
blue border around them. Figure 9-1 shows that the plus button on the left has
the keyboard focus. A widget takes keyboard focus when the user clicks the
widget with the mouse, or by pressing the tab key.

By pressing the tab key, the user makes the keyboard focus move forward from
widget to widget according to the keyboard focus order of the widgets. By
pressing shift-tab, the focus moves backward according to the focus order. By
default, the focus order is the same as the order in which widgets are added to
a user interface. Sometimes that order is not the desired order. In that case,
the focus order has to be configured explicitly. A presenter can do that in the
method initializePresenters by sending focusOrder: or by adding pre-
senters to the answer of sending focusOrder. Let’s try that in the WindowEx-
amplePresenter.
WindowExamplePresenter >> initializePresenters

plusButton := self newButton.
minusButton := self newButton.
plusButton label: '+'.
minusButton label: '-'.
self focusOrder

add: minusButton;
add: plusButton

Figure 9-5 shows the result after opening the window. The minus button has
the keyboard focus.

9.10 Acting on window opening

Some state of presenters or their subpresenters can only be set after the win-
dow has been opened. That is the case when setting the state is delegated to
the backend widgets. Those widgets are only available when the window is
open. In Chapter 13, we will see that keyboard bindings for menu items in the
menubar can only be assigned after opening the window. Here we will describe
another use case, related to the previous section.

While defining the keyboard focus order does not require the window to be
open, setting the initially focussed presenter does. Setting the initially fo-
cussed presenter is needed when the default keyboard focus order is not ap-

111

Managing windows

Figure 9-5 Reversed keyboard focus order.

propriate. That typically happens when using nested presenters that define a
focus order, either implicitly or explicitly.

To demonstrate this, we will revert the method initializePresenters of
WindowExamplePresenter from the previous section, and we will adapt ini-
tializeWindow:.
WindowExamplePresenter >> initializePresenters

plusButton := self newButton.
minusButton := self newButton.
plusButton label: '+'.
minusButton label: '-'

To set the initial keyboard focus on the minus button, we send takeKeyboard-
Focus to the presenter in the whenOpenedDo: block, which will be evaluated
after opening the window.

WindowExamplePresenter >> initializeWindow: aWindowPresenter

aWindowPresenter whenOpenedDo: [minusButton takeKeyboardFocus]

After opening the window, we see the keyboard focus on the minus button, as
shown in 9-5.

We can go one step further. When opening an instance of WindowExamplePre-
senter in a dialog with WindowExamplePresenter new openDialog, the plus
button has the keyboard focus because it is the first presenter in the default
keyboard focus order. See Figure 9-2.

In case of a dialog, the initial keyboard focus on the plus button may not be de-
sired. Probably it is more logical to put the keyboard focus on the Ok button
of the dialog, so that the user can press the Enter key or the Space key to con-

112

9.11 Conclusion

firm the dialog immediately if no other interaction with the dialog is necessary.
Let’s do that. Instead of changing the method initializeWindow:, we change
the method initializeDialogWindow:.
WindowExamplePresenter >> initializeDialogWindow:

aDialogWindowPresenter

super initializeDialogWindow: aDialogWindowPresenter.
aDialogWindowPresenter whenOpenedDo: [aDialogWindowPresenter

defaultButton takeKeyboardFocus]

aDialogWindowPresenter, which is bound to an instance of SpDialogWin-
dowPresenter, understands the message defaultButton, which answers
the Ok button. We send the message takeKeyboardFocus to the button. Af-
ter opening the dialog with WindowExamplePresenter new openDialog, we
see a dialog as shown in Figure 9-6, with the keyboard focus on the Ok button.

Figure 9-6 Keyboard focus on the Ok button of the dialog.

9.11 Conclusion

In this chapter, we treated the features of Spec that have to do with windows.
First we described opening and closing windows as well as how to open a win-
dow as a dialog box. That was followed by configuring the window’s size and its
decorating widgets. After highlighting small yet important details of the win-
dow like its title and the about text, the chapter ended with handling dialogs.

113

CHA P T E R 10
Layouts

In Spec, layouts are represented by instances of layout classes. The layout
classes encode different positioning of elements such as box, paned, or grid.
This chapter presents the available layouts, their definition, and how layouts
can be reused when a presenter reuses other presenters.

10.1 Basic principle reminder

Spec expects that layout objects, instances of the layout classes, are associated
with a presenter. Each presenter should describe the positioning of its subpre-
senters.

Contrary to Spec 1.0, where layouts were only defined at the class level, in Spec
2.0, to define the layout of a presenter you can:

• Define the defaultLayoutmethod on the instance side

• Use the message layout: in your initializePresentersmethod to set
an instance of layout in the current presenter.

The message defaultLayout returns a layout and layout: sets a layout, for
example, an instance of SpBoxLayout or SpPanedLayout. These two methods
are the preferred way to define layouts.

Note that the possibility of defining a class-side accessor e.g. defaultLayout
remains for those who prefer it.

This new design reflects the dynamic nature of layouts in Spec, and the fact
that you can compose them using presenter instances directly, not forcing

115

Layouts

you to declare subpresenters in instance variables upfront, and then use their
names as it was done in Spec 1.0. It is, however, possible that there are cases
where you want a layout ”template”... so you can still do it.

10.2 A running example

To be able to play with the layouts defined in this chapter, we define a simple
presenter named TwoButtons.
SpPresenter << #TwoButtons

slots: { #button1 . #button2 };
package: 'CodeOfSpec20Book'

We define a simple initializePresentersmethod as follows:

TwoButtons >> initializePresenters

button1 := self newButton.
button2 := self newButton.
button1 label: '1'.
button2 label: '2'

10.3 BoxLayout (SpBoxLayout and SpBoxConstraints)

The class SpBoxLayout displays presenters in an ordered sequence of boxes. A
box layout can be horizontal or vertical and presenters are ordered left to right
and top to bottom respectively. A box layout can be composed of other layouts.

Figure 10-1 Two buttons placed horizontally from left to right.

Let us define a first simple layout as follows and whose result is displayed in
Figure 10-1.

116

10.3 BoxLayout (SpBoxLayout and SpBoxConstraints)

TwoButtons >> defaultLayout

^ SpBoxLayout newLeftToRight
add: button1;
add: button2;
yourself

What we see is that by default a subpresenter expands its size to fit the space of
its container.

An element in a vertical box will use all available horizontal space, and fill ver-
tical space according to the rules. This is inversed in a horizontal box.

We can refine this layout to indicate that the subpresenters should not expand
to their container using the message add:expand:. The result is shown in Fig-
ure 10-2.
TwoButtons >> defaultLayout

^ SpBoxLayout newLeftToRight
add: button1 expand: false;
add: button2 expand: false;
yourself

Figure 10-2 Two buttons placed from left to right, but not expanded.

The full message to add presenters is: add:expand:fill:padding:

• expand: argument - when true, the new child is to be given extra space
allocated to the box. The extra space is divided evenly between all chil-
dren that use this option.

• fill: argument - when true, the space given to a child by the expand
option is actually allocated to the child, rather than just padding it. This
parameter has no effect if expand is set to false.

117

Layouts

• padding: argument - extra space in pixels to put between this child and
its neighbors, over and above the global amount specified by the spac-
ing property. If a child is a widget at one of the reference ends of the
box, then padding pixels are also put between the child and the reference
edge of the box.

To illustrate this API a bit, we change the defaultLayoutmethod as follows.
The result is shown in Fig 10-3. We want to stress, however, that it is better not
to use a fixed height or padding.

TwoButtons >> defaultLayout

^ SpBoxLayout newTopToBottom
spacing: 15;
add: button1 expand: false fill: true padding: 5;
add: button2 withConstraints: [:constraints |
constraints height: 80; padding: 5];

yourself

Figure 10-3 Two buttons placed from top to bottom playing with padding and fill
options.

The annotations in the figure indicate the padding in red, the height of but-
ton2 in blue, and the spacing in green. Note that the padding of button2 is
included in the height of the button.

The defaultLayoutmethod sends the message withConstraints: [:con-
straints | constraints height: 80; padding: 5]. This message al-
lows setting constraints when the often used messages add:, add:expand:,
and add:expand:fill:padding: do not cover your particular use case. The
constraints argument of the block is an instance of the SpBoxConstraints
class.

118

10.4 Box layout alignment

10.4 Box layout alignment

A box layout can be configured with horizontal and vertical alignment of the
children. These are the horizontal alignment options, which are messages that
can be sent to a SpBoxLayout instance:

• hAlignStart

• hAlignCenter

• hAlignEnd

These are the vertical layout options:

• vAlignStart

• vAlignCenter

• vAlignEnd

10.5 Box alignment example

Figure 10-4 Nine tiles with different alignment options.

Let’s see how this works in a small example as shown in Figure 10-4. We will
create a presenter with 9 subpresenters, which we call ”tiles”, laid out in 3 rows
with 3 columns. Each subpresenter displays two label presenters with the la-
bels ’One’ and ’Two’. The presenter class defines nine instance variables. The
names refer to the position of the content inside each tile.

119

Layouts

SpPresenter << #AlignmentExample
slots: {

#northWest .
#north .
#northEast .
#west .
#center .
#east .
#southWest .
#south .
#southEast };

package: 'CodeOfSpec20Book'

As always, initializePresenters binds the instance variables that hold the
subpresenters. It uses a helper method newTile: to create the tiles.

AlignmentExample >> initializePresenters

northWest := self newTile: [:tileLayout |
tileLayout vAlignStart; hAlignStart].

north := self newTile: [:tileLayout |
tileLayout vAlignStart; hAlignCenter].

northEast := self newTile: [:tileLayout |
tileLayout vAlignStart; hAlignEnd].

west := self newTile: [:tileLayout |
tileLayout vAlignCenter; hAlignStart].

center := self newTile: [:tileLayout |
tileLayout vAlignCenter; hAlignCenter].

east := self newTile: [:tileLayout |
tileLayout vAlignCenter; hAlignEnd].

southWest := self newTile: [:tileLayout |
tileLayout vAlignEnd; hAlignStart].

south := self newTile: [:tileLayout |
tileLayout vAlignEnd; hAlignCenter].

southEast := self newTile: [:tileLayout |
tileLayout vAlignEnd; hAlignEnd]

Note that the block argument of the newTile: message has a titleLayout ar-
gument, which is bound to an instance of SpBoxLayout. Inside the nine blocks,
the alignment messages that we saw earlier are sent to configure the alignment
inside the tiles. For instance, for the top-left tile called ”northWest”, vAlign-
Start is sent to align to the top side of the tile, and hAlignStart is sent to
align to the left side of the tile.

AlignmentExample >> newTile: alignmentBlock

| tileLayout |
tileLayout := SpBoxLayout newTopToBottom

120

10.5 Box alignment example

add: self newLabelOne;
add: self newLabelTwo;
yourself.

alignmentBlock value: tileLayout.
^ SpPresenter new

layout: tileLayout;
addStyle: 'tile';
yourself

The method newTile: uses two other helper methods:

AlignmentExample >> newLabelOne

^ self newLabel
label: 'One';
yourself

AlignmentExample >> newLabelTwo

^ self newLabel
label: 'two';
yourself

The layout of the window is defined with:

AlignmentExample >> defaultLayout

^ SpBoxLayout newTopToBottom
spacing: 5;
add: (self rowWithAll: { northWest . north . northEast });
add: (self rowWithAll: { west . center . east });
add: (self rowWithAll: { southWest . south . southEast });
yourself

It answers a vertical box layout with three rows. It applies a spacing of 5 pixels
between the rows. It sends rowWithAll: three times to create horizontal box
layouts with three subpresenters each. rowWithAll: applies the same spacing
of 5 pixels between the tiles in a row.

AlignmentExample >> rowWithAll: tiles

| row |
row := SpBoxLayout newLeftToRight

spacing: 5;
yourself.

tiles do: [:tile | row add: tile].
^ row

For demonstration purposes, we apply a stylesheet to display tiles with a white

121

Layouts

background and a black border.

AlignmentExample >> application

^ SpApplication new
addStyleSheetFromString: '.application [
.tile [

Container { #borderWidth: 2, #borderColor: #black },
Draw { #backgroundColor: #white }]

]';
yourself

Now we have all the code we need to open the window with:

AlignmentExample new open

The result is shown in Figure 10-4. Each tile displays the label presenters at
another location. The label presenters are positioned vertically.

Figure 10-5 Nine tiles with the labels in a vertical box layout.

10.6 Alignment in horizontal box layout

Let’s see what happens when we put the label presenters in a horizontal box
layout.

AlignmentExample >> newTile: alignmentBlock

| tileLayout |
tileLayout := SpBoxLayout newLeftToRight

add: self newLabelOne;
add: self newLabelTwo;

122

10.7 A more advanced layout

yourself.
alignmentBlock value: tileLayout.
^ SpPresenter new

layout: tileLayout;
addStyle: 'tile';
yourself

Figure 10-5 shows the result of opening the window again. Now the labels are
positioned horizontally.

10.7 A more advanced layout

Now that we know how to align nested presenters, let’s have a look at a com-
mon use case. Suppose we like to arrange three buttons in a row of which two
are positioned on the left side of the window, and one is positioned on the right
side. That setup is very handy for button bars with buttons on the left side and
on the right side, such as in the Repositories browser of Iceberg, as you can see
in Figure 10-6. The bar has one button on the left side and two buttons on the
right side.

Figure 10-6 Buttons on the left side and on the right side.

Let’s create a new presenter class called ButtonBar:
SpPresenter << #ButtonBar

slots: { #button1 . #button2 . #button3 };
package: 'CodeOfSpec20Book'

We initialize the three buttons:
ButtonBar >> initializePresenters

button1 := self newButton.
button2 := self newButton.

123

Layouts

button3 := self newButton.
button1 label: '1'.
button2 label: '2'.
button3 label: '3'

We use a layout that has two sublayouts, one for two buttons on the left, and
one for the third button on the right. We apply a 15 pixel spacing between the
buttons on the left.
ButtonBar >> defaultLayout

| left right |
left := SpBoxLayout newLeftToRight

spacing: 15;
add: button1 expand: false;
add: button2 expand: false;
yourself.

right := SpBoxLayout newLeftToRight
add: button3 expand: false;
yourself.

^ SpBoxLayout newLeftToRight
add: left;
add: right;
yourself

When opening this presenter with ButtonBar new open, we see the window
shown in Figure 10-7.

Figure 10-7 Three buttons split in a left and a right section.

The layout is not exactly what we had in mind. The third button is not posi-
tioned on the right side. That is where the alignment from the pevious section

124

10.7 A more advanced layout

comes in. Let’s change the defaultLayoutmethod to align the button with
the end of the right box layout. We add the message hAlignEnd:
ButtonBar >> defaultLayout

| left right |
left := SpBoxLayout newLeftToRight

spacing: 15;
add: button1 expand: false;
add: button2 expand: false;
yourself.

right := SpBoxLayout newLeftToRight
hAlignEnd;
add: button3 expand: false;
yourself.

^ SpBoxLayout newLeftToRight
add: left;
add: right;
yourself

When we open the presenter again, we see the window shown in Figure 10-8.
That is the layout we had in mind.

Figure 10-8 Three buttons with the third button aligned at the end.

This example shows that advanced layout requires nesting layouts to achieve
the desired result.

125

Layouts

10.8 Example setup for layout reuse

Before presenting some of the other layouts, we show an important aspect of
Spec presenter composition: a composite can declare that it wants to reuse a
presenter using a specific layout of a presenter.

Consider our artificial example of a two-button UI. Let us use two layouts as
follows. We define two class methods returning different layouts. Note that we
could define such methods on the instance side to. We define them on the class
side to be able to get the layouts without an instance of the class.

TwoButtons class >> buttonRow

^ SpBoxLayout newLeftToRight
add: #button1;
add: #button2;
yourself

TwoButtons class >> buttonColumn

^ SpBoxLayout newTopToBottom
add: #button1;
add: #button2;
yourself

Note that when we define the layout at the class level, we use a symbol whose
name is the corresponding instance variable. Hence we use #button2 to refer
to the presenter stored in the instance variable button2.

10.9 Opening with a layout

The message openWithLayout: lets you specify the layout you want to use
when opening a presenter. Here are some examples:

• TwoButtons new openWithLayout: TwoButtons buttonRow places
the buttons in a row.

• TwoButtons new openWithLayout: TwoButtons buttonColumn places
them in a column.

We define a defaultLayoutmethod which invokes one of the previously de-
fined methods so that the presenter can be opened without giving a layout.

TwoButtons >> defaultLayout

^ self class buttonRow

126

10.10 Better design

10.10 Better design

We can do better and define two instance level methods to encapsulate the lay-
out configuration.

TwoButtons >> beColumn

self layout: self class buttonColumn

TwoButtons >> beRow

self layout: self class buttonRow

Then we can write the following script:

TwoButtons new
beColumn;
open

10.11 Specifying a layout when reusing a presenter

Having multiple layouts for a presenter implies that there is a way to specify
the layout to use when a presenter is reused. This is simple. We use the method
layout:. Here is an example. We create a new presenter named ButtonAn-
dListH.
SpPresenter << #ButtonAndListH

slots: { #buttons . #list };
package: 'CodeOfSpec20Book'

ButtonAndListH >> initializePresenters

buttons := self instantiate: TwoButtons.
list := self newList.
list items: (1 to: 10)

ButtonAndListH >> initializeWindow: aWindowPresenter

aWindowPresenter title: 'SuperWidget'

ButtonAndListH >> defaultLayout

^ SpBoxLayout newLeftToRight
add: buttons;
add: list;
yourself

This ButtonAndListH class results in a SuperWidget window as shown in Fig-
ure 10-9. It reuses the TwoButtons presenter and places all three presenters

127

Layouts

in a horizontal order because the TwoButtons presenter uses the buttonRow
layout method by default.

Figure 10-9 Buttons placed horizontally.

Alternatively, we can create ButtonAndListV class as a subclass of Butto-
nAndListH and only change the initializePresentersmethod as below. It
specifies that the reused buttons widget should use the buttonColumn layout
method, and hence results in the window shown in Figure 10-10.

ButtonAndListH << #ButtonAndListV
slots: {};
package: 'CodeOfSpec20Book'

ButtonAndListV >> initializePresenters

super initializePresenters.
buttons beColumn

Figure 10-10 Buttons placed vertically.

128

10.12 Alternative to declare subcomponent layout choice

10.12 Alternative to declare subcomponent layout choice

The alternative is to define a new method defaultLayout and to use the add:lay-
out: message. We define a different presenter.

ButtonAndListH << #ButtonAndListV2
slots: {};
package: 'CodeOfSpec20Book'

We define a new defaultLayoutmethod as follows:

ButtonAndListV2 >> defaultLayout

^ SpBoxLayout newTopToBottom
add: buttons layout: #buttonColumn;
add: list;
yourself

Note the use of the message add:layout: with the selector of the method re-
turning the layout configuration: #buttonColumn. This is normal since we can-
not access the state of a subcomponent at this moment. Let’s open a window
with:
ButtonAndListV2 new open

That opens the window shown in Figure 10-11.

Figure 10-11 Buttons and list placed vertically.

10.13 Dynamically changing a layout

It is possible to change the layout of a presenter dynamically, for example from
an inspector. Open the presenter with:

129

Layouts

ButtonAndListV new inspect open

That opens an inspector on the presenter, and a window with the buttons placed
vertically as shown in Figure 10-10.

Then select the ’buttons’ instance variable in the inspector and do self beRow.
The result is shown Figure 10-12.

Figure 10-12 Tweaking and playing interactively with layouts from the inspector.

10.14 Grid layout (SpGridLayout)

The class SpGridLayout arranges subpresenters in a grid according to certain
layout properties such as:

• A position that is mandatory (columnNumber@rowNumber) and

• A span that can be added if desired (columnExtension@rowExtension)

The following example opens a window with a grid layout with several widgets,
as shown in Figure 10-13.

SpPresenter << #GridExample
slots: { #promptLabel . #nameText . #suggestionsText . #submitButton

};
package: 'CodeOfSpec20Book'

130

10.14 Grid layout (SpGridLayout)

Figure 10-13 A simple grid for a small form.

GridExample >> initializePresenters

promptLabel := self newLabel
label: 'Please enter your name and your suggestions.';
yourself.

nameText := self newTextInput.
suggestionsText := self newText.
submitButton := self newButton

label: 'Submit';
yourself

GridExample >> defaultLayout

^ SpGridLayout new
add: #promptLabel at: 1@1 span: 3@1;
add: 'Name:' at: 1@2;
add: #nameText at: 2@2 span: 2@1;
add: 'Suggestions:' at: 1@3;
add: #suggestionsText at: 2@3 span: 2@1;
add: #submitButton at: 2@4 span: 1@1;
yourself

The layout defines a grid with three columns. The prompt ’Please enter your
name and your suggestions.’ spans the three columns. The labels of the two
fields are put in the first column. The fields span the second and the third col-
umn. The button is put in the second column. The second field is a multi-line
text field. That is why it is higher than the first field, which is a single-line text
field.

Here is a list of options:

131

Layouts

• columnHomogeneous: Whether presenters in a column will have the
same size.

• rowHomogeneous: Whether presenters a row will have the same size.

• colSpacing:: The horizontal space between cells.

• rowSpacing:: The vertical space between cells.

The defaultLayoutmethod of the example maybe hard to read, especially
when the grid contains a lot of presenters. The reader has to compute the posi-
tions and the spans of the subpresenters. We can use a SpGridLayoutBuilder
to make grid building easier. The class is not to be used directly. Instead send
build: to a SpGridLayout. Below is an alternative defaultlayoutmethod
that produces the same result as before. By putting all presenters of one row
on one line, it is clear that there are four rows, and it is clear which subpresen-
ters are part of the same row.

GridExample >> defaultLayout

^ SpGridLayout build: [:builder |
builder
add: #promptLabel span: 3@1; nextRow;
add: 'Name:'; add: #nameText span: 2@1; nextRow;
add: 'Suggestions:'; add: #suggestionsText span: 2@1; nextRow;
nextColumn; add: #submitButton]

10.15 Paned layout (SpPanedLayout)

A paned layout is like a box layout, but restricted to two children, which are
the ”panes”. It places children in a vertical or horizontal fashion and adds a
splitter in between, that the user can drag to resize the panes. The message
positionOfSlider: indicates the original position of the splitter. It can be
nil (then it defaults to 50%), or it can be a percentage (e.g. 70 percent), a Float
(e.g. 0.7), or a Fraction (e.g. 7/10). We prefer simplicity and use floats because
there are cheap and simple.

Let’s look at this simple example:

SpPresenter << #PanedLayoutExample
slots: { #leftList . #rightList };
package: 'CodeOfSpec20Book'

PanedLayoutExample >> initializePresenters

leftList := self newList
items: (1 to: 10);
yourself.

132

10.16 Overlay layout (SpOverlayLayout)

rightList := self newList
items: ($a to: $z);
yourself

PanedLayoutExample >> defaultLayout

^ SpPanedLayout newLeftToRight
positionOfSlider: 0.7;
add: #leftList;
add: #rightList;
yourself

Let’s open the presenter with:

PanedLayoutExample new open

Figure 10-14 shows the result. The left list takes 70% of the width of the win-
dow and the right list takes 30%.

Figure 10-14 A paned layout with two lists.

10.16 Overlay layout (SpOverlayLayout)

An overlay layout allows overlaying one presenter by other presenters.

As an example, we will create a presenter that shows a button labeled ’Inbox’,
with a red indicator overlayed in the top-right corner (See Figure 10-15). A use
case could be indicating that there are unread messages in the inbox.

SpPresenter << #OverlayLayoutExample
slots: { #button . #indicator };
package: 'CodeOfSpec20Book'

133

Layouts

Figure 10-15 An overlay layout with a button and a Roassal box.

The method initializePresenters creates the button and the indicator. The
latter is a SpRoassalPresenter. We use a helper method to answer the shape
that should be shown.
OverlayLayoutExample >> initializePresenters

button := self newButton
label: 'Inbox';
yourself.

indicator := (self instantiate: SpRoassalPresenter)
script: [:view | view addShape: self indicatorShape];
yourself

OverlayLayoutExample >> indicatorShape

^ RSBox new
extent: 10@10;
color: Color red;
yourself

To make the structure of the layout clear, we have three methods. The de-
faultLayout is the layout of the window. For demonstration purposes, we put
the button in the middle of the window. The button’s dimensions are 50 by 50
pixels.

OverlayLayoutExample >> defaultLayout

| buttonVBox |
buttonVBox := SpBoxLayout newTopToBottom

vAlignCenter;
add: self buttonLayout height: 50;
yourself.

134

10.16 Overlay layout (SpOverlayLayout)

^ SpBoxLayout newLeftToRight
hAlignCenter;
add: buttonVBox width: 50;
yourself

The defaultLayoutmethod sends the message buttonLayout to fetch the
overlay layout for the button and the indicator. Let us define the method but-
tonLayout as follows:
OverlayLayoutExample >> buttonLayout

^ SpOverlayLayout new
child: button;
addOverlay: self indicatorLayout
withConstraints: [:constraints |

constraints vAlignStart; hAlignEnd];
yourself

The child is the presenter that we want to overlay with the indicator. It is
possible to add multiple overlays. In this example, we have only one, which
is defined by indicatorLayout. Note that addOverlay:withConstraints:
is used to configure where the overlay presenter should be displayed. We dis-
play it in the top-right corner, by sending vAlignStart (top) and hAlignEnd
(right).

Now we define the method indicatorLayout as follows:
OverlayLayoutExample >> indicatorLayout

| counterVBox |
counterVBox := SpBoxLayout newTopToBottom

add: indicator withConstraints: [:constraints |
constraints height: 12; padding: 2];

yourself.
^ SpBoxLayout newLeftToRight

add: counterVBox withConstraints: [:constraints |
constraints width: 12; padding: 2];

yourself

The indicatorLayoutmethod defines the layout for the indicator. To apply a
vertical and a horizontal padding, we have to wrap a vertical box layout with a
horizontal box layout. We could have wrapped a horizontal box layout with a
vertical box layout to achieve the same result. We apply a padding of 2 pixels so
that the indicator does not overlap the border of the button.

With all these methods in place, we can open the presenter.

OverlayLayoutExample new open.

That opens the window shown in Figure 10-15.

135

Layouts

10.17 Conclusion

Spec offers several predefined layouts. Probably new ones will be added but in
a compatible way. An important closing point is that layouts can be dynam-
ically composed. It means that you are able to design applications that can
adapt to specific conditions.

136

CHA P T E R 11
Dynamic presenters

Contrary to Spec 1.0, in Spec 2.0 all the layouts are dynamic. It means that you
can change the displayed elements on the fly. It is a radical improvement from
Spec 1.0 where most of the layouts were static and building dynamic widgets
was cumbersome.

In this chapter, we show that presenters can be dynamically composed using
layouts. We show a little interactive session. Then we build a little browser
with dynamic aspects.

11.1 Layouts as simple as objects

Building dynamic applications using Spec is simple. In fact, any layout in Spec
is dynamic and composable. Let’s explore how that works. We start with the
following code snippet:

presenter := SpPresenter new.
presenter application: SpApplication new.

For this presenter, we use the SpPanedLayout which can receive two presen-
ters (or layouts) and place them in one half of the window. If you want to see all
the available layouts in Spec, you can check the package Spec2-Layout.
presenter layout: SpPanedLayout newTopToBottom.
presenter open.

Of course, as shown in Figure 11-1, we are going to see an empty window be-
cause we did not put anything in the layout.

137

Dynamic presenters

Figure 11-1 An empty layout.

Now, without closing the window, we can dynamically edit the layout of the
main presenter. We will add a button presenter by executing the following
lines:
button1 := presenter newButton.
button1 label: 'I am a button'.
presenter layout add: button1.

Figure 11-2 Paned layout with one button.

Now we can add another button. There is no need to close and reopen the win-
dow. Everything updates dynamically and without the need of rebuilding the
window. As we have instantiated the layout with newTopToBottom, the presen-
ters will be laid out vertically. See Figure 11-3.

button2 := presenter newButton.
button2 label: 'I am another button'.
presenter layout add: button2.

We can put an icon in the first button. See Figure 11-4.

button1 icon: (button1 iconNamed: #smallDoIt).

138

11.1 Layouts as simple as objects

Figure 11-3 Paned layout with two buttons.

Figure 11-4 Paned layout with two buttons, one with an icon.

Or we can delete one of the buttons from the layout, as shown in Figure 11-5.

presenter layout remove: button2.

Figure 11-5 Removing a button.

What you see here is that all the changes happen simply by creating a new in-
stance of a given layout and sending messages to it. It means that programs
can define complex logic for the dynamic behavior of a presenter.

139

Dynamic presenters

11.2 Dynamic button adder

Now we will create a presenter that dynamically adds buttons with random
numbers: we will add and remove buttons dynamically (as shown in Figures 11-
6 and 11-7). Let us get started. We create a new class called DynamicButtons.

Figure 11-6 A presenter that dynamically adds buttons.

SpPresenter << #DynamicButtons
slots: { #addButton . #removeButton . #text };
package: 'CodeOfSpec20Book'

In the method initializePresenters, we add a button. When we click on it,
it adds a new button to the layout. We also want a button that will remove the
last button that was added, if any. Finally, we add a read-only text presenter
that cannot be removed.
DynamicButtons >> initializePresenters

addButton := self newButton.
addButton

action: [self addToLayout];
label: 'Add a presenter to the layout';
icon: (self iconNamed: #smallAdd).

removeButton := self newButton.
removeButton

action: [self removeFromLayout];
label: 'Remove a presenter from the layout';
icon: (self iconNamed: #smallDelete);
disable.

text := self newText.
text

text: 'I am a text presenter.
I will not be removed';

140

11.3 Defining add/remove buttons

beNotEditable

11.3 Defining add/remove buttons

Now we have to implement the methods addToLayout and removeFromLay-
out used in the action blocks of the buttons. Those methods, as their names
indicate, add and remove presenters dynamically.

Let’s start with the addToLayoutmethod. We will add a new button to the lay-
out. The label of the new button is a random number. We enable the remove
button so that the newly added button can be removed.

DynamicButtons >> addToLayout

| randomButtonName newButton |
removeButton enable.
randomButtonName := 'Random number: ', 1000 atRandom asString.
newButton := self newButton

label: randomButtonName;
icon: (self iconNamed: #smallObjects);
yourself.

self layout add: newButton expand: false

For removing a button from the layout, we first check if there is a button that
we can remove. If yes, we just remove the last button. Then, if there are no
more buttons left to remove, we disable the remove button.

DynamicButtons >> removeFromLayout

self layout remove: self layout presenters last.
self layout presenters last = text ifTrue: [removeButton disable]

The only thing that is still missing is the default layout.

DynamicButtons >> defaultLayout

^ SpBoxLayout newTopToBottom
add: addButton expand: false;
add: removeButton expand: false;
add: text;
yourself

After opening the window with the following code snippet, we see the window
shown in Figure 11-6.

DynamicButtons new open

Figure 11-7 shows what the window looks like after clicking the add button
four times.

141

Dynamic presenters

Figure 11-7 Adding random buttons.

11.4 Building a little dynamic browser

With all of the knowledge gained so far, we are going to build a new mini ver-
sion of the System Browser as shown in Figure 11-8. We want to have:

• A tree that shows all the system classes.

• A list that shows all methods of the selected class.

• A text presenter that shows the code of a selected method.

• A button.

Initially, the code of the method will be in “Read-only” mode. When we press
the button, we are switching to “Edit” mode.

Figure 11-8 The mini browser in action.

142

11.4 Building a little dynamic browser

Let’s get started.

SpPresenter << #MyMiniBrowser
slots: { #classTree . #code . #methodList . #button };
package: 'CodeOfSpec20Book'

The initializePresentersmethod instantiates the tree presenter class. We
want the tree presenter to show all the classes that are present in the Pharo
image. We know that (almost) all subclasses inherit from Object, so that is go-
ing to be the only root of the tree. To get the children of a tree node, we can
send the message subclasses to a class. We want each of the tree nodes to
have a nice icon. We can fetch the icon of a class with the message systemI-
conName. Finally, we want to “activate” the presenter with only one click in-
stead of two.
MyMiniBrowser >> initializePresenters

classTree := self newTree
activateOnSingleClick;
roots: { Object };
children: [:each | each subclasses];
displayIcon: [:each | self iconNamed: each systemIconName];
yourself.

For the methods, we want to use a filtering list, so that we can search for method
selectors. Also, we want to display only the selector of the method and sort the
methods in an ascending way.

methodList := self newFilteringList
display: [:method | method selector].

methodList listPresenter
sortingBlock: [:method | method selector] ascending.

We said that, initially, the code is going to be in “Read-only” mode. The label
of the button is going to be “Edit” to say that if we click on the button, we will
change to “Edit” mode. We also want to have a nice icon.

button := self newButton
label: 'Edit';
icon: (self iconNamed: #smallConfiguration);
yourself.

As the initial behavior will be read-only mode, the code will be a text presenter
that is not editable.
code := self newText.
code beNotEditable

Here is the complete code of the method:

143

Dynamic presenters

MyMiniBrowser >> initializePresenters

classTree := self newTree
activateOnSingleClick;
roots: { Object };
children: [:each | each subclasses];
displayIcon: [:each | self iconNamed: each systemIconName];
yourself.

methodList := self newFilteringList
display: [:method | method selector].

methodList listPresenter
sortingBlock: [:method | method selector] ascending.

button := self newButton
label: 'Edit';
icon: (self iconNamed: #smallConfiguration);
yourself.

code := self newText.
code beNotEditable

Opening the presenter with the code below, opens the window shown in Figure
11-9.
MyMiniBrowser new open

Figure 11-9 A little browser in read-only mode.

11.5 Placing elements visually

We initialized our presenters, but we did not indicate how they needed to be
displayed.

We want the upper part of the layout to have the classes and the methods shown
horizontally, like in the System Browser. To achieve that, we will create an-

144

11.6 Connecting the flow

other left-to-right layout, with a spacing of 10 pixels between the classes and
the methods.

We add that layout to our main layout, which is a top-to-bottom layout. We add
the code and the button under the classes and the methods. We do not want
the code to expand. In addition, we want a separation of 5 pixels for this layout.

MyMiniBrowser >> defaultLayout

| classesAndMethodsLayout |
classesAndMethodsLayout := SpBoxLayout newLeftToRight.
classesAndMethodsLayout

spacing: 10;
add: classTree;
add: methodList.

^ SpBoxLayout newTopToBottom
spacing: 5;
add: classesAndMethodsLayout;
add: code;
add: button expand: false;
yourself

11.6 Connecting the flow

So far so good, but we did not add any behavior to the presenters. We have to
implement the connectPresentersmethod.

When we click on a class in the tree, we want to update the items of the method
list with the methods of the selected class. When we click on a method, we
want to update the text of the code with the source code of the method.

MyMiniBrowserPresenter >> connectPresenters

classTree whenActivatedDo: [:selection |
methodList items: selection selectedItem methods].

methodList listPresenter
whenSelectedDo: [:selectedMethod |

code text: selectedMethod ast formattedCode].
button action: [self buttonAction]

For now, we define the method buttonAction to do nothing.
MyMiniBrowserPresenter >> buttonAction

145

Dynamic presenters

11.7 Toggling Edit/Read-only mode

When we click on the button we want several things. That is why it is better to
create a separate method.

1. We want to change the label of the button to alternate between “Edit”
and “Read only”.

2. We want to change the presenter of the code. If the Mini Browser is in
read-only mode, we want to have a text presenter that is not editable.
If the Mini Browser is in edit mode, we want to have a code presenter
that applies syntax coloring to the code and shows the line numbers. But
always the code is going to have the same text (the code of the selected
method).

MyMiniBrowserPresenter >> buttonAction

| newCode |
button label = 'Edit'

ifTrue: [
button label: 'Read only'.
newCode := self newCode

beForMethod: methodList selectedItem;
text: methodList selectedItem ast formattedCode;

yourself]
ifFalse: [
button label: 'Edit'.
newCode := self newText

text: methodList selectedItem ast formattedCode;
beNotEditable;
yourself].

self layout replace: code with: newCode.
code := newCode

As a last detail, because we love details, we do not want “Untitled window” as
the window title and we want a default extent. We define the initializeWin-
dow: method.
MyMiniBrowserPresenter >> initializeWindow: aWindowPresenter

aWindowPresenter
title: 'My Mini Browser';
initialExtent: 750@650

Voilà! We have a new minimal version version of the System Browser with a
read-only mode. When we run MyMiniBrowser new open, and we select a
class and a method, and we press the ’Edit’ button, we see the window in Fig-
ure 11-10.

146

11.8 About layout recalculation

Figure 11-10 Our little browser in edit mode.

11.8 About layout recalculation

Pay attention to layout recalculation because it can have a performance penalty.

Consider a presenter having a layout with many subpresenters, and let’s as-
sume that the subpresenters have layouts with subpresenters too. Layouts al-
low adding and removing presenters. Those operations do not come for free.
Every change to a layout triggers a recalculation because any addition or re-
moval impacts how the presenters in the layout are displayed on the screen. So
when a presenter changes multiple individual presenters of a layout, multiple
recalculations may happen.

It is preferable to perform layout changes in one go. When building an initial
layout, it is better to build the nested layouts bottom-up and to set the overall
layout once. When updating an existing layout, it is better to build the new
layout completely and set it, instead of chirurgically adding and/or removing
presenters.

11.9 Conclusion

With Spec we can build applications ranging from very simple to very sophis-
ticated. The dynamic layouts allow changing layouts on the fly. Layouts can be
configured in multiple ways, so have a look at their classes and the available
examples. Spec has lots of presenters that are ready to be used. Start digging
into the code to see which presenters are available, and to learn their API.

147

CHA P T E R 12
A Concrete Case: A Mail

Application

We will build a small email client application that we will elaborate on and
adapt in subsequent chapters. This small app brings together in real concrete
ways much of what we have seen in the previous chapters. Figure 12-1 shows
the target application.

Figure 12-1 The mail client.

The example is extensive, with a lot of classes and methods. We will implement
the application bottom-up. We start with the models. Afterward, we will imple-

149

A Concrete Case: A Mail Application

ment the presenters that compose the application. Let’s dive in.

12.1 The models

To build the mail client, we need three models (see Figure 12-2):

• Email represents an email.

• MailFolder represents a folder that holds emails, like ”Inbox”, ”Draft”,
and ”Sent”.

• MailAccount represents a mail account. It holds all the emails.

Email

EmailFolder*

EmailAccount

*

Figure 12-2 A simple model.

12.2 Email

In Figure 12-1, we see that the application shows four fields for an email. ”From”
holds sender. ”To” holds the addressee. ”Subject” holds the subject of an email.
The nameless text field at the bottom-right holds the body of an email. Let’s
define an Email class to cover these fields.
Object << #Email

slots: { #from . #to . #subject . #body . #status };
package: 'CodeOfSpec20Book'

We do not show the accessors for from, to, subject, and body. They are triv-
ial.

Note that there is a fifth instance variable called status. This instance variable
will be used to keep track of the status of an email, either ”received”, ”draft”,
or ”sent”. These statuses map onto the mail folders in the application, respec-
tively ”Inbox”, ”Draft”, and ”Sent”. We define the following methods to change
the status of an email. They will come in handy when we receive, create, or
send emails.

150

12.2 Email

Email >> beReceived

status := #received

Email >> beDraft

status := #draft

Email >> beSent

status := #sent

To know what the status of an email is, we define three more messages.

Email >> isReceived

^ status = #received

Email >> isDraft

^ status = #draft

Email >> isSent

^ status = #sent

We will not define accessors for the status instance variable. The six methods
above keep the status nicely encapsulated.

Now we can define the initializemethod. It states that a new email is in
draft status by default.

Email >> initialize

super initialize.
self beDraft

We define two final methods. They are related to including emails in a tree pre-
senter. The first method answers the string that should be displayed in the list
of emails.
Email >> displayName

^ subject

The second method answers what should be displayed as children in a tree pre-
senter. While a folder has children, i.e. its emails, an email does not have any
children, so this method returns an empty array. We do not use tree-related
terminology, as it would not be appropriate. Therefore we use content, as in
”the content of a folder”.

151

A Concrete Case: A Mail Application

Email >> content

^ Array new

12.3 MailFolder

The tree on the left side of the window does not only displays emails. It also
displays mail folders, which group emails according to their state. We will de-
fine the MailFoldermodel very simplisticly. It has a name and it holds emails.

Object << #MailFolder
slots: { #emails . #name };
package: 'CodeOfSpec20Book'

At initialization time, a MailFolder does not have any emails, and its name is
New folder.
MailFolder >> initialize

super initialize.
emails := OrderedCollection new.
name := 'New folder'

That defines the default state of a MailFolder instance, but an instance cre-
ation method is handy:

MailFolder class >> named: aString emails: aCollection

^ self new
name: aString;
emails: aCollection;
yourself

The method above needs these accessor methods:
MailFolder >> emails: aCollection

emails := aCollection

MailFolder >> name: aString

name := aString

Similarly to the Email class, we need some tree-related methods:

MailFolder >> displayName

^ name

152

12.4 MailAccount

MailFolder >> content

^ emails

From this implementation, you can see that a MailFolder is just a named con-
tainer object for emails, which can be used to structure the display of emails in
a tree presenter.

Distinguishing emails and folders

In our target application, folders and emails are shown in a tree. A selection in
the tree can be a folder or an email. If a presenter has to act differently based
on the type of the selection, it needs a way to distinguish folders and emails. To
keep things simple, we will introduce two methods on the model classes that
we have defined so far.
Email >> isEmail

^ true

Folder >> isEmail

^ false

12.4 MailAccount

A MailAccount holds all emails, so the definition of the class is simple:

Model << #MailAccount
slots: { #emails };
package: 'CodeOfSpec20Book'

Note that this is the first email client model class that inherits from Model. To
keep things simple, the email client application will depend only on a MailAc-
count instance, not on Email and MailFolder instances.
Initialization is trivial:
MailAccount >> initialize

super initialize.
emails := OrderedCollection new

We know that emails have a status and that the status is used to split emails in
separate folders. That is where the following methods come in:

MailAccount >> receivedEmails

^ emails select: [:each | each isReceived]

153

A Concrete Case: A Mail Application

MailAccount >> draftEmails

^ emails select: [:each | each isDraft]

MailAccount >> sentEmails

^ emails select: [:each | each isSent]

Given that MailAccount is the main model of the application, it defines some
actions.

First of all, emails can be fetched. In a real application, emails come from a
server. We do not want to go that far. Therefore, we put one email in the ac-
count.
MailAccount >> fetchMail

| email |
email := Email new

from: 'book@pharo.org';
to: 'readers@pharo.org';
subject: 'The Spec 2.0 book has been released';
body: 'Dear reader,

The Spec 2.0 book is available.
Best regards.';

beReceived;
yourself.

(emails includes: email) ifFalse: [emails add: email].
self changed

This method creates a new email, and gives it the ”received” status. Then it
adds the email to the emails it already holds. Adding is done conditionally be-
cause we do not want the same email appearing twice after fetching multiple
times.

Note self changed at the end. It notifies dependents that a MailAccount in-
stance changed in a general way. Again, we like to keep things simple. More
specific change messages are possible, but we do not need them in this example
application.

The user of the application can create new emails and save them. When they
are saved, they are draft emails, as this method defines:

MailAccount >> saveAsDraft: anEmail

anEmail beDraft.
(emails includes: anEmail) ifFalse: [emails add: anEmail].
self changed

154

12.5 The presenters

Saving a method as draft is implemented as changing the status to ”draft” and
adding it to the emails, if it is not present yet. The conditional addition allows
saving an email multiple times without adding it multiple times.

The method to send an email is similar to the method to save an email:
MailAccount >> send: anEmail

anEmail beSent.
(emails includes: anEmail) ifFalse: [emails add: anEmail].
self changed

Finally, an email can be deleted. The implementation is simple. Remove the
email from the account and let dependents know.

MailAccount >> delete: anEmail

emails remove: anEmail.
self changed

That concludes our models. Now we can dig into the presenters.

12.5 The presenters

Many presenters are composed of smaller presenters. That is also the case
here. We need a presenter to display an email. We also need a presenter to dis-
play the tree of emails. When no email is selected in the tree, we like to display
an informational message. That is also a presenter. And the overall application,
that ties everything together, is also a presenter. So we have four presenters:

• EmailPresenter displays an Email, either editable or read-only. The
fields are editable when the email is draft. The fields are read-only when
the email is received or sent.

• NoEmailPresenter displays an informative message to tell that no email
has been selected.

• MailReaderPresenter is responsible to show an email or the informa-
tional message. It uses the two presenters above to achieve that.

• MailAccountPresenter displays the tree of folders and emails.

• MailClientPresenter is the main presenter. It combines a MailAc-
countPresenter and a MailReaderPresenter to implement the email
client functionality.

155

A Concrete Case: A Mail Application

12.6 The EmailPresenter
This presenter is fairly easy. It is a view on an Email. Therefore it defines in-
stance variables for all aspects of an Email, except the status.
SpPresenterWithModel << #EmailPresenter

slots: { #from . #to . #subject . #body };
package: 'CodeOfSpec20Book'

Note that the presenter class inherits from SpPresenterWithModel, which
means that model accessors are available. An instance of EmailPresenter can-
not function without an email, as expressed by the initializemethod. It sets
the model to an empty Email. Remember that a new Email is in draft status by
default.
EmailPresenter >> initialize

self model: Email new.
super initialize

As always, we have to define some crucial methods.

EmailPresenter >> initializePresenters

from := self newTextInput.
to := self newTextInput.
subject := self newTextInput.
body := self newText

EmailPresenter >> defaultLayout

| toLine subjectLine fromLine |
fromLine := SpBoxLayout newTopToBottom

add: 'From:' expand: false;
add: from expand: false;
yourself.

toLine := SpBoxLayout newTopToBottom
add: 'To:' expand: false;
add: to expand: false;
yourself.

subjectLine := SpBoxLayout newTopToBottom
add: 'Subject:' expand: false;
add: subject expand: false;
yourself.

^ SpBoxLayout newTopToBottom
spacing: 10;
add: fromLine expand: false;
add: toLine expand: false;
add: subjectLine expand: false;

156

12.7 The NoEmailPresenter

add: body;
yourself

The from, to, and subject fields and their associated labels have their own
layout. Note that body does not have an associated label. It is clear from the
context that the field holds the body of an email. The overall layout is a vertical
box layout with 10 pixels white space between the fields.

The method connectPresenters states that changes to fields should be stored
in the email, which is held in the model of the EmailPresenter.
EmailPresenter >> connectPresenters

from whenTextChangedDo: [:text | self model from: text].
to whenTextChangedDo: [:text | self model to: text].
subject whenTextChangedDo: [:text | self model subject: text].
body whenTextChangedDo: [:text | self model body: text]

For convenience later on, we define two extra methods to make the fields ed-
itable or read-only.

EmailPresenter >> beEditable

from editable: true.
to editable: true.
subject editable: true.
body editable: true

EmailPresenter >> beReadOnly

from editable: false.
to editable: false.
subject editable: false.
body editable: false

12.7 The NoEmailPresenter
This presenter will be used when there is no selection in the tree of folders and
emails. It is very simple, as it does not have any functionality.

SpPresenter << #NoEmailPresenter
slots: { #message };
package: 'CodeOfSpec20Book'

NoEmailPresenter >> initializePresenters

message := self newLabel
label: 'Select an email from the list to read it.';
yourself

157

A Concrete Case: A Mail Application

We put the message in the center of the presenter by using hAlignCenter and
vAlignCenter.
NoEmailPresenter >> defaultLayout

^ SpBoxLayout newTopToBottom
hAlignCenter;
vAlignCenter;
add: message;
yourself

That’s all there is to it.

12.8 The MailReaderPresenter
It is time to combine the two previous presenters. That is the responsibility of
the MailReaderPresenter. This illustrates that we can change dynamically
layouts to display different subpresenters.

SpPresenter << #MailReaderPresenter
slots: { #content . #noContent };
package: 'CodeOfSpec20Book'

As you can see, there are two instance variables to hold instances of the two
previous presenter classes. Note that the presenter class inherits from SpPre-
senter, not SpPresenterWithModel, which means that a MailReaderPresen-
ter does not have a model. We assume that instances of MailReaderPresen-
ter will be told to update themselves.

MailReaderPresenter >> initializePresenters

content := EmailPresenter new.
noContent := NoEmailPresenter new

The presenter has two states. Either there is an Email, or either there isn’t. We
have a layout for each state. When there is an email, we will use the emailLay-
out:
MailReaderPresenter >> emailLayout

^ SpBoxLayout newLeftToRight
add: content;
yourself

When there is no email, we will use the noEmailLayout:

158

12.9 The MailAccountPresenter

MailReaderPresenter >> noEmailLayout

^ SpBoxLayout newLeftToRight
add: noContent;
yourself

By default, we assume there is no email. After all, no method initializes the
email. So the defaultLayout is the noEmailLayout.
MailReaderPresenter >> defaultLayout

^ self noEmailLayout

As mentioned before, we assume that instances of MailReaderPresenter will
be told to update themselves. read: is the message to tell them.

MailReaderPresenter >> read: email

email
ifNil: [self updateLayoutForNoEmail]
ifNotNil: [self updateLayoutForEmail: email]

The method read: delegates to the methods that do the actual work.

MailReaderPresenter >> updateLayoutForEmail: email

content model: email.
self layout: self emailLayout.
email isDraft

ifTrue: [content beEditable]
ifFalse: [content beReadOnly]

MailReaderPresenter >> updateLayoutForNoEmail

self layout: self noEmailLayout

These methods simply switch the layout. Note that the first one tells the Email-
Presenter to be editable or read-only based on the draft status of an Email.

12.9 The MailAccountPresenter
Now we define a crucial part of the functionality of the mail client application.
The MailAccountPresenter holds a tree of folders and emails.
SpPresenterWithModel << #MailAccountPresenter

slots: { #foldersAndEmails };
package: 'CodeOfSpec20Book'

159

A Concrete Case: A Mail Application

Note that the presenter class inherits from SpPresenterWithModel because it
will hold a MailAccount instance as its model, which holds the emails to show
in the tree. The method initializePresenters defines the tree.
MailAccountPresenter >> initializePresenters

foldersAndEmails := self newTree
roots: Array new;
display: [:node | node displayName];
children: [:node | node content];
expandRoots

Let’s dissect the method.

• By default, the tree has no roots. Later we will set as roots the draft, in-
box, and sent elements (see method modelChanged below).

• The tree presenter uses the display: block to fetch a string representa-
tion of each tree node. In the block, we send the message displayName
that we defined on the model classes Email and Folder.

• The tree presenter uses the children block to fetch the children of a
tree node. Folders have children, Emails do not. In the block, we send
content. Remember that a Folder instance will answer its emails, and
an Email instance answers an empty array, which means that emails are
the leaves of the tree.

• We send the message expandRoots to expand the whole tree.

The layout is a simple box layout with the tree presenter:

MailAccountPresenter >> defaultLayout

^ SpBoxLayout newTopToBottom
add: foldersAndEmails;
yourself

By default, the tree is empty. When the model changes, the tree should be up-
dated. Since the class MailAccountPresenter inherits from the class SpPre-
senterWithModel, we have the method modelChanged at our disposal.
MailAccountPresenter >> modelChanged

| inbox draft sent |
inbox := MailFolder named: 'Inbox' emails: self model receivedEmails.
draft := MailFolder named: 'Draft' emails: self model draftEmails.
sent := MailFolder named: 'Sent' emails: self model sentEmails.
foldersAndEmails

roots: { inbox . draft . sent };
expandRoots

160

12.10 The MailClientPresenter

The model is a MailAccount instance. The method filters the emails of that
instance based on their status and creates folders, each holding emails with
the same status. The method sends receivedEmails, draftEmails, and sen-
tEmails. The corresponding methods were defined when we defined the MailAc-
count class. The three folders become the roots of the tree, and the roots are
expanded with the expandRootsmessage so that the user sees the whole tree.

When implementing a presenter with a tree, or any widget that has a selec-
tion, it is always a good idea to define a method that allows reacting to selec-
tion changes. We will need the method later to connect the MailAccountPre-
senter to the MailReader.
MailAccountPresenter >> whenSelectionChangedDo: aBlock

foldersAndEmails whenSelectionChangedDo: aBlock

The method simply delegates to the tree presenter held by foldersAndEmails.

We define two extra methods related to selection that will come in handy later
on. The first method returns a boolean that indicates whether an email is se-
lected. We only have two levels in the tree, so if the path to the selection has
two elements, we know that an email has been selected. The second method
simply returns the selected item in the tree.

MailAccountPresenter >> hasSelectedEmail

^ foldersAndEmails selection selectedPath size = 2

MailAccountPresenter >> selectedItem

^ foldersAndEmails selectedItem

Apart from making selections, the MailAccountPresenter does not provide
any functionality. Not yet. We will introduce it later when we need it.

We are almost there. One presenter to go.

12.10 The MailClientPresenter
This presenter combines all the presenters that we have introduced so far. We
start with an initial version of the presenter class. In subsequent sections, we
will elaborate on the class.
SpPresenterWithModel << #MailClientPresenter

slots: { #account . #reader . #editedEmail };
package: 'CodeOfSpec20Book'

161

A Concrete Case: A Mail Application

The class inherits from SpPresenterWithModel. The model is a MailAccount
instance. There are three instance variables. The first two hold presenters. The
third holds the email that is being edited.

MailClientPresenter >> initializePresenters

account := MailAccountPresenter on: self model.
reader := MailReaderPresenter new

We use a paned layout, with 40% of the space allocated to the MailAccountP-
resenter:
MailClientPresenter >> defaultLayout

^ SpPanedLayout newLeftToRight
positionOfSlider: 40 percent;
add: account;
add: reader;
yourself

Let’s connect the two presenters so that a selection in the tree on the left re-
sults in showing details of the selection on the right. We introduce two meth-
ods: connectPresenters and updateAfterSelectionChangedTo:

• The method connectPresenters sends the selected tree item to the
reader and uses the following method.

• The method updateAfterSelectionChangedTo: to allow for post selec-
tion actions.

MailClientPresenter >> connectPresenters

account whenSelectionChangedDo: [:selection |
| selectedFolderOrEmail |
selectedFolderOrEmail := selection selectedItem.
reader read: selectedFolderOrEmail.
self updateAfterSelectionChangedTo: selectedFolderOrEmail]

In the second method updateAfterSelectionChangedTo:, we use several
messages that we defined earlier.

MailClientPresenter >> updateAfterSelectionChangedTo:
selectedFolderOrEmail

editedEmail := (self isDraftEmail: selectedFolderOrEmail)
ifTrue: [selectedFolderOrEmail]
ifFalse: [nil]

The method updateAfterSelectionChangedTo: keeps track of the email if it
is a draft email, so that the presenter has it handy when needed. The method

162

12.11 First full application

Figure 12-3 The basic mail client.

invokes the method isDraftEmail: (defined below) to determine whether the
tree selection is a draft email.

^ folderOrEmailOrNil isNotNil and: [folderOrEmailOrNil isEmail and:
[folderOrEmailOrNil isDraft]]

The method states that the content of the MailReaderPresenter held by
reader depends on the selection in the tree. If an email is selected, the reader
shows its fields. If there is no selection, or a folder is selected, the reader shows
the informational message. When a draft email is selected, we put it in the
editedMail instance variable, which will be handy when we start performing
actions on the selected email.

Let’s also define the method initializeWindow, so that the window has a title
and it is big enough for reading emails easily.

MailClientPresenter >> initializeWindow: aWindowPresenter

aWindowPresenter
title: 'Mail';
initialExtent: 650@500

12.11 First full application

After typing all the code, it is time to open the mail client.

(MailClientPresenter on: MailAccount new) open

163

A Concrete Case: A Mail Application

Figure 12-3 shows the result. There is nothing much to see. Only three empty
folders. Selecting one will still show the informational message on the right.

We can do better. Let’s add a draft email with the saveAsDraft: message that
we defined in MailAccount.
account := MailAccount new.
email := Email new subject: 'My first email'.
account saveAsDraft: email.
(MailClientPresenter on: account) open

That opens a window with a draft email. After selecting it, the window looks as
shown in Figure 12-4.

Figure 12-4 The basic mail client with a draft email.

12.12 Conclusion

This was a long chapter with an extensive example with multiple models and
multiple presenters. It lays the foundation for the next chapters, where we will
extend the main presenter and adapt the subpresenters to explain more Spec
functionality.

164

CHA P T E R 13
Menubar, Toolbar, Status Bar,

and Context Menus

Often application windows have a menubar that includes all commands pro-
vided by the application. Application windows may also have a toolbar, with
buttons for commands that are used frequently. Some applications only have a
toolbar. Apart from supporting a menubar and toolbar, Spec supports a status
bar at the bottom of a window. Some widgets, such as text fields, tables, and
lists, are equipped with context menus. All these aspects are the subject of this
chapter.

We will improve the email client application we built in Chapter 12. We will add
a menubar, a toolbar, a status bar, and a context menu. Figure 13-1 shows the
result that we like to achieve.

13.1 Adding a menubar to a window

With all the models and presenters in place as described in the previous chap-
ter, we can dive into the subject of this chapter – remember that all the code is
available as explained in Chapter 1. We start by adding a menubar with com-
mands to manipulate emails.

A menubar is part of a window presenter. Therefore it is configured in the ini-
tializeWindow: method. A SpWindowPresenter instance understands the
message menu: to set the menubar.

165

Menubar, Toolbar, Status Bar, and Context Menus

Figure 13-1 The mail client with toolbar.

MailClientPresenter >> initializeWindow: aWindowPresenter

aWindowPresenter
title: 'Mail';
initialExtent: 650@500;
menu: menuBar

The instance variable menuBar is not defined yet, so let’s do that first. We add
it to the class definition.
SpPresenterWithModel << #MailClientPresenter

slots: { #account . #reader . #editedEmail . #menuBar };
package: 'CodeOfSpec20Book'

Then we have to bind it. We elaborate the initializePresentersmethod to
initialize the menuBar instance. The method delegates that responsibility to
the method initializeMenuBar.
MailClientPresenter >> initializePresenters

account := MailAccountPresenter on: self model.
reader := MailReaderPresenter new.
self initializeMenuBar

MailClientPresenter >> initializeMenuBar

menuBar := self newMenuBar
addItem: [:item |
item

name: 'Message';

166

13.2 Implementing message menu commands

subMenu: self messageMenu;
yourself];

addItem: [:item |
item
name: 'View';
subMenu: self viewMenu;
yourself];

addItem: [:item |
item
name: 'Format';
subMenu: self formatMenu;
yourself];

yourself

The expression self newMenuBar creates a new SpMenuBarPresenter in-
stance. We add three items to it. These items are the main menu items of the
menubar. We configure each one with their name and their submenu.

13.2 Implementing message menu commands

In this chapter, we will implement the commands of the ”Message” menu.

The two other menus, ”View” and ”Format” are included only to show you
multiple menus in the menubar. But the method viewMenu and formatMenu
are basically empty and doing nothing besides creating empty menus. We start
with the menus that we will not implement. They are short.

MailClientPresenter >> viewMenu
"Empty placeholder Not defined in this chapter"
^ self newMenu

addItem: [:item | item name: 'Show CC field'];
addItem: [:item | item name: 'Show BCC field'];
yourself

MailClientPresenter >> formatMenu
"Empty placeHolder. Not defined in this chapter"
^ self newMenu

addItem: [:item | item name: 'Plain text'];
addItem: [:item | item name: 'Rich text'];
yourself

Now we are ready to focus on the ”Message” menu commands. We will imple-
ment all commands of the ”Message” menu. That requires some code:

MailClientPresenter >> messageMenu

^ self newMenu
addGroup: [:group |

167

Menubar, Toolbar, Status Bar, and Context Menus

group
addItem: [:item |

item
name: 'New';
shortcut: $n meta;
action: [self newMail]];

addItem: [:item |
item

name: 'Save';
shortcut: $s meta;
enabled: [self hasDraft];
action: [self saveMail]];

addItem: [:item |
item

name: 'Delete';
shortcut: $d meta;
enabled: [self hasSelectedEmail];
action: [self deleteMail]];

addItem: [:item |
item

name: 'Send';
shortcut: $l meta;
enabled: [self hasDraft];
action: [self sendMail]]];

addGroup: [:group |
group

addItem: [:item |
item

name: 'Fetch';
shortcut: $f meta;
action: [self fetchMail]];

yourself]

While the first two menus included two commands, this menu includes sev-
eral commands in two groups. With the addGroupmessage, we add the groups
and we nest the menu items in the groups by sending the message addItem: to
the groups. As you can see, the menu items have a name, a keyboard shortcut,
and an action block. A few items have a block that defines whether they are en-
abled. The block argument of the enabled: message is evaluated each time the
menu item is displayed, so that the menu item can be enabled or disabled dy-
namically. Note that block arguments of the enabled: messages send the mes-
sages hasDraft and hasSelectedEmail. We did not define the corresponding
methods yet, so let’s do that now. The implementations are straightforward.

MailClientPresenter >> hasDraft

^ editedEmail isNotNil

168

13.3 Installing shortcuts

MailClientPresenter >> hasSelectedEmail

^ account hasSelectedEmail

Look at the shortcuts in the messageMenumethod. $n metameans that the
character ”n” can be pressed together with the meta key (Command on macOS,
Control on Windows and Linux) to trigger the command.

13.3 Installing shortcuts

Adding shortcuts to menu items does not automatically install them. Keyboard
shortcuts have to be installed after the window has been opened. Therefore we
have to adapt the initializeWindow: method with the whenOpenedDo: mes-
sage, so that the keyboard shortcuts can be installed after opening the window.
SpMenuPresenter, which is the superclass of SpMenuBarPresenter, imple-
ments the method addKeybindingsTo:, which comes in handy here.

MailClientPresenter >> initializeWindow: aWindowPresenter

aWindowPresenter
title: 'Mail';
initialExtent: 650@500;
menu: menuBar.
menuBar addKeybindingsTo: aWindowPresenter

13.4 Defining actions

We keep the action blocks simple by sending a message. We have to implement
them of course, so let’s do that. Based on the models that we defined earlier in
this chapter, the implementation of the actions is fairly straightforward.

MailClientPresenter >> newMail

editedEmail := Email new.
editedEmail beDraft.
reader updateLayoutForEmail: editedEmail.
self modelChanged

MailClientPresenter >> saveMail

account saveAsDraft: editedEmail.
editedEmail := nil.
self modelChanged

169

Menubar, Toolbar, Status Bar, and Context Menus

MailClientPresenter >> deleteMail

account deleteMail.
self modelChanged

MailClientPresenter >> sendMail

account sendMail: editedEmail.
editedEmail := nil.
self modelChanged

MailClientPresenter >> fetchMail

account fetchMail.
self modelChanged

It is time to try it out. To see the menubar in action, let’s open a window with:

(MailClientPresenter on: MailAccount new) open

Figure 13-2 shows the window. The menubar includes the three menus we de-
fined. The figure shows the open ”Message” menu. It has two groups of menu
items, separated by a horizontal line. Two menu items are enabled. Three
menu items are disabled because they are actions on an email but no email is
selected.

Figure 13-2 The mail client with a menu opened from the menubar.

170

13.5 Adding a toolbar to a window

13.5 Adding a toolbar to a window

Some actions are so common that it is useful to have them one click away. That
is where the toolbar comes in. A toolbar allows putting actions as buttons in
the user interface (See Figure 13-3).

Not surprisingly, like the menubar, the toolbar is part of a window presenter.
So we have to revisit the initializeWindow: method. A SpWindowPresenter
instance understands the message toolbar: to set the toolbar.

MailClientPresenter >> initializeWindow: aWindowPresenter

aWindowPresenter
title: 'Mail';
initialExtent: 650@500;
menu: menuBar;
toolbar: toolBar.
menuBar addKeybindingsTo: aWindowPresenter

toolbar is an instance variable, so we have to elaborate the class definition:

SpPresenterWithModel << #MailClientPresenter
slots: { #account . #reader . #editedEmail . #menuBar . #toolBar };
package: 'CodeOfSpec20Book'

Similar to what we did for the menubar, we define a method initializeTool-
Bar and use it in initializePresenters.
MailClientPresenter >> initializePresenters

account := MailAccountPresenter on: self model.
reader := MailReaderPresenter new.
self initializeMenuBar.
self initializeToolBar

MailClientPresenter >> initializeToolBar

| newButton fetchButton |
newButton := self newToolbarButton

label: 'New';
icon: (self iconNamed: #smallNew);
help: 'New email';
action: [self newMail];
yourself.

saveButton := self newToolbarButton
label: 'Save';
icon: (self iconNamed: #smallSave);
help: 'Save email';
action: [self saveMail];
yourself.

171

Menubar, Toolbar, Status Bar, and Context Menus

sendButton := self newToolbarButton
label: 'Send';
icon: (self iconNamed: #smallExport);
help: 'Send email';
action: [self sendMail];
yourself.

fetchButton := self newToolbarButton
label: 'Fetch';
icon: (self iconNamed: #refresh);
help: 'Fetch emails from server';
action: [self fetchMail];
yourself.

toolBar := self newToolbar
addItem: newButton;
addItem: saveButton;
addItem: sendButton;
addItemRight: fetchButton;

yourself

This method defines four buttons, of which two are held in instance variables.
Shortly, it will become clear why. Of course, we have to adapt the class defini-
tion again:

SpPresenterWithModel << #MailClientPresenter
slots: { #account . #reader . #editedEmail . #menuBar . #toolBar .

#sendButton . #saveButton };
package: 'CodeOfSpec20Book'

Figure 13-3 The mail client with disabled buttons in a toolbar.

The initializeToolBarmethod adds four buttons to the toolbar. A toolbar
has two sections, one on the left and one on the right. With the message ad-

172

13.6 Supporting enablement

dItem: we add the first three buttons to the left section. With the message
addItemRight: we add one button to the right section.

Each button has a label, an icon, a help text, and an action. As we did in ini-
tializeMenuBar, we use simple action blocks that send a message to the mail
client presenter. These are the same messages that we used in the action blocks
of the menu items in the ”Message” menu in the menubar. That means that we
are done.

13.6 Supporting enablement

We said we were done but well, not really. The menu items had a block to deter-
mine whether they were enabled or disabled. That is not the case for toolbar
buttons, because they are visible all the time. Therefore we have to manage
enablement of the buttons explicitly. Every time the state of the mail client
changes, we have to update the enablement of the toolbar buttons. We intro-
duce a new method updateToolBarButtons to do that. Based on messages
that were defined before, we can set the enablement state of the saveButton
and the sendButton. That is why we defined both as instance variables. The
two other buttons are always enabled, so it is not needed to hold them in in-
stance variables.
MailClientPresenter >> updateToolBarButtons

| hasSelectedDraft |
hasSelectedDraft := self hasDraft.
saveButton enabled: hasSelectedDraft.
sendButton enabled: hasSelectedDraft

To finish the toolbar functionality, we have to send updateToolBarButtons
in the appropriate places. Everywhere the state of the mail client presenter
changes, we have to send the message. You may think we have to do that in
many places, but we have implemented the presenter class in such a way that
there are only two places where it is required.

First, MailClientPresenter inherits from SpPresenterWithModel, which
means that every time the model of an instance changes, it sends modelChanged.
So we can update the toolbar buttons in that method.

MailClientPresenter >> modelChanged

self updateToolBarButtons

Second, we have to set the initial state of the toolbar buttons when the mail
client presenter is initialized. The method updateAfterSelectionChangedTo:,
invoked by the method connectPresenters, is a good place to update the

173

Menubar, Toolbar, Status Bar, and Context Menus

toolbar buttons. We add an extra line at the bottom of the method that we de-
fined before.
MailClientPresenter >> updateAfterSelectionChangedTo:

selectedFolderOrEmail

super updateAfterSelectionChangedTo: selectedFolderOrEmail.
self updateToolBarButtons

As for the menubar, it required a lot of code to setup the toolbar and wire ev-
erything, but we are ready. Let’s open the window again.

(MailClientPresenter on: MailAccount new) open

Figure 13-3 shows the window. It has a menubar and a toolbar. Three toolbar
buttons are placed on the left side, and one button is placed at the right side.
That corresponds to our configuration of the toolbar. The save button and the
send button are greyed out because they are disabled.

Let’s create a new email by pressing the toolbar button labeled ”New” and see
how the enablement state of the toolbar buttons changes. Figure 13-4 shows
that all the buttons are enabled.

Figure 13-4 The mail client with enabled buttons in a toolbar.

13.7 Adding a status bar to a window

After adding a menubar and a toolbar, we will add a status bar (see Figures 13-5
and 13-6). A status bar is useful to show short messages for some time, or until
the next message appears. We will elaborate the mail client presenter to show
messages to inform the user that actions have been performed.

174

Figure 13-5 The email has been saved.

Figure 13-6 The email has been sent.

Menubar, Toolbar, Status Bar, and Context Menus

The status bar appears at the bottom of the window. As with the menubar and
the toolbar, we add it in the method initializeWindow:.
MailClientPresenter >> initializeWindow: aWindowPresenter

aWindowPresenter
title: 'Mail';
initialExtent: 650@500;
menu: menuBar;
toolbar: toolBar;
statusBar: statusBar.
menuBar addKeybindingsTo: aWindowPresenter

statusBar is a new instance variable, which we add to the class definition of
the presenter.

SpPresenterWithModel << #MailClientPresenter
slots: { #account . #reader . #editedEmail . #menuBar . #toolBar .

#statusBar };
package: 'CodeOfSpec20Book'

As already done twice, we adapt the initializePresentersmethod. The
message newStatusBar creates a new SpStatusBarPresenter instance.
MailClientPresenter >> initializePresenters

account := MailAccountPresenter on: self model.
reader := MailReaderPresenter new.
self initializeMenuBar.
self initializeToolBar.
statusBar := self newStatusBar

The status bar is no more than a container for a text message. We will adapt
some action methods to put messages in the status bar. A SpStatusBarPre-
senter instance responds to pushMessage: and popMessage:. Let’s start with
the method fetchMail. We push a message ”Mail fetched.” to indicate that the
fetch action was successful.
MailClientPresenter >> fetchMail

account fetchMail.
self modelChanged.
statusBar pushMessage: 'Mail fetched.'

Then we adapt the other action methods as well.

MailClientPresenter >> saveMail

account saveAsDraft: editedEmail.
editedEmail := nil.

176

13.7 Adding a status bar to a window

self modelChanged.
statusBar pushMessage: 'Mail saved to drafts.'

MailClientPresenter >> sendMail

account sendMail: editedEmail.
editedEmail := nil.
self modelChanged.
statusBar pushMessage: 'Mail sent.'

MailClientPresenter >> deleteMail

account deleteMail.
self modelChanged.
statusBar pushMessage: 'Mail deleted.'

To finish the status bar functionality, we start with a clean status bar. There-
fore we adapt the method updateAfterSelectionChangedTo: again, in which
we already bring the toolbar buttons in their initial enablement state. We send
the message popMessage to ensure that the status bar is empty.

MailClientPresenter >> updateAfterSelectionChangedTo:
selectedFolderOrEmail

super updateAfterSelectionChangedTo: selectedFolderOrEmail.
self updateToolBarButtons.
statusBar popMessage

Let’s test the mail client presenter by opening it again.

(MailClientPresenter on: MailAccount new) open

We will test a full scenario.

• After opening the window, press the ”New” button and fill in the fields of
the new email. Figure 13-7 shows the initial state before we start manip-
ulating the email.

• When the fields are filled in, we save the email by pressing the save but-
ton. See Figure 13-5. The status bar shows ”Mail saved to drafts.” and we
see the subject of the email nested under the ”Draft” folder in the list on
the left.

• After selecting the email in the list and pressing the ”Send” button, we
see the situation in Figure 13-6. The email has moved from the ”Draft”
folder to the ”Sent” folder, and the status bar shows ”Mail sent.”.

• After pressing the ”Fetch” button, the fetched email appears under the
”Inbox” folder in the list. The status bar shows ”Mail fetched.”. See Fig-
ure 13-8.

177

Menubar, Toolbar, Status Bar, and Context Menus

• After selecting the email in the ”Inbox” and choosing ”Delete” from the
”Message” menu, the email is removed from the list, and the status bar
shows ”Mail deleted.”. See Figure 13-9.

Figure 13-7 A new email.

Figure 13-8 Email has been fetched.

All actions that change the status bar have been tested.

13.8 Adding a context menu to a presenter

The final step to complete the mail client presenter is the addition of a context
menu. We will add a context menu to the tree with the folders and emails. We

178

13.8 Adding a context menu to a presenter

Figure 13-9 The email has been deleted.

will not add a big context menu. For demonstration purposes, we will restrict
the menu to two menu items, one to delete an email and one to send an email.

The tree includes folders and emails, so the desired menu items should be dis-
abled when a folder is selected. They should also be disabled when no selection
has been made. On top of that condition, the send command can only be ap-
plied to emails that are in the ”Draft” folder because received and sent mails
cannot be sent.

Typically, a presenter adds a context menu to a subpresenter. Given that the
tree of folders and emails is a subpresenter of the MailAccountPresenter, we
would expect the MailAccountPresenter to install a context menu on the tree
presenter. However, the MailAccountPresenter cannot decide what needs to
be done for deleting or sending an email. What needs to be done is the respon-
sibility of the MailClientPresenter, which defines the methods deleteMail
and sendMail. Both methods do what they have to do to perform the action,
and then send the modelChangedmessage and update the status bar.

Therefore MailClientPresenter defines the menu.
MailClientPresenter >> accountMenu

^ self newMenu
addItem: [:item |
item

name: 'Delete';
enabled: [self hasSelectedEmail];
action: [self deleteMail]];

addItem: [:item |

179

Menubar, Toolbar, Status Bar, and Context Menus

item
name: 'Send';
enabled: [self hasSelectedEmail

and: [account selectedItem isDraft]];
action: [self sendMail]];

yourself

The action blocks are simple, like the action blocks of the menu items in the
menubar and the buttons in the toolbar. They send the action messages deleteMail
and sendMail we have defined before.

13.9 Enabling blocks

More interestingly are the enabled: blocks, which define the enablement of
the menu items. Deleting an email is possible only when an email is selected.
That is expressed by the enabled: block of the ”Delete” menu item. As de-
scribed in the introduction of this section, sending an email is possible only if
the selected email is a draft email. That is exactly what the enabled: block for
the ”Send” menu item expresses.

Note the name of the method. We use the name accountMennu because the
context menu will be installed on the MailAccountPresenter. However, the
context menu has to be installed on the tree presenter with the folders and
the emails. Therefore MailAccountPresenter delegates to the tree presenter.
Let’s realise that in code. First, from within initializePresenters of Mail-
ClientPresenter, we send the contextMenu: message to install the context
menu on the MailAccountPresenter.
MailClientPresenter >> initializePresenters

account := MailAccountPresenter on: self model.
account contextMenu: [self accountMenu].
reader := MailReaderPresenter new.
self initializeMenuBar.
self initializeToolBar.
statusBar := self newStatusBar

Then we implement the contextMenu: on MailAccountPresenter. It dele-
gates to the tree presenter,

MailAccountPresenter >> contextMenu: aBlock

foldersAndEmails contextMenu: aBlock

That concludes the implementation. It is time to open the window again and
try the new context menu.

(MailClientPresenter on: MailAccount new) open

180

13.9 Enabling blocks

When clicking the right-button mouse button, the context menu appears. Fig-
ure 13-10 shows that the two menu items are disabled when a folder is selected

Figure 13-10 Context menu items are disabled.

After fetching email and selecting the received email, the menu includes an
enabled ”Delete” menu item and a disabled ”Send” menu item, as shown in
Figure 13-11.

Figure 13-11 Sending a received email is not allowed.

As a final test, we create a new email, save it, and select it. It is a draft email, so
it can be sent. That is what we see in the context menu in Figure 13-12. Both
menu items are enabled.

181

Menubar, Toolbar, Status Bar, and Context Menus

Figure 13-12 Sending a draft email is allowed.

13.10 Conclusion

We have described how to add a menubar and a toolbar to a window. It re-
quired quite some code to define the menu items and the toolbar buttons. We
have also described how messages can be shown in the status bar at the bottom
of a window. At the end, we also described how to add a context menu to a tree
presenter.

An important aspect of menu items and toolbar buttons is their enablement
based on the state of the presenter in a window. We have shown how to apply
enablement, and we illustrated the behavior in several figures.

182

CHA P T E R 14
Using transmissions and ports

This chapter introduces transmissions, which are a more compact way to con-
nect presenters than events as shown in earlier chapters. With some examples,
the different aspects of transmissions will be explained.

14.1 What are transmissions?

Transmissions are a uniform way to connect presenters, thinking about the
“flow” of data more than the way data is displayed.

Each presenter defines output ports, which are ports to send data, and input
ports, which are ports to receive data.

When no interaction with a presenter is possible, it will not have an output
port (SpLabelPresenter for example). Some presenters have no input port
(SpMenuPresenter for example). Unless you define output ports and input
ports for your presenters, they do not have any ports.

When a presenter has output and input ports, it defines which ports are the
default output port and the default input port.

There are different classes of ports. If you do not find a suitable port class for
your presenters, you can define your own.

A transmission connects a presenter’s output port with another presenter’s in-
put port. When using transmissions, instead of thinking about events and how
to act on them, you think about how data flows from one presenter’s output
port to another presenter’s input port. The event handling is taken care of by
the output ports.

183

Using transmissions and ports

14.2 A simple example

Let’s take a look at a very simple example. Consider a presenter that shows an
overview–detail relationship. We define a class OverviewDetailPresenter
with two instance variables to hold a SpListPresenter and a SpTextPresen-
ter.
SpPresenter << #OverviewDetailPresenter

slots: { #overview . #detail };
package: 'CodeOfSpec20Book'

We populate the list with some Point instances.
OverviewDetailPresenter >> initializePresenters

overview := self newList
items: { 1@1 . 7@5 . 10@15 . 12@0 . 0@ -9 . -5@ -5 };
yourself.

detail := self newText

The defaultLayoutmethod is straightforward. It defines a horizontal box
layout.

OverviewDetailPresenter >> defaultLayout

^ SpBoxLayout newLeftToRight
add: overview expand: false;
add: detail;
yourself

Figure 14-1 A very simple overview–detail presenter.

Here comes the most interesting method. The method connectPresenters

184

14.3 Basic transmission

connects the list to the text. We start simple with a logic that uses events and
not transmissions. When a point is selected in the list, we simply show it in the
text.
OverviewDetailPresenter >> connectPresenters

overview whenSelectedItemChangedDo: [:selectedPoint |
detail text: selectedPoint asString]

When we open the presenter with the snippet below, the window looks like the
one shown in Figure 14-1.

OverviewDetailPresenter new open

14.3 Basic transmission

The method connectPresenters above uses the traditional way of connecting
presenters. Let’s use a transmission instead.

OverviewDetailPresenter >> connectPresenters

overview transmitTo: detail

The method transmitTo: is the most basic way to set up a transmission. It is
implemented as follows:

SpAbstractPresenter >> transmitTo: aPresenter

^ self defaultOutputPort transmitTo: aPresenter defaultInputPort

In our example, the method above connects the list presenter’s default out-
put port with the detail presenter’s default input port. SpAbstractPresenter
>> defaultOutputPort and SpAbstractPresenter >> defaultInputPort
define that any presenter can have a default output and a default input port.
Browse the implementors of the two methods to learn how different presenter
classes use output and input ports.

Presenters can have multiple output and input ports. They can be connected
by sending the message transmitTo: to an output port, similar to what SpAb-
stractPresenter >> transmitTo: does with the default output and input
ports.

When we open the presenter again, and we select a point in the list, an excep-
tion is raised. That is because the Point instance transmitted from the list pre-
senter’s default output port is not compatible with the kind of object expected
by the text presenter’s default input port. The latter expects a String, not a
Point. This is a common situation. Only in simple use cases will the transmit-
ted object be adequate for the input port. In many cases, the transmitted ob-

185

Using transmissions and ports

ject needs to be transformed to transmit an adequate object to the input port.
That is where transformations come in.

14.4 Transforming a transmitted object

The object transmitted from a presenter’s output port can be inadequate for
the input port of another presenter. There are two reasons why a transmitted
object may be inadequate:

• The kind of object coming from an output port may not be acceptable
for an input port. In our simple example, that is the case. The input port
expects a String, not a Point.

• The object itself coming from an output port may not be what you like to
send to the input port.

Let’s give examples of both reasons.

To fix the exception raised when selecting a point in the list, we adapt the
method connectPresenters to answer a String instead of a Point:
OverviewDetailPresenter >> connectPresenters

overview
transmitTo: detail
transform: [:selectedPoint | selectedPoint asString]

Now the behavior of the presenter is error-free.

Suppose that we do not like to merely show the selected point in the text, but
that we like to show the distance of the selected point to the origin of the coor-
dinate system. In the traditional way, the method connectPresenters would
look like this:
OverviewDetailPresenter >> connectPresenters

overview whenSelectedItemChangedDo: [:selectedPoint |
| distanceToOrigin |
distanceToOrigin := selectedPoint
ifNil: ['']
ifNotNil: [(selectedPoint distanceTo: 0@0) asString].

detail text: distanceToOrigin]

When using a transmission, it is reduced to:

OverviewDetailPresenter >> connectPresenters

overview
transmitTo: detail
transform: [:selectedPoint |

186

14.5 Acting on a transmission without input port

selectedPoint
ifNil: ['']
ifNotNil: [(selectedPoint distanceTo: 0@0) asString]]

After opening, we see the window as shown in Figure 14-2.

Figure 14-2 The overview–detail presenter with a transformation.

14.5 Acting on a transmission without input port

Sometimes it is not necessary to send a transmitted object to the input port of
a subpresenter. If your presenter has to do something when an object is being
transmitted through an output port, it can use the message transmitDo:. The
message takes a block that will be evaluated when there is a transmission.

Let’s extend the simple example to show that. Suppose that for debugging pur-
poses, we like to log the selected point to the Transcript. In the traditional
way, we would implement connectPresenters like this:
OverviewDetailPresenter >> connectPresenters

overview whenSelectedItemChangedDo: [:selectedPoint |
| distanceToOrigin |
distanceToOrigin := selectedPoint

ifNil: ['']
ifNotNil: [(selectedPoint distanceTo: 0@0) asString].

detail text: distanceToOrigin.
selectedPoint crTrace]

With transmissions, we can achieve the same behavior as follows:

187

Using transmissions and ports

OverviewDetailPresenter >> connectPresenters

overview
transmitTo: detail
transform: [:selectedPoint |
selectedPoint

ifNil: ['']
ifNotNil: [(selectedPoint distanceTo: 0@0) asString]].

overview transmitDo: [:selectedPoint | selectedPoint crTrace]

14.6 Acting after a transmission

Sometimes, after a transmission happens, a presenter needs to modify some-
thing given the new status of a subpresenter. Examples are preselecting some-
thing, and updating the state of toolbar buttons. That is where post transmis-
sion actions come in. The messages that we have seen so far, have variations
with an extra keyword argument postTransmission:.
Let’s elaborate the simple example for the last time. Suppose we like to select
the text after it has been set. In the traditional way, in the method connectP-
resenters, we would send selectAll to the text presenter:
OverviewDetailPresenter >> connectPresenters

overview whenSelectedItemChangedDo: [:selectedPoint |
| distanceToOrigin |
distanceToOrigin := selectedPoint
ifNil: ['']
ifNotNil: [(selectedPoint distanceTo: 0@0) asString].

detail text: distanceToOrigin.
detail selectAll.
selectedPoint crTrace]

With transmissions, we would add an extra postTransmission: keyword to
the message that we used before. The extra argument is a block that takes up
to three arguments. The first argument, often called destination, is the pre-
senter of the input port. The second argument, often called origin, is the pre-
senter of the output port. The third argument is the transmitted object, with-
out transformation applied to it. In our example, we only need access to the
destination argument. That is why there is only one argument in the post-
Transmission: block.
OverviewDetailPresenter >> connectPresenters

overview
transmitTo: detail
transform: [:selectedPoint |

188

14.7 Available ports

selectedPoint
ifNil: ['']
ifNotNil: [(selectedPoint distanceTo: 0@0) asString]]

postTransmission: [:destination | destination selectAll].
overview transmitDo: [:selectedPoint | selectedPoint crTrace]

Let’s open the presenter again to test the presenter with the transmissions.

OverviewDetailPresenter new open

After selecting a point, we see the window as shown in Figure 14-3. The dis-
tance to the origin of the coordinate system is selected in the text, and the se-
lected point is logged in the transcript.

Figure 14-3 The final overview–detail presenter.

14.7 Available ports

We described a very simple, albeit often used, use case with two kinds of ports
where a selected object is input for some presenter. The output port of a SpList-
Presenter is an instance of SpSelectionPort. The input port of a SpTextP-
resenter is a SpTextPort instance. Instances of SpSelectionPort are appli-
cable for the output ports of presenters that implement a selection mechanism.
Instances of SpTextPort are applicable for the input ports of presenters that
display or edit text (see the SpAbstractTextPresenter class hierarchy). All
the presenter classes that implement widgets have their particular output port
and input port classes. That is why there are different classes of ports. Their
common superclass is SpAbstractPort, with two direct subclasses SpInput-
Port and SpOutputPort.

189

Using transmissions and ports

14.8 Ports and nesting presenters

When you implement your own presenters, they will use subpresenters that
can be connected with transmissions. But what happens when you reuse your
presenters in other presenters? The answer is simple: you will also use trans-
missions to connect them.

To make your presenters suitable for use with transmissions, the presenter
classes have to define the output and input ports, and they have to implement
the methods defaultOutputPort and defaultInputPort. Depending on the
behavior of a presenter, the presenter class implements one or both methods.
When defining the ports, you can use one of the available port classes. If you do
not find a suitable port class for your presenters, you can define your own.

In some cases, it is not necessary to define new ports. Instead, delegation can
be used to reuse a port of a subpresenter. We will see an example of delegation
in the next section.

14.9 A more advanced example

In this section, we revisit the small email client application from Chapter 12.

Let’s start with the presenter class MailClientPresenter. It had this method:

MailClientPresenter >> connectPresenters

account whenSelectionChangedDo: [:selection |
| selectedFolderOrEmail |
selectedFolderOrEmail := selection selectedItem.
reader read: selectedFolderOrEmail.
self updateAfterSelectionChangedTo: selectedFolderOrEmail]

We adapt it to use a transmission:

MailClientPresenter >> connectPresenters

account
transmitTo: reader
postTransmission: [:destination :origin :selectedFolderOrEmail |
self updateAfterSelectionChangedTo: selectedFolderOrEmail]

We send the message transmitTo:postTransmission: to express that the
selection made in the account presenter (an instance of MailAccountPresen-
ter) should be transmitted to the reader presenter (an instance of MailRead-
erPresenter), and that there is a post transmission action.

Although the method connectPresenters expresses the desired transmission
behavior very succinctly, it does not work without additional changes. After all,

190

14.10 Another variation

we did not yet define the output port of the account presenter and the input
port of the reader presenter.

For the account presenter, we can simply delegate defaultOutputPort, be-
cause the default output port of the SpTreePresenter that holds the folders
and the emails, is a SpSelectionPort. It will provide the selected folder or
email.
MailAccountPresenter >> defaultOutputPort

^ foldersAndEmails defaultOutputPort

The definition of the input port of the reader presenter is a bit more complex.
A MailReaderPresenter instance expects to receive a Folder or an Email
instance. That is what was expressed by reader read: selectedFolderOrE-
mail in the original implementation of MailClientPresenter >> connect-
Presenters. The folder or email is in fact the model of a MailReaderPresen-
ter, but we did not provide it by sending setModel:, but by sending read:.
We used read: because conceptually it made sense in the context of a Mail-
ReaderPresenter.

There is no input port class that knows the read: protocol, so we have two op-
tions. Either we implement a new input port class, or either we use SpMod-
elPort. We choose the latter because we prefer reusing existing classes. But
that means that we will have to implement setModel: on the MailReaderP-
resenter class because SpModelPort sends setModel: to give the transmitted
object to the destination presenter. We can simply delegate to read: to make
the presenter compatible with the protocol expected by SpModelPort.
MailReaderPresenter >> defaultInputPort

^ SpModelPort newPresenter: self

MailReaderPresenter >> setModel: email

self read: email

That concludes the changes to introduce a transmission at the level of the
MailClientPresenter. When opening the mail client with (MailClient-
Presenter on: MailAccount new) open, the mail application behaves as
before, but now it uses a transmission.

14.10 Another variation

There is another presenter where we can use transmissions: the EmailPresen-
ter. Its original connectPresentersmethod was implemented as follows.

191

Using transmissions and ports

EmailPresenter >> connectPresenters

from whenTextChangedDo: [:text | self model from: text].
to whenTextChangedDo: [:text | self model to: text].
subject whenTextChangedDo: [:text | self model subject: text].
body whenTextChangedDo: [:text | self model body: text]

Although the change to use transmissions is superficial, the same behavior can
be achieved with:
EmailPresenter >> connectPresenters

from transmitDo: [:text | self model from: text].
to transmitDo: [:text | self model to: text].
subject transmitDo: [:text | self model subject: text].
body transmitDo: [:text | self model body: text]

The messages transmitDo: is used because we like a side effect on the model.
No input ports are involved in the transmissions.

14.11 Conclusion

This chapter introduced transmissions and ports, and illustrated the concepts
with two examples.

Output ports define the origins of data, and the transformations to apply to the
data before transmitting it to an input port. Input ports define destinations of
data. Transmissions connect output ports with input ports to define the flow of
data between presenters.

192

CHA P T E R 15
Styling applications

In this chapter, we describe how to declare and use styles in Spec applications.

First, we present stylesheets and styles and then we apply styles to the Mail
Application we introduced in Chapter 12. We will illustrate how Spec manages
styles and how you can adapt the look of a presenter.

There are two ways to express stylesheets: one for Morphic expressed using
an extended version of STON, and CSS for GTK. In this chapter, we focus on the
Morphic stylesheets for Pharo 12. We give some basis before showing how to
effectively use styles to enhance the look and feel of an application.

15.1 In a nutshell

An application stylesheet

In Spec, an application has a stylesheet that can be set using the message styleSheet:.
Each application can then refine its stylesheet.

app styleSheet: styleSheet.

Declaring styles

For the Morphic backend (as opposed to the GTK one), a stylesheet is defined as
a special version of a STON string that is parsed and turned into style elements.
The following snippet creates a stylesheet where all the fonts are bold, and
three drawing styles red, bgGray, and blue are defined.

193

Styling applications

(SpStyleVariableSTONReader fromString:
'.application [

Font { #bold: true },
.red [Draw { #color: #red }],
.bgGray [Draw { #backgroundColor: #E2E2E2 }],
.blue [Draw { #color: #blue }]

]')

Applying styles

Each presenter can apply a stylesheet using the messages addStyle: and re-
moveStyle:. The following example changes the color of the text of a label
presenter by applying the red style.
label := presenter newLabel.
label label: 'I am a label'.
label addStyle: 'red'

15.2 How do styles work?

Styles in Spec work like CSS. They are stylesheets in which the properties for
displaying a presenter are defined. Examples of properties are colors, width,
height, and font. As a general principle, it is better to use styles instead of fixed
constraints, because your application will be more responsive.

Note, however, that a stylesheet does not cover all aspects of a widget and you
may need properties that are not covered in the current version of Spec. When
moving to Toplo widgets in the future, Spec will revisit its style support and it
will improve the coverage.

15.3 Stylesheets

Spec collects the style for a presenter, then collects the styles for its subpresen-
ters.

Root level

A stylesheet always has a root element and this root element has to be called
.application. The following stylesheet declares that the font for the applica-
tion (i.e., for all the presenters if not redefined in another style) is 10 pixels and
Source Sans Pro.
.application [

Font { #name: "Source Sans Pro", #size: 10 },
...

194

15.4 Style declaration

Subpresenter

Each style follows a cascading style, starting from .application. Here are
three styles:

.application.label.header

.application.link

.application.checkBox

15.4 Style declaration

Morphic styles are declared using STON. STON is a textual object notation. It
is described in a dedicated chapter in the Enterprise Pharo book available at
https://books.pharo.org.

Spec styles support five properties: Geometry, Draw, Font, Container, and Text,
as shown by the following example.

Geometry { #hResizing: true }
Draw { #color: Color { #red: 1, #green: 0, #blue: 0, #alpha: 1}}
Draw { #color: #blue}
Font { #name: "Lucida Grande", #size: 10, #bold: true }
Container { #borderColor: Color { #rgb: 0, #alpha: 0 },

#borderWidth: 2,
#padding: 5 }

You can define your style globally at the level of your application, and apply
it to a specific presenter with the message addStyle:. For example aPresen-
ter addStyle: 'section' selects the .section style and assigns it to the
receiver.

15.5 Stylesheet examples

Here are two examples of stylesheets.

styleSheet

^ SpStyleVariableSTONReader fromString: '
.application [

Font { #name: "Source Sans Pro", #size: 10 },
Geometry { #height: 25 },
.label [

Geometry { #hResizing: true },
.headerError [Draw { #color: Color{ #red: 1, #green: 0, #blue: 0,
#alpha: 1}}],
.headerSuccess [Draw { #color: Color{ #red: 0, #green: 1, #blue:
0, #alpha: 1}}],

195

https://books.pharo.org
https://books.pharo.org

Styling applications

.header [
Draw { #color: Color{ #rgb: 622413393 }},
Font { #name: "Lucida Grande", #size: 10, #bold: true }],

.shortcut [
Draw { #color: Color{ #rgb: 622413393 } },
Font { #name: "Lucida Grande", #size: 10 }],

.fixed [
Geometry { #hResizing: false, #width: 100 }],

.dim [
Draw { #color : Color{ #rgb: 708480675 } }]

]'

The next one extends the default stylesheet that is returned by the expression
SpStyle defaultStyleSheet.
styleSheet

^ SpStyle defaultStyleSheet, (SpStyleVariableSTONReader fromString: '
.application [

Draw { #backgroundColor: #lightRed},
.section [
Draw { #color: #green, #backgroundColor: #lightYellow},
Font { #name: "Verdana", #size: 12, #italic: true, #bold:

true}],
.disabled [Draw { #backgroundColor: #lightGreen}],
.textInputField [Draw { #backgroundColor: #blue}],
.label [
Font { #name: "Verdana", #size: 10, #italic: false, #bold:

true},
Draw { #color: #red, #backgroundColor: #lightBlue}]

]')

15.6 Anatomy of a style

Each style element kind uses specific properties defined by its associated classes
which subclass SpPropertyStyle. SpPropertyStyle has 5 subclasses: Sp-
ContainerStyle, SpDrawStyle, SpFontStyle, SpTextStyle, and SpGeome-
tryStyle.

These subclasses define the 5 types of properties that exist.

• Container: SpContainerStyle - It manages the alignment of the pre-
senters. Usually the style is set by the parent presenter, which is the one
that contains and arranges the subpresenters.

• Draw: SpDrawStyle - It modifies the properties related to the drawing of
the presenter, such as the color and the background color.

196

15.7 Environment variables

• Font: SpFontStyle - It defines properties related to fonts.

• Text: SpTextStyle - It controls the properties of the SpTextInput-
FieldPresenter.

• Geometry: SpGeometryStyle - It defines sizes, like width, height, mini-
mum height, etc.

If you want to be sure that you browse the adequate class, just send the mes-
sage stonName to the class. It will return the string used in the STON notation.
For example, SpDrawStyle stonName returns Draw.

Example

If we want to change the color of a presenter, we need to create a string and
use the SpDrawStyle property. For setting the color, we can use either the hex-
adecimal code of the color, or a method selector of the Color class.

Here we define two styles: lightGreen and lightBlue that can be applied to
any presenter.

'.application [
.lightGreen [Draw { #color: #B3E6B5 }],
.lightBlue [Draw { #color: #lightBlue }]]'

15.7 Environment variables

We can also use environment variables to get the values of the predefined col-
ors and fonts of the current UI theme. For example, we can create two styles
for changing the font of the text and one for the background color of a presen-
ter:
'.application [

.codeFont [Font { #name: EnvironmentFont(#code) }],

.textFont [Font { #name: EnvironmentFont(#default) }],

.bg [Draw { #color: EnvironmentColor(#background) }]'
]'

Check the subclasses of SpStyleEnvironmentVariable.

15.8 Top-level changes

We can change the styles for all the presenters. For instance, we can display all
the text in bold by default with this style:

197

Styling applications

'.application [
Font { #bold: true }

]'

15.9 Defining an application and its style

Suppose we like to style the Mail Application we introduced in Chapter 12 and
extend in Chapter 13. Let’s say that we like the labels in the mail editing part
of the UI to use a bigger font and a blue color. Furthermore, let’s say that we
like to use a light yellow background for fields and that we want a black border
around the field to edit the body of a mail. That brings us to this stylesheet:

'.application [
.fieldLabel [Font { #size: 12 }, Draw { #color: #blue }],
.field [Draw { #backgroundColor: #lightYellow }],
.bodyField [Container { #borderWidth: 1, #borderColor: #black}]

]'

The style .fieldLabel defines a 12-pixel blue font. The style .field defines
a light yellow background color. The style .bodyField defines a black 1-pixel
border.

To use styles, we need to associate the main presenter with an application. One
way of achieving that would be this way:

| mailClient application styleSheet |
mailClient := MailClientPresenter on: MailAccount new.
application := SpApplication new.
mailClient application: application.

styleSheet := SpStyle defaultStyleSheet,
(SpStyleVariableSTONReader fromString:
'.application [

.fieldLabel [Font { #size: 12 }, Draw { #color: #blue }],

.field [Draw { #backgroundColor: #lightYellow }],

.bodyField [Container { #borderWidth: 1, #borderColor: #black }]
]').

app styleSheet: SpStyle defaultStyleSheet , styleSheet.

But this way of working requires creating the stylesheet outside the context of
the Mail Application. Instead, we will introduce a new application class and we
override the method styleSheet.
SpApplication << #MailClientApplication

slots: {};
package: 'CodeOfSpec20Book'

198

15.10 Applying styles

MailClientApplication >> styleSheet

| customStyleSheet |
customStyleSheet := SpStyleVariableSTONReader fromString:

'.application [
.fieldLabel [Font { #size: 12 }, Draw { #color: #blue }],
.field [Draw { #backgroundColor: #lightYellow }],
.bodyField [Container { #borderWidth: 1, #borderColor: #black }

]
]'.

^ super styleSheet , customStyleSheet

Note that this method includes a super send. SpApplication >> styleSheet
answers the default stylesheet, which is the same as SpStyle defaultStyleSheet
that we saw before. By combining the default stylesheet and our own stylesheet
with the ,message, we ensure that all the default styles for all presenters are
still applied, and our styles are applied on top of the default styles.

To open the Mail Application easily, we define the startmethod:

MailClientApplication >> start

(MailClientPresenter on: MailAccount new)
application: self;
open

With this code in place, we can open the Mail Application with:

MailClientApplication new start

Of course, that would not have much effect. After all, we did not apply the
styles yet.

15.10 Applying styles

The styles we defined in the previous section were intended for the EmailPre-
senter class, which defines a form-like UI to edit a mail. The original imple-
mentation of defaultLayout was:
EmailPresenter >> defaultLayout

| toLine subjectLine fromLine |
fromLine := SpBoxLayout newTopToBottom

add: 'From:' expand: false;
add: from expand: false;
yourself.

toLine := SpBoxLayout newTopToBottom
add: 'To:' expand: false;

199

Styling applications

add: to expand: false;
yourself.

subjectLine := SpBoxLayout newTopToBottom
add: 'Subject:' expand: false;
add: subject expand: false;
yourself.

^ SpBoxLayout newTopToBottom
spacing: 10;
add: fromLine expand: false;
add: toLine expand: false;
add: subjectLine expand: false;
add: body;
yourself

To style the fields, we have to make some changes. The implementation above
is based on the method add:expand: which, out of convenience, allows the
first argument to be a string, e.g. add: 'From:' expand: false. We cannot
style a string. We can only style presenters, so we have to create the label pre-
senters ourselves. Then we can add the required styles to the three label pre-
senters by sending addStyle: 'fieldLabel'. Note that the definition of the
style uses .fieldLabel. When sending the message addStyle:, the leading
period is omitted in the argument string representing the style.

EmailPresenter >> defaultLayout

| toLine subjectLine fromLine fromLabel toLabel subjectLabel |
fromLabel := self newLabel

label: 'From:';
addStyle: 'fieldLabel';
yourself.

fromLine := SpBoxLayout newTopToBottom
add: fromLabel expand: false;
add: from expand: false;
yourself.

toLabel := self newLabel
label: 'To:';
addStyle: 'fieldLabel';
yourself.

toLine := SpBoxLayout newTopToBottom
add: toLabel expand: false;
add: to expand: false;
yourself.

subjectLabel := self newLabel
label: 'Subject:';
addStyle: 'fieldLabel';
yourself.

subjectLine := SpBoxLayout newTopToBottom

200

15.11 Dynamically applying styles

add: subjectLabel expand: false;
add: subject expand: false;
yourself.

^ SpBoxLayout newTopToBottom
spacing: 10;
add: fromLine expand: false;
add: toLine expand: false;
add: subjectLine expand: false;
add: body;
yourself

Now that the labels are styled, the next step is to style the fields. We adapt the
method initializePresenters, where they are initialized. Originally, the
method included the first four statements. We add four more to add the styles.

EmailPresenter >> initializePresenters

from := self newTextInput.
to := self newTextInput.
subject := self newTextInput.
body := self newText.
from addStyle: 'field'.
to addStyle: 'field'.
subject addStyle: 'field'.
body addStyle: 'field'; addStyle: 'bodyField'

While we add one style for the from, to, and subject presenters, we add two
styles to the body presenter. The field style will apply the background color.
The bodyField style will apply the black border.

With MailClientApplication new start we can open the Mail Application
and see styling in action. Figure 15-1 shows the window.

15.11 Dynamically applying styles

Suppose that we like to see a different background color for the fields if the
edited mail is a draft mail. That is where dynamic styling comes in.

We can add and remove styles at runtime when the state of the application
changes. Let’s do that for the styles of the fields.

First, we adapt the method styleSheet of our application class to add new
styles. We add the style .draftMail with a nested style .field that specifies a
pink background color. The nesting expresses that the .field style applies in
the context of the .draftMail style.

201

Styling applications

Figure 15-1 The stylesheet has been applied to the label and the fields.

MailClientApplication >> styleSheet

| customStyleSheet |
customStyleSheet := SpStyleVariableSTONReader fromString:

'.application [
.fieldLabel [Font { #size: 12 }, Draw { #color: #blue }],
.field [Draw { #backgroundColor: #lightYellow }],
.draftMail [

.field [Draw { #backgroundColor: #pink }]
],

.bodyField [Container { #borderWidth: 1, #borderColor: #black }
]
]'.

^ super styleSheet , customStyleSheet

The next step is to apply the new style. EmailPresenter instances have a
model. When it changes, the presenter is notified via the modelChangedmethod.
The original implementation was:

EmailPresenter >> modelChanged

from text: (self model from ifNil: ['']).
to text: (self model to ifNil: ['']).
subject text: (self model subject ifNil: ['']).
body text: (self model body ifNil: [''])

We can easily extend it to apply different styles depending on the kind of model,
which holds an instance of the Email class.

202

15.12 Conclusion

EmailPresenter >> modelChanged

from text: (self model from ifNil: ['']).
to text: (self model to ifNil: ['']).
subject text: (self model subject ifNil: ['']).
body text: (self model body ifNil: ['']).
self model isDraft

ifTrue: [
from addStyle: 'draftMail.field'.
to addStyle: 'draftMail.field'.
subject addStyle: 'draftMail.field'.
body addStyle: 'draftMail.field']

ifFalse: [
from removeStyle: 'draftMail.field'.
to removeStyle: 'draftMail.field'.
subject removeStyle: 'draftMail.field'.
body removeStyle: 'draftMail.field']

Let’s open the Mail Application again and select different kinds of mail. Figure
15-2 shows the two styles.

Figure 15-2 A different style for different kinds of mail.

15.12 Conclusion

Using styles in Spec is a nice feature. It makes it easier to have a consistent de-
sign as we can add the same style to several presenters. If we want to change
some style, we only edit the stylesheet. We can dynamically change how a pre-
senter looks.

203

CHA P T E R 16
Using Athens and Roassal in Spec

A part of this chapter was originally written by Renaud de Villemeur. We thank
him for his contribution. It shows how you can integrate vector graphic draw-
ing within Spec components. This chapter shows how you can use Athens (a
canvas using Cairo as backend) to draw using a low-level API on a canvas in-
side a Spec presenter. It then shows how you can use Roassal (a visualization
engine) within a Spec presenter. Finally we show how you can integrate into a
Spec component a Morph that draws into a Athens canvas.

16.1 Introduction

There are two different computer graphics: vector and raster graphics. Raster
graphics represent images as a collection of pixels. Vector graphics uses ge-
ometric primitives such as points, lines, curves, or polygons to represent im-
ages. These primitives are created using mathematical equations.

Both types of computer graphics have advantages and disadvantages. The ad-
vantages of vector graphics over raster are:

• smaller size,

• ability to zoom indefinitely,

• moving, scaling, filling, and rotating do not degrade the quality of an
image.

Ultimately, pictures on a computer are displayed on a screen with a specific
display dimension. However, while raster graphics doesn’t scale very well when
the resolution differs too much from the picture resolution, vector graphics

205

Using Athens and Roassal in Spec

are rasterized to fit the display they will appear on. Rasterization is taking an
image described in a vector graphics format and transforming it into a set of
pixels for output on a screen.

Morphic is using a raster approach. It converts the canvas contents into a pixel
based structure (the class Form). Most graphics in Pharo are raster graphics:
Form the low-level abstraction is used by Morphic. Pharo, however, offers a
vector graphics alternative. For this, it uses and exposes Cairo to the user. Two
APIs are available:

• the older one, called Athens, is protecting more the developers from pos-
sible mistakes.

• Alexandrie is a new and more low-level API. It has been more aggres-
sively optimized. It is the foundation for Bloc the replacement of Mor-
phic.

When you integrate Athens with Spec, you’ll use its rendering engine to create
your picture. It is transformed into a Form and displayed on the screen.

16.2 Direct integration of Athens with Spec

We first create a presenter named AthensExamplePresenter. This is the pre-
senter that will support the actual rendering using Athens.

SpPresenter << #AthensExamplePresenter
slots: { #athensPresenter };
package: 'CodeOfSpec20Book'

We define a simple layout to place the athensPresenter.
AthensExamplePresenter >> defaultLayout

^ SpBoxLayout newTopToBottom
add: athensPresenter;
yourself

This presenter creates and configures an SpAthensPresenter instance as fol-
lows:
AthensExamplePresenter >> initializePresenters

athensPresenter := self instantiate: SpAthensPresenter.
athensPresenter surfaceExtent: 600@400.
athensPresenter drawBlock: [:canvas | self render: canvas]

It configures the AthensPresenter to draw with the render: message. The
render: method is a typical sequence of instructions to configure the canvas.

206

16.2 Direct integration of Athens with Spec

AthensExamplePresenter >> render: canvas
| surface font |
surface := canvas surface.
font := LogicalFont familyName: 'Source Sans Pro' pointSize: 10.
surface clear.
canvas

setPaint: ((LinearGradientPaint from: 0@0 to: surface extent)
colorRamp: { 0 -> Color white. 1 -> Color black }).

canvas drawShape: (0@0 extent: surface extent).
canvas setFont: font.
canvas setPaint: Color pink.
canvas

pathTransform translateX: 20 Y: 20 + (font getPreciseAscent);
scaleBy: 2;
rotateByDegrees: 25.

canvas drawString: 'Hello Athens in Pharo/Morphic'

Executing AthensExamplePresenter new open produces Figure 16-1.

Figure 16-1 A Spec presenter using an SpAthensPresenter.

This example is simple because we did not cover the rendering that may have
to be invalidated if something changes, but it shows the key aspect of the archi-
tecture. You can do the same using the Alexandrie new canvas based on Cairo.
Notice that here we directly draw on the canvas without manipulating Morphic
objects. This is what we will do in a following section.

207

Using Athens and Roassal in Spec

16.3 Roassal Spec integration

In this section, we describe how you can define a Spec presenter that lets you
draw Roassal visualisations.

Imagine that you want to draw using Roassal some shapes. Here we draw two
boxes. But you can also draw paths and other graphical element.

| c blueBox redBox |
c := RSCanvas new.
blueBox := RSBox new

size: 80;
color: #blue.

redBox := RSBox new
size: 80;
color: #red.

c
add: blueBox;
add: redBox.

blueBox translateBy: 40 @ 20.
c

Using SpRoassalInspectorPresenter.
Building a Roassal supporting Spec presenter is as simple as creating an in-
stance of SpRoassalInspectorPresenter and passing it the canvas on which
we draw the Roassal visualization.

Figure 16-2 A Spec application with an Athens presenter.

This is what the following expression is doing SpRoassalInspectorPresen-
ter new canvas: c; open

208

16.4 SpRoassalPresenter

Executing the following snippet should open a Spec window with a presenter
inside as shown in Figure 16-2.

| c blueBox redBox |
c := RSCanvas new.
blueBox := RSBox new

size: 80;
color: #blue.

redBox := RSBox new
size: 80;
color: #red.

c
add: blueBox;
add: redBox.

blueBox translateBy: 40 @ 20.

SpRoassalInspectorPresenter new canvas: c; open

16.4 SpRoassalPresenter

Spec proposes a presenter dedicated to Roassal visualizations. Such a presenter
is called SpRoassalPresenter and you can use it using the newRoassalmes-
sage in an initializePresentermethod. Here is how the SpColorPicker
uses it.
SpColorPicker >> defaultLayout

| sp sp2 |
sp := self newRoassal.
sp2 := self newPresenter.
sp2 layout: SpBoxLayout newTopToBottom.
sp canvas color: Color black translucent.

^ SpBoxLayout newTopToBottom
add: colorMap height: 150;
add: colorSlider height: 25;
add: alphaSlider height: 25;
add: colorCodePresenter expand: false;
add: sp2 height: 10;
add: sp height: 1;
add: paletteChooser;
spacing: 1;
yourself.

The main API of SpRoassalPresenter are the method canvas and script as
shown in the following test. You can interact with a Roassal canvas normally

209

Using Athens and Roassal in Spec

and the result gets displayed in the Roassal presenter.

testBasic
| spec value window |
self isValid ifFalse: [^ self].
spec := SpRoassalPresenter new.
window := spec asWindow open.
value := 0.

spec script: [:view | view addShape: RSBox new. value := value + 1
].

self assert: value equals: 1.
spec script: [:view | view addShape: RSBox new. value := 0].
self assert: value equals: 0.
window close

16.5 Hello world in Athens via Morphic objects

The Pharo development team is actively working to replace Morphic by Bloc
a new graphical stack. Still we believe that the following approach is worth
documenting. We show how we can define a Morph that draws inside a athens
canvas and how such a morph can be rendered inside a Spec component.

We show how to use Athens directly integrated with Morphic. This is why we
create a Morph subclass. The expression AthensHello new openInWindow will
display the same contents as the one of Figure 16-1.

First, we define a class which inherits from Morph:
Morph << #AthensHello

slots: { #surface };
package: 'CodeOfSpec20Book'

During the initialization phase, we create an Athens surface:

AthensHello >> initialize

super initialize.
self extent: self defaultExtent.
surface := AthensCairoSurface extent: self extent

where defaultExtent is simply defined as

AthensHello >> defaultExtent

^ 400@400

210

16.6 Handling resizing

The drawOn: method, mandatory in Morph subclasses, asks Athens to render
its drawing and it will then display it in a Morphic canvas as a Form (a bitmap
picture).

AthensHello >> drawOn: aCanvas

self renderAthens.
surface displayOnMorphicCanvas: aCanvas at: bounds origin

Our actual Athens code is located in the renderAthensmethod, and the result
is stored in the surface instance variable.
AthensHello >> renderAthens

| font |
font := LogicalFont familyName: 'Arial' pointSize: 10.
surface drawDuring: [:canvas |

surface clear.
canvas setPaint: ((LinearGradientPaint from: 0@0 to: self extent)
colorRamp: { 0 -> Color white. 1 -> Color black }).
canvas drawShape: (0@0 extent: self extent).
canvas setFont: font.
canvas setPaint: Color pink.
canvas pathTransform translateX: 20 Y: 20 + (font
getPreciseAscent); scaleBy: 2; rotateByDegrees: 25.
canvas drawString: 'Hello Athens in Pharo/Morphic']

Open the morph in a window with:

AthensHello new openInWindow

16.6 Handling resizing

You can create the window and see a nice gradient with a greeting text. You
will notice, however, that when resizing the window, the Athens content is not
resized. To fix this, we need one extra method.

AthensHello >> extent: aPoint

| newExtent |
newExtent := aPoint rounded.
(bounds extent closeTo: newExtent) ifTrue: [^ self].
bounds := bounds topLeft extent: newExtent.
surface := AthensCairoSurface extent: newExtent.
self layoutChanged.
self changed

211

Using Athens and Roassal in Spec

Congratulations, you have now created your first morphic window whose con-
tents is rendered using Athens. Now we show how to integrate this morph ob-
ject into a Spec presenter.

16.7 Using the morph with Spec

Now that we have a morph, we can use it in a presenter, instance of the class
SpMorphPresenter, as follows.
SpPresenter << #AthensHelloPresenter

slots: { #morphPresenter };
package: 'CodeOfSpec20Book'

We define a basic layout so that Spec knows where to place it.

AthensHelloPresenter >> defaultLayout

^ SpBoxLayout newTopToBottom
add: morphPresenter;
yourself

In initializePresenters we wrap the morph in a SpMorphPresenter.
AthensHelloPresenter >> initializePresenters

morphPresenter := self instantiate: SpMorphPresenter.
morphPresenter morph: AthensHello new

When we open the presenter it displays the morph:

AthensHelloPresenter new open

16.8 Conclusion

This chapter illustrated clearly that Spec can take advantage of canvas-related
operations such as those proposed by Athens or Roassal to open the door to
specific visuals.

212

CHA P T E R 17
Customizing your Inspector

This chapter was originally written by Iona Thomas and we thank her for let-
ting us use this material.

The Inspector is our favorite tool to look at and interact with objects. In Pharo,
inspecting an object means opening this tool and interacting with your object.
It is a key tool when developing in Pharo. It allows one to navigate the object
structure, look at the state of the variables, change their value, or send mes-
sages. The inspector as most tools of the Pharo IDE is a tool written in Spec. In
addition you can extend the Inspector to show information that is best suited
for you. This is what we will see in this chapter.

17.1 Creating custom tabs

If you used the inspector a bit, you may have noticed that some objects have
additional tabs showing up in the inspector. For example, both Floats and In-
tegers have their first tabs showing different representations of numbers, as
shown in Figure 17-1.

Another example is the FileReference class. When a file reference is inspected,
according to the type of the file, different tabs show up with relevant informa-
tion.

Creating a new tab is as simple as reusing existing Spec presenters or defining
new ones for your specific case. For example, you can define a tab displaying a
specific Roassal visualization.

The following sections explain how to add a few additional tabs to instances of
OrderedCollection. This class already has a custom tab showing the list of its

213

Customizing your Inspector

Figure 17-1 Inspecting numbers.

items which is defined by its superclass Collection.

17.2 Adding a tab with text

Let’s add a first tab containing a text describing the first element of the collec-
tion. Define the following method:

OrderedCollection << inspectionFirstElement

<inspectorPresentationOrder: 1 title: 'First Element'>

^ SpTextPresenter new
text: 'The first element is ', self first asString;
beNotEditable;
yourself

Let us explain a bit the method definition

• <inspectorPresentationOrder: 1 title: 'First Element'> is a
pragma that is detected when creating an inspector on an object. When
creating an inspector on an instance of OrderedCollection, this method
will be used to generate a tab. The title of the tab will be First Element,
it will have position 1 in the order of tabs.

• The content of the tab is returned by the tagged method. Here we are
creating a text presenter (SpTextPresenter) with the content we want
and we specify that it should not be editable. This gives us the result
shown in Figure 17-2.

Notice that our new tab is in the second position. This is because in Collec-
tion<<inspectionItems: (the method defining the Items tab) the order pa-
rameter is 0.

214

17.3 A tab with a table

Figure 17-2 First element tab.

17.3 A tab with a table

Let’s create a new tab that will display a table if the collection contains only
numbers. It will show each number and the result of multiplying that number
with 2.

First let’s create the tab with the table:
OrderedCollection << inspectionMultipliedByTwo

<inspectorPresentationOrder: 10 title: 'Multiply by 2'>

| itemColumn multipliedByTwoColumn |
itemColumn := SpStringTableColumn

title: 'Item'
evaluated: #yourself.

itemColumn width: 30.
multipliedByTwoColumn := SpStringTableColumn

title: 'Multiply by 2'
evaluated: [:each | each * 2].

^ SpTablePresenter new
addColumn: itemColumn;
addColumn: multipliedByTwoColumn;
items: self;
beResizable;
yourself

When we inspect a collection of numbers we see the tabs shown in Figure 17-3.

215

Customizing your Inspector

Figure 17-3 Multiplied by 2 tab.

17.4 Tab activation condition

If the collection contains elements that are not numbers, the tab crashes and
looks like a red rectangle. By defining a method with the name xContext:
(where x is the name of the method defining the tab) we can specify when we
want to activate a given tab.

For example, the method defining the new tab is named inspectionMul-
tipliedByTwo so the method defining the condition of the tab activation is
named inspectionMultipliedByTwoContext:. We define it as follows:

OrderedCollection << inspectionMultipliedByTwoContext: aContext

^ aContext active: self containsOnlyNumbers

OrderedCollection << containsOnlyNumbers

^ self allSatisfy: [:each | each isNumber]

These two methods ensure that the tab is only displayed when there are only
numbers in the collection.

216

17.5 Adding a raw view of a specific element of the collection

17.5 Adding a raw view of a specific element of the collec-
tion

Sometimes you may want to provide addition tab but without any interpre-
tation about the contents. This is what we call a raw view. For this we have to
return an instance ofStRawInspectionPresenter.

For example, adding a tab showing the raw view of the max value is expressed
as follows:
OrderedCollection << inspectionMaxValue

<inspectorPresentationOrder: 5 title: 'Max Value'>

^ StRawInspectionPresenter on: self max

OrderedCollection << inspectionMaxValueContext: aContext

^ aContext active: self containsOnlyIntegers

Figure 17-4 Inspect max value tab.

17.6 Removing the evaluator

As we can see in Figure 17-4, the self in the evaluator does not match the self
in the max value, which is confusing. So we will hide the evaluator.

OrderedCollection << inspectionMaxValueContext: aContext

aContext withoutEvaluator.
^ aContext active: self containsOnlyIntegers

By reinspecting the same collection we see the inspector in Figure 17-5.

217

Customizing your Inspector

Figure 17-5 Removing the evaluator.

Figure 17-6 Histogram tab.

17.7 Adding Roassal charts

Roassal allows one to define visualizations. Such visualizations can also be
added to the Inspector tabs. The library includes some common graphs like
a histogram. Let’s add a histogram of the values if there are only numbers in
the collection. Roassal visualizations can be embedded in a presenter by send-
ing the asPresentermessage to an instance of RSBuilder. In the code below,
RSHistogramPlot is a subclass of RSBuilder. You can also use a SpRoassalP-
resenter or SPRoassalInspectorPresenter.
OrderedCollection << inspectionIntegerHistogram

<inspectorPresentationOrder: -1 title: 'Histogram'>

218

17.8 Conclusion

| plot |
plot := RSHistogramPlot new x: self.
^ plot asPresenter

OrderedCollection << inspectionIntegerHistogramContext: aContext

aContext active: self containsOnlyIntegers.
aContext withoutEvaluator.

By inspecting { 1 . 1 . 3 . 2 . 5 . 2. 2 . 1. 9. 3 . 2. 2. 5 . 7 .
7 . 8 } asOrderedCollection we see the inspector shown in Figure 17-6.

17.8 Conclusion

In this chapter, we presented briefly how you can extend the Inspector adding
specific tabs. This will shape the way you can see and interact with your ob-
jects. We presented how to define conditional tabs, as well as embed visualiza-
tions.

219

Part III

Working with Commands

CHA P T E R 18
Commander: A powerful and
simple command framework

Commander was a library originally developed by Denis Kudriashov. Comman-
der 2.0 is the second iteration of that library. It was designed and developed by
Julien Delplanque and Stéphane Ducasse. Note that Commander 2.0 is not com-
patible with Commander but it is really easy to migrate from Commander to
Commander 2.0. We describe Commander 2.0 in the context of Spec. From now
on, when we mention Commander we refer to Commander 2.0.

To explain the concepts, we will revisit the Mail Application that we introduced
in Chapter 12 and extended in Chapter 13. You can load the code as explained
in the first chapter of this book.

18.1 Commands

Commander models application actions as first-class objects following the
Command design pattern. With Commander, you can express commands and
use them to generate menus and toolbars, but also to script applications from
the command line.

Every action is implemented as a separate command class (subclass of CmCom-
mand) with an executemethod and the state required for execution.

We will show later that for a UI framework, we need more information such as
an icon and shortcut description. In addition, we will present how commands
can be decorated with extra functionality in an extensible way.

223

Commander: A powerful and simple command framework

name
description

CmCommand

execute
context
canBeExecuted

CmAbstractCommand

NewMailCommand

Figure 18-1 A simple command and its hierarchy.

18.2 Defining commands

A command is a simple object. It is an instance of a subclass of the class Cm-
Command. It has a description and a name. The name can be either static or
dynamic as we will show later on. In addition, it has a context from which it
extracts information to execute itself. In its basic form, there is no more than
that.

Let us have a look at examples. We will define some commands for the Mail
application and illustrate how they can be turned into menus, a menubar and a
toolbar.

18.3 Adding a common superclass for the command classes

For convenience reasons, we define a common superclass of all the commands
of the Mail application.

CmCommand << #MailClientCommand
slots: {};
package: 'CodeOfSpec20Book'

We define a simple helper method to make the code more readable:

MailClientCommand >> mailClientPresenter

^ self context

224

18.4 Adding the main commands

18.4 Adding the main commands

We implement subclasses of MailClientCommand to define the commands to
create a new mail, to save a mail, to send a mail, to delete a mail, and to fetch
mails.

NewMailCommand
MailClientCommand << #NewMailCommand

slots: {};
package: 'CodeOfSpec20Book'

In the initializemethod, we set the name and the description.

NewMailCommand >> initialize

super initialize.
self

name: 'New';
description: 'Create a new email'

The executemethod is the most important method of a command as it does
the actual execution. We use the helper method mailClientPresenter that
we defined in the superclass. The method sends the newMailmessage that we
defined in Chapter 12.

NewMailCommand >> execute

self mailClientPresenter newMail

In general, executemethods are simple, because they do not have enough
knowledge about the state of the application to know what to do. Therefore
they often delegate to the application.

As a general design advice, do not define application logic in a command. A
command is just a representative of this behavior.

SaveMailCommand
MailClientCommand << SaveMailCommand

slots: {};
package: 'CodeOfSpec20Book'

SaveMailCommand >> initialize

super initialize.
self

name: 'Save';
description: 'Save the email'

225

Commander: A powerful and simple command framework

SaveMailCommand >> execute

self mailClientPresenter saveMail

SaveMailCommand >> canBeExecuted

^ self mailClientPresenter hasDraft

This command definition illustrates how we can control whether a command
can be executed. The method canBeExecuted allows specifying such a condi-
tion.

In the previous command class, we did not implement NewMailCommand >>
canBeExecuted, because creating a new mail is always possible and by default
commands can be executed (CmCommand >> canBeExecuted answers true).

SendMailCommand
MailClientCommand << SendMailCommand

slots: {};
package: 'CodeOfSpec20Book'

SendMailCommand >> initialize

super initialize.
self

name: 'Send';
description: 'Send the selected email'

SendMailCommand >> execute

self mailClientPresenter sendMail

SendMailCommand >> canBeExecuted

^ self mailClientPresenter hasDraft

DeleteMailCommand
MailClientCommand << DeleteMailCommand

slots: {};
package: 'CodeOfSpec20Book'

DeleteMailCommand >> initialize

super initialize.
self

name: 'Delete';
description: 'Delete the selected email'

226

18.5 Adding placeholder commands

DeleteMailCommand >> execute

^ self mailClientPresenter deleteMail

DeleteMailCommand >> canBeExecuted

^ self mailClientPresenter hasSelectedEmail

FetchMailCommand
MailClientCommand << FetchMailCommand

slots: {};
package: 'CodeOfSpec20Book'

FetchMailCommand >> initialize

super initialize.
self

name: 'Fetch';
description: 'Fetch email from the server'

FetchMailCommand >> execute

self mailClientPresenter fetchMail

18.5 Adding placeholder commands

We also define placeholder commands for functionality that was not imple-
mented by the Mail application in Chapter 12. We will not implement them
here either. We only provide a name and a description, which are required for
the UI.

FormatPlainTextCommand
MailClientCommand << FormatPlainTextCommand

slots: {};
package: 'CodeOfSpec20Book'

FormatPlainTextCommand >> initialize

super initialize.
self

name: 'Plain text';
description: 'Use plain text'

227

Commander: A powerful and simple command framework

FormatRichTextCommand
MailClientCommand << FormatRichTextCommand

slots: {};
package: 'CodeOfSpec20Book'

FormatRichTextCommand >> initialize

super initialize.
self

name: 'Rich text';
description: 'Use rich text'

ShowCcFieldCommand
MailClientCommand << ShowCcFieldCommand

slots: {};
package: 'CodeOfSpec20Book'

ShowCcFieldCommand >> initialize

super initialize.
self

name: 'Show CC field';
description: 'Turn on the CC field'

ShowBccFieldCommand
MailClientCommand << ShowBccFieldCommand

slots: {};
package: 'CodeOfSpec20Book'

ShowCcFieldShowBccFieldCommandommand >> initialize

super initialize.
self

name: 'Show BCC field';
description: 'Turn on the BCC field'

18.6 Turning commands into menu items

Now that we have defined the commands, we would like to turn them into
menus. In Spec, commands that are transformed into menu items are struc-
tured into a tree of command instances. The class method buildCommands-
GroupWith:forRoot: of SpPresenter is a hook to let presenters define the
root of the command instance tree.

228

18.7 Using fillWith:

The method buildCommandsGroupWith:forRoot: registers commands to
which the presenter instance is passed as context. Note that here we just add
plain commands, but we can also create groups. Later in this chapter we will
also specify a menubar and a toolbar in this method. For now, we restrict it to
the context menu for the MailAccountPresenter.
MailClientPresenter class >>

buildCommandsGroupWith: presenter
forRoot: rootCommandGroup

rootCommandGroup
register: (self buildAccountMenuWith: presenter)

The method above delegates to MailClientPresenter class >> buildAc-
countMenuWith:, which adds the delete and the send commands. The method
answers a CmCommandGroup instance with a name 'AccountMenu'. The name
will not be visible in the UI because we send beRoot. A command is trans-
formed into a command for Spec using the message forSpec.
MailClientPresenter class >> buildAccountMenuWith: presenter

^ (CmCommandGroup named: 'AccountMenu') asSpecGroup
beRoot;
register: (DeleteMailCommand forSpec context: presenter);
register: (SendMailCommand forSpec context: presenter);
yourself

18.7 Using fillWith:

In Chapter 12, we defined the method MailClientPresenter >> account-
Menu to return the context menu for the MailAccountPresenter. When using
commands, we implement it differently. We create a new menu and fill it with
the commands defined in the method above. A presenter has access to the root
of the command tree through the message rootCommandsGroup. Subtrees can
be accessed by sending the /message. By using commands, building up the
context menu is almost trivial:
MailClientPresenter >> accountMenu

^ self newMenu
fillWith: (self rootCommandsGroup / 'AccountMenu');
yourself

When reopening the interface with:

(MailClientPresenter on: MailAccount new) open

229

Commander: A powerful and simple command framework

you should see the menu items as shown in Figure 18-2. As we will show later,
we could even replace a menu item with another one, changing its name, or
icon in place.

Figure 18-2 Two menu items with the mouse pointing at the second item.

18.8 Managing icons and shortcuts

By default a command does not know about Spec-specific behavior, because a
command does not have to be linked to UI. Obviously you want to have icons
and shortcut bindings when you are designing an interactive application.

Commander supports the addition of icons and shortcut keys to commands.
Let’s see how it works from a user perspective. The framework offers two meth-
ods to set an icon and a shortcut key: iconName: and shortcutKey:. We can
specialize the method asSpecCommand as follows:
NewMailCommand >> asSpecCommand

^ super asSpecCommand
iconName: #smallNew;
shortcutKey: $n meta;
yourself

SaveMailCommand >> asSpecCommand

^ super asSpecCommand
iconName: #smallSave;
shortcutKey: $s meta;
yourself

230

18.9 Managing a menubar

SendMailCommand >> asSpecCommand

^ super asSpecCommand
iconName: #smallExport;
shortcutKey: $l meta;
yourself

DeleteMailCommand >> asSpecCommand

^ super asSpecCommand
shortcutKey: $d meta;
yourself

FetchMailCommand >> asSpecCommand

^ super asSpecCommand
iconName: #refresh;
shortcutKey: $f meta;
yourself

Remember that commands are created using the message forSpec. This mes-
sage takes care of the calling asSpecCommand.

Figure 18-3 With a menubar.

18.9 Managing a menubar

Commander also supports menubar creation as shown in Figure 18-3. The logic
is the same as for contextual menus: we define a group and register it under a
given root, and we tell the presenter to use this group as a menubar.

231

Commander: A powerful and simple command framework

First, we have to define the menubar. We extend the method we defined before:

MailClientPresenter class >>
buildCommandsGroupWith: presenter
forRoot: rootCommandGroup

rootCommandGroup
register: (self buildAccountMenuWith: presenter);
register: (self buildMenuBarGroupWith: presenter)

The method delegates to MailClientPresenter >> buildMenuBarGroup-
With::
MailClientPresenter class >> buildMenuBarGroupWith: presenter

^ (CmCommandGroup named: 'MenuBar') asSpecGroup
beRoot;
register: (self buildMessageMenuWith: presenter);
register: (self buildViewMenuWith: presenter);
register: (self buildFormatMenuWith: presenter);
yourself

In its turn, this method delegates to three other methods:

MailClientPresenter class >> buildMessageMenuWith: presenter

^ (CmCommandGroup named: 'Message') asSpecGroup
register: (NewMailCommand forSpec context: presenter);
register: (SaveMailCommand forSpec context: presenter);
register: (DeleteMailCommand forSpec context: presenter);
register: (SendMailCommand forSpec context: presenter);
register: (FetchMailCommand forSpec context: presenter);
yourself

MailClientPresenter class >> buildViewMenuWith: presenter

^ (CmCommandGroup named: 'View') asSpecGroup
register: (ShowCcFieldCommand forSpec context: presenter);
register: (ShowBccFieldCommand forSpec context: presenter);
yourself

MailClientPresenter >> buildFormatMenuWith: presenter

^ (CmCommandGroup named: 'Format') asSpecGroup
register: (FormatPlainTextCommand forSpec context: presenter);
register: (FormatRichTextCommand forSpec context: presenter);
yourself

Now that the command tree for the menubar is defined, we can use it. In Chap-
ter 12, we defined MailClientPresenter >> #initializeMenuBar. We can

232

18.10 Introducing groups

replace it by:

MailClientPresenter >> initializeMenuBar

menuBar := self newMenuBar.
menuBar fillWith: self rootCommandsGroup / 'MenuBar'

Figure 18-3 shows the result of adding the menubar based on commands.

18.10 Introducing groups

As you can see in Figure 18-3, the first menu in the menubar shows a plain list
of menu items. That was not the case when we implemented the first version of
the Mail Application. In Chapter 13, Figure 13-2 shows a menu with two groups.
The first four menu items where separated from the fifth menu item with a
separator line.

We can achieve the same grouping with commands. Commands can be man-
aged in groups and such groups can be turned into corresponding menu item
sections.

Let’s make the required changes to the method MailClientPresenter class
>> #buildMessageMenuWith: that we introduced before.

MailClientPresenter class >> buildMessageMenuWith: presenter

| fetchGroup |
fetchGroup := CmCommandGroup new asSpecGroup

register: (FetchMailCommand forSpec context: presenter);
beDisplayedAsGroup;
yourself.

^ (CmCommandGroup named: 'Message') asSpecGroup
register: (NewMailCommand forSpec context: presenter);
register: (SaveMailCommand forSpec context: presenter);
register: (DeleteMailCommand forSpec context: presenter);
register: (SendMailCommand forSpec context: presenter);
register: fetchGroup;
yourself

We already used groups for the different menus in the menubar. In this method,
we had a group named ”Message”. The name was also the label of the menu in
the menubar. Instead of registering the FetchMailCommand as the last com-
mand in the menu, we register a new group, which is defined at the beginning
of the method. The new group has no name, because we do not need one, and
holds only one command, the FetchMailCommand.

An important message is beDisplayedAsGroup. It indicates that in a menu,
the new group should be separated from the other menu items, instead of

233

Commander: A powerful and simple command framework

being added as a menu item with a nested menu. Figure 18-4 shows what the
menu would look like if beDisplayedAsGroup is not sent. In situations where
nested menus are desired, that would be fine, but giving the group a nice name
would be preferable, as ”Unnamed group” is the default name.

Figure 18-4 Nested menu with the mouse pointing at its name.

In our case, we do not want a nested menu. We want a separate section in the
menu. With the implementation of MailClientPresenter class >> #buildMes-
sageMenuWith: above, we see a menu as shown in Figure 18-5. As in Chapter
13, now there are two groups of commands, separated by a line.

Figure 18-5 Menu with a separate group.

234

18.11 Extending menus

18.11 Extending menus

Building menus is nice, but sometimes we need to add a menu to an existing
one. Commander supports this via a dedicated pragma, called <extension-
Commands> that identifies extensions.

Imagine that we want to add new functionality to the Mail Application and that
this behavior is packaged in another package, for instance CodeOfSpec20Book-
Extensions. As an example, we will add the ability to create new mails from a
template. To reduce the additional code for such functionality, we will keep
things simple. It is not our intention to introduce a full-fledged templating sys-
tem. We will restrict the feature to a template for the body of a mail.

Defining a new command

First, we will define a new command and second, we will show how we can ex-
tend the existing menubar with an extra menu. Adding menu items to existing
menus and adding toolbar buttons to an existing toolbar can be done in a simi-
lar way.

MailClientCommand << #NewMailTemplateCommand
slots: { #bodyTemplate };
package: 'CodeOfSpec20Book-Extensions'

Note that we put the new command class in an extension package, while all the
code so far resides in package ”CodeOfSpec20Book”.

One could imagine having template values for all attributes of a mail. As men-
tioned before, we keep thing simple. Only the body is a template. That is why
there is only one instance variable. We will need a write accessor method to set
the body template, so let’s define it.

NewMailTemplateCommand >> bodyTemplate: aString

bodyTemplate := aString

Later, the name of a template will be set as the name of the command, but we
set a default in the initializemethod:
NewMailTemplateCommand >> initialize

super initialize.
self

name: 'New template';
description: 'Create a new email from a template'

The executemethod delegates the creation of a new mail to the MailClient-
Presenter, similar to how we implemented executemethods of other com-

235

Commander: A powerful and simple command framework

mand classes.
NewMailTemplateCommand >> execute

self mailClientPresenter newFromTemplate: bodyTemplate

The implementation above requires the addition of an extension method to the
MailClientPresenter class. The method below resides in the package ”Code-
OfSpec20Book-Extensions”. The implementation of the method is similar to
MailClientPresenter >> newMail. The only difference is setting the given
template by sending the body: message to the new mail.

NewMailTemplateCommand >> newFromTemplate: aString

editedEmail := Email new.
editedEmail beDraft.
editedEmail body: aString.
reader updateLayoutForEmail: editedEmail.
self modelChanged

18.12 Declaring extension

The last missing piece is the declaration of the extension of the commands
with the pragma <extensionCommands> on the class side of the MailClientP-
resenter class as follows:
MailClientPresenter class >>

buildTemplateCommandsGroupWith: presenter
forRoot: rootCommandGroup

<extensionCommands>

(rootCommandGroup / 'MenuBar')
register: (self buildTemplateMenuWith: presenter)

This method resides in the package ”CodeOfSpec20Book-Extensions”. As we did
before, this method uses another method to create the command tree for the
new menu. That method resides in the package ”CodeOfSpec20Book-Extensions”
too. For our example, this method creates only two commands. In an extended
implementation, one could imagine that the templates are objects and that
they come from elsewhere.

Note the difference with the way we created commands before. Here, we do not
send forSpec to the command class. Actually, we can’t, because the commands
have to be initialized with the body template. Therefore we create and initial-
ize the commands, and send asSpecCommand to them. When registering them,
we set the context.

236

18.13 Managing a toolbar

MailClientPresenter class >> buildTemplateMenuWith: presenter

| letterTemplateCommand invitationTemplateCommand |
invitationTemplateCommand := NewMailTemplateCommand new

name: 'Invitation';
bodyTemplate: 'Hi, you are invited to my party on <date>.';
asSpecCommand.

letterTemplateCommand := NewMailTemplateCommand new
name: 'Letter';
bodyTemplate: 'Dear <name>, I write you to inform you about
<something>.';
asSpecCommand.

^ (CmCommandGroup named: 'Templates') asSpecGroup
register: (invitationTemplateCommand context: presenter);
register: (letterTemplateCommand context: presenter);
yourself

It is time to open the Mail Application again. Figure 18-6 shows the result with
the ”Templates” menu open. After selecting ”Invitation” from the ”Templates”
menu, the new mail appears in the UI, as shown in Figure 18-7.

Figure 18-6 With menubar extension.

18.13 Managing a toolbar

We described how to use commands for context menus and for menubars. We
can also use commands for toolbars. The big difference between menus and
toolbars is that menu items are displayed only on demand. They show up af-
ter opening a menu. Toolbar buttons, on the other hand, are always visible.
The constant visibility has an impact on the way button enablement has to be

237

Commander: A powerful and simple command framework

Figure 18-7 After creating a new mail from a template.

applied. For menu items, their enabled or disabled state is determined at the
time of displaying them. For toolbar buttons, we will have to enable and dis-
able them at the time the state of the application changes. We will discuss that
soon. Let’s first put a toolbar together based on commands. We know the pat-
tern for menus. It is the same for toolbars.

The first step is to define the commands that will be available in the toolbar.
We will adapt this method for the last time:

MailClientPresenter class >>
buildCommandsGroupWith: presenter
forRoot: rootCommandGroup

rootCommandGroup
register: (self buildAccountMenuWith: presenter);
register: (self buildMenuBarGroupWith: presenter);
register: (self buildToolBarGroupWith: presenter)

The last registration adds the commands for the toolbar. This is the implemen-
tation:
MailClientPresenter class >> buildToolBarGroupWith: presenter

^ (CmCommandGroup named: 'ToolBar') asSpecGroup
beRoot;
register: (NewMailCommand forSpec context: presenter);
register: (SaveMailCommand forSpec context: presenter);
register: (SendMailCommand forSpec context: presenter);
register: (FetchMailCommand forSpec context: presenter);
yourself

238

18.13 Managing a toolbar

This is very similar to how we defined the commands for the menus. Here we
add the four commands that we like to include in the toolbar.

The next step is to fill the toolbar with these commands. To achieve that, we
can change the method that we implemented before:

MailClientPresenter >> initializeToolBar

toolBar := self newToolbar.
toolBar fillWith: self rootCommandsGroup / 'ToolBar'

As you can see, we use the same pattern as MailClientPresenter >> ac-
countMenu and MailClientPresenter >> initializeMenuBar. We create
a new toolbar, and then send the message fillWith: to populate the toolbar
with the commands coming from the command tree.

When we open the MailClientPresenter again, we see the toolbar as shown
in Figure 18-8. All the toolbar buttons are positioned at the left side of the
toolbar. That is different from the toolbar shown in Figure 13-3 in Chapter 13,
where the button to fetch mail is positioned at the right side of the toolbar.

Figure 18-8 With a toolbar.

To position the button to fetch mail on the right side, we need an additional
change in FetchMailCommand >> asSpecCommand. We send beDisplayedOnRight-
Side.
FetchMailCommand >> asSpecCommand

^ super asSpecCommand
iconName: #refresh;
shortcutKey: $f meta;
beDisplayedOnRightSide;

239

Commander: A powerful and simple command framework

yourself

When we open the presenter again, we see a toolbar as shown in Figure 18-9.
The button to fetch mail is positioned on the right side.

Figure 18-9 With a toolbar.

Toolbar button enablement

In the beginning of this section, we explained why enablement of toolbar but-
tons has to be handled differently from enablement of menu items. In the cur-
rent state of the Mail Application, the toolbar buttons are always enabled. That
is not desired, because clicking a toolbar button may lead to errors in the code.

The enablement state of the toolbar buttons should be updated every time the
state of the application changes. For instance, sending a mail is possible only if
a mail has been selected. In Chapter 13, we already introduced a method Mail-
ClientPresenter >> updateToolBarButtons to update the toolbar buttons.
We can adapt it to update the enablement state of the toolbar buttons. How-
ever, Spec does not provide a method to refresh the toolbar buttons. The only
way is to refill the toolbar. We can send the message SpToolbarPresenter >>
fillWith: to achieve that, because that method empties the toolbar before
filling it again.

MailClientPresenter >> updateToolBarButtons

toolBar fillWith: self rootCommandsGroup / 'ToolBar'

And now that we have this method, we can remove the duplication in Mail-
ClientPresenter >> initializeToolBar.

240

18.14 Conclusion

MailClientPresenter >> initializeToolBar

toolBar := self newToolbar.
self updateToolBarButtons

18.14 Conclusion

In this chapter, we saw how you can define a command tree and populate it
with subtrees for commands for particular contexts. Based on those subtrees,
context menus, menubars and toolbars can be created with only a few lines
of code. You learned how commands can be reused and customized. We pre-
sented groups of commands as a way to structure menus.

241

	Introduction
	Reuse of logic
	Spec 2.0
	Code
	Acknowledgements

	All Spec in One Example
	A 10 min small example
	A customer satisfaction UI
	Create the class of the UI
	Instantiate and configure subpresenters
	Presenter creation
	Presenter configuration
	Presenter interaction logic
	Specifying the presenter layout

	Define a title and window size, open and close the UI
	Conclusion

	Most of Spec in one example
	Application
	A basic film model
	List of films
	defaultLayout
	initializePresenters

	Filling up the film list
	Opening presenters via the application
	Improving the window
	An application manages icons
	FilmPresenter
	Better looking FilmPresenter
	Opening FilmPresenter in a modal dialog
	Customizing the modal dialog
	Invoking a presenter
	Embedding a FilmPresenter into the FilmListPresenter
	Define component communication
	Testing your application UI
	Adding more tests
	Changing layout
	Using transmissions
	Styling the application
	Conclusion

	Spec Essentials
	Spec core in a nutshell
	Spec architecture overview
	Spec core architecture overview
	Presenters
	Application
	Application configuration
	Using Morphic
	Using GTK theme and settings

	Layouts
	Styles and stylesheets
	Navigation between presenters
	Conclusion

	Testing Spec applications
	Testing presenters
	Spec architecture
	Three roles and concerns
	Spec user perspective

	Spec user example
	Tests
	Opening the default application
	Correct initialization
	Choosing a color
	Making the current color lighter
	Making the current color darker
	Verifying window properties

	Testing your application
	Known limitations and conclusion

	The dual aspects of presenters: Domain and interaction model
	About presenters on a model
	Example with SpPresenter
	SpPresenter vs. SpPresenterWithModel
	Example with SpPresenterWithModel
	User interface building: a model of UI presentation
	The initializePresenters method
	Subpresenter instantiation

	The connectPresenters method
	The defaultLayout method
	Using setter message layout:
	Multiple layouts for a widget

	Conclusion

	Reuse and composition at work
	First requirements
	Creating a basic UI to be reused as a widget
	Supporting reuse
	Combining two basic presenters into a reusable UI
	Live inspection of the widgets
	Writing tests
	Managing three widgets and their interactions
	Having different layouts
	Enhancing our API
	Changing the layout of a reused widget
	Changing layouts
	Considerations about a public configuration API
	New versus old patterns
	Conclusion

	Lists, tables and trees
	Lists
	Controlling item display
	Decorating elements
	About single/multiple selection
	Drag and drop
	Activation clicks
	Filtering lists
	Selectable filtering lists
	Component lists
	Trees
	Tables
	First table
	Sorting headers
	Editable tables
	Tree tables
	Conclusion

	Managing windows
	A working example
	Opening a window or a dialog box
	Opening a window
	Opening a dialog box

	Preventing window close
	Acting on window close
	With a window
	With a dialog window
	Action with Window

	Window size and decoration
	Setting initial size and changing size
	Fixed size
	Removing window decoration
	Setting and changing the title
	Setting the about text

	Getting values from a dialog window
	Little modal dialog presenters
	Placing a presenter inside a dialog window
	Setting keyboard focus
	Acting on window opening
	Conclusion

	Layouts
	Basic principle reminder
	A running example
	BoxLayout (SpBoxLayout and SpBoxConstraints)
	Box layout alignment
	Box alignment example
	Alignment in horizontal box layout
	A more advanced layout
	Example setup for layout reuse
	Opening with a layout
	Better design
	Specifying a layout when reusing a presenter
	Alternative to declare subcomponent layout choice
	Dynamically changing a layout
	Grid layout (SpGridLayout)
	Paned layout (SpPanedLayout)
	Overlay layout (SpOverlayLayout)
	Conclusion

	Dynamic presenters
	Layouts as simple as objects
	Dynamic button adder
	Defining add/remove buttons
	Building a little dynamic browser
	Placing elements visually
	Connecting the flow
	Toggling Edit/Read-only mode
	About layout recalculation
	Conclusion

	A Concrete Case: A Mail Application
	The models
	Email
	MailFolder
	Distinguishing emails and folders

	MailAccount
	The presenters
	The EmailPresenter
	The NoEmailPresenter
	The MailReaderPresenter
	The MailAccountPresenter
	The MailClientPresenter
	First full application
	Conclusion

	Menubar, Toolbar, Status Bar, and Context Menus
	Adding a menubar to a window
	Implementing message menu commands
	Installing shortcuts
	Defining actions
	Adding a toolbar to a window
	Supporting enablement
	Adding a status bar to a window
	Adding a context menu to a presenter
	Enabling blocks
	Conclusion

	Using transmissions and ports
	What are transmissions?
	A simple example
	Basic transmission
	Transforming a transmitted object
	Acting on a transmission without input port
	Acting after a transmission
	Available ports
	Ports and nesting presenters
	A more advanced example
	Another variation
	Conclusion

	Styling applications
	In a nutshell
	An application stylesheet
	Declaring styles
	Applying styles

	How do styles work?
	Stylesheets
	Root level
	Subpresenter

	Style declaration
	Stylesheet examples
	Anatomy of a style
	Example

	Environment variables
	Top-level changes
	Defining an application and its style
	Applying styles
	Dynamically applying styles
	Conclusion

	Using Athens and Roassal in Spec
	Introduction
	Direct integration of Athens with Spec
	Roassal Spec integration
	Using SpRoassalInspectorPresenter.

	SpRoassalPresenter
	Hello world in Athens via Morphic objects
	Handling resizing
	Using the morph with Spec
	Conclusion

	Customizing your Inspector
	Creating custom tabs
	Adding a tab with text
	A tab with a table
	Tab activation condition
	Adding a raw view of a specific element of the collection
	Removing the evaluator
	Adding Roassal charts
	Conclusion

	Working with Commands
	Commander: A powerful and simple command framework
	Commands
	Defining commands
	Adding a common superclass for the command classes
	Adding the main commands
	NewMailCommand
	SaveMailCommand
	SendMailCommand
	DeleteMailCommand
	FetchMailCommand

	Adding placeholder commands
	FormatPlainTextCommand
	FormatRichTextCommand
	ShowCcFieldCommand
	ShowBccFieldCommand

	Turning commands into menu items
	Using fillWith:
	Managing icons and shortcuts
	Managing a menubar
	Introducing groups
	Extending menus
	Defining a new command

	Declaring extension
	Managing a toolbar
	Toolbar button enablement

	Conclusion

